aboutsummaryrefslogtreecommitdiff
path: root/webrtc/modules/audio_coding/neteq/expand.cc
diff options
context:
space:
mode:
authorChih-hung Hsieh <chh@google.com>2015-12-01 17:07:48 +0000
committerandroid-build-merger <android-build-merger@google.com>2015-12-01 17:07:48 +0000
commita4acd9d6bc9b3b033d7d274316e75ee067df8d20 (patch)
tree672a185b294789cf991f385c3e395dd63bea9063 /webrtc/modules/audio_coding/neteq/expand.cc
parent3681b90ba4fe7a27232dd3e27897d5d7ed9d651c (diff)
parentfe8b4a657979b49e1701bd92f6d5814a99e0b2be (diff)
downloadwebrtc-a4acd9d6bc9b3b033d7d274316e75ee067df8d20.tar.gz
Merge changes I7bbf776e,I1b827825
am: fe8b4a6579 * commit 'fe8b4a657979b49e1701bd92f6d5814a99e0b2be': (7237 commits) WIP: Changes after merge commit 'cb3f9bd' Make the nonlinear beamformer steerable Utilize bitrate above codec max to protect video. Enable VP9 internal resize by default. Filter overlapping RTP header extensions. Make VCMEncodedFrameCallback const. MediaCodecVideoEncoder: Add number of quality resolution downscales to Encoded callback. Remove redudant encoder rate calls. Create isolate files for nonparallel tests. Register header extensions in RtpRtcpObserver to avoid log spam. Make an enum class out of NetEqDecoder, and hide the neteq_decoders_ table ACM: Move NACK functionality inside NetEq Fix chromium-style warnings in webrtc/sound/. Create a 'webrtc_nonparallel_tests' target. Update scalability structure data according to updates in the RTP payload profile. audio_coding: rename interface -> include Rewrote perform_action_on_all_files to be parallell. Update reference indices according to updates in the RTP payload profile. Disable P2PTransport...TestFailoverControlledSide on Memcheck pass clangcl compile options to ignore warnings in gflags.cc ...
Diffstat (limited to 'webrtc/modules/audio_coding/neteq/expand.cc')
-rw-r--r--webrtc/modules/audio_coding/neteq/expand.cc962
1 files changed, 962 insertions, 0 deletions
diff --git a/webrtc/modules/audio_coding/neteq/expand.cc b/webrtc/modules/audio_coding/neteq/expand.cc
new file mode 100644
index 0000000000..2aa9fb0a8d
--- /dev/null
+++ b/webrtc/modules/audio_coding/neteq/expand.cc
@@ -0,0 +1,962 @@
+/*
+ * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include "webrtc/modules/audio_coding/neteq/expand.h"
+
+#include <assert.h>
+#include <string.h> // memset
+
+#include <algorithm> // min, max
+#include <limits> // numeric_limits<T>
+
+#include "webrtc/base/safe_conversions.h"
+#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
+#include "webrtc/modules/audio_coding/neteq/background_noise.h"
+#include "webrtc/modules/audio_coding/neteq/dsp_helper.h"
+#include "webrtc/modules/audio_coding/neteq/random_vector.h"
+#include "webrtc/modules/audio_coding/neteq/statistics_calculator.h"
+#include "webrtc/modules/audio_coding/neteq/sync_buffer.h"
+
+namespace webrtc {
+
+Expand::Expand(BackgroundNoise* background_noise,
+ SyncBuffer* sync_buffer,
+ RandomVector* random_vector,
+ StatisticsCalculator* statistics,
+ int fs,
+ size_t num_channels)
+ : random_vector_(random_vector),
+ sync_buffer_(sync_buffer),
+ first_expand_(true),
+ fs_hz_(fs),
+ num_channels_(num_channels),
+ consecutive_expands_(0),
+ background_noise_(background_noise),
+ statistics_(statistics),
+ overlap_length_(5 * fs / 8000),
+ lag_index_direction_(0),
+ current_lag_index_(0),
+ stop_muting_(false),
+ expand_duration_samples_(0),
+ channel_parameters_(new ChannelParameters[num_channels_]) {
+ assert(fs == 8000 || fs == 16000 || fs == 32000 || fs == 48000);
+ assert(fs <= static_cast<int>(kMaxSampleRate)); // Should not be possible.
+ assert(num_channels_ > 0);
+ memset(expand_lags_, 0, sizeof(expand_lags_));
+ Reset();
+}
+
+Expand::~Expand() = default;
+
+void Expand::Reset() {
+ first_expand_ = true;
+ consecutive_expands_ = 0;
+ max_lag_ = 0;
+ for (size_t ix = 0; ix < num_channels_; ++ix) {
+ channel_parameters_[ix].expand_vector0.Clear();
+ channel_parameters_[ix].expand_vector1.Clear();
+ }
+}
+
+int Expand::Process(AudioMultiVector* output) {
+ int16_t random_vector[kMaxSampleRate / 8000 * 120 + 30];
+ int16_t scaled_random_vector[kMaxSampleRate / 8000 * 125];
+ static const int kTempDataSize = 3600;
+ int16_t temp_data[kTempDataSize]; // TODO(hlundin) Remove this.
+ int16_t* voiced_vector_storage = temp_data;
+ int16_t* voiced_vector = &voiced_vector_storage[overlap_length_];
+ static const size_t kNoiseLpcOrder = BackgroundNoise::kMaxLpcOrder;
+ int16_t unvoiced_array_memory[kNoiseLpcOrder + kMaxSampleRate / 8000 * 125];
+ int16_t* unvoiced_vector = unvoiced_array_memory + kUnvoicedLpcOrder;
+ int16_t* noise_vector = unvoiced_array_memory + kNoiseLpcOrder;
+
+ int fs_mult = fs_hz_ / 8000;
+
+ if (first_expand_) {
+ // Perform initial setup if this is the first expansion since last reset.
+ AnalyzeSignal(random_vector);
+ first_expand_ = false;
+ expand_duration_samples_ = 0;
+ } else {
+ // This is not the first expansion, parameters are already estimated.
+ // Extract a noise segment.
+ size_t rand_length = max_lag_;
+ // This only applies to SWB where length could be larger than 256.
+ assert(rand_length <= kMaxSampleRate / 8000 * 120 + 30);
+ GenerateRandomVector(2, rand_length, random_vector);
+ }
+
+
+ // Generate signal.
+ UpdateLagIndex();
+
+ // Voiced part.
+ // Generate a weighted vector with the current lag.
+ size_t expansion_vector_length = max_lag_ + overlap_length_;
+ size_t current_lag = expand_lags_[current_lag_index_];
+ // Copy lag+overlap data.
+ size_t expansion_vector_position = expansion_vector_length - current_lag -
+ overlap_length_;
+ size_t temp_length = current_lag + overlap_length_;
+ for (size_t channel_ix = 0; channel_ix < num_channels_; ++channel_ix) {
+ ChannelParameters& parameters = channel_parameters_[channel_ix];
+ if (current_lag_index_ == 0) {
+ // Use only expand_vector0.
+ assert(expansion_vector_position + temp_length <=
+ parameters.expand_vector0.Size());
+ memcpy(voiced_vector_storage,
+ &parameters.expand_vector0[expansion_vector_position],
+ sizeof(int16_t) * temp_length);
+ } else if (current_lag_index_ == 1) {
+ // Mix 3/4 of expand_vector0 with 1/4 of expand_vector1.
+ WebRtcSpl_ScaleAndAddVectorsWithRound(
+ &parameters.expand_vector0[expansion_vector_position], 3,
+ &parameters.expand_vector1[expansion_vector_position], 1, 2,
+ voiced_vector_storage, temp_length);
+ } else if (current_lag_index_ == 2) {
+ // Mix 1/2 of expand_vector0 with 1/2 of expand_vector1.
+ assert(expansion_vector_position + temp_length <=
+ parameters.expand_vector0.Size());
+ assert(expansion_vector_position + temp_length <=
+ parameters.expand_vector1.Size());
+ WebRtcSpl_ScaleAndAddVectorsWithRound(
+ &parameters.expand_vector0[expansion_vector_position], 1,
+ &parameters.expand_vector1[expansion_vector_position], 1, 1,
+ voiced_vector_storage, temp_length);
+ }
+
+ // Get tapering window parameters. Values are in Q15.
+ int16_t muting_window, muting_window_increment;
+ int16_t unmuting_window, unmuting_window_increment;
+ if (fs_hz_ == 8000) {
+ muting_window = DspHelper::kMuteFactorStart8kHz;
+ muting_window_increment = DspHelper::kMuteFactorIncrement8kHz;
+ unmuting_window = DspHelper::kUnmuteFactorStart8kHz;
+ unmuting_window_increment = DspHelper::kUnmuteFactorIncrement8kHz;
+ } else if (fs_hz_ == 16000) {
+ muting_window = DspHelper::kMuteFactorStart16kHz;
+ muting_window_increment = DspHelper::kMuteFactorIncrement16kHz;
+ unmuting_window = DspHelper::kUnmuteFactorStart16kHz;
+ unmuting_window_increment = DspHelper::kUnmuteFactorIncrement16kHz;
+ } else if (fs_hz_ == 32000) {
+ muting_window = DspHelper::kMuteFactorStart32kHz;
+ muting_window_increment = DspHelper::kMuteFactorIncrement32kHz;
+ unmuting_window = DspHelper::kUnmuteFactorStart32kHz;
+ unmuting_window_increment = DspHelper::kUnmuteFactorIncrement32kHz;
+ } else { // fs_ == 48000
+ muting_window = DspHelper::kMuteFactorStart48kHz;
+ muting_window_increment = DspHelper::kMuteFactorIncrement48kHz;
+ unmuting_window = DspHelper::kUnmuteFactorStart48kHz;
+ unmuting_window_increment = DspHelper::kUnmuteFactorIncrement48kHz;
+ }
+
+ // Smooth the expanded if it has not been muted to a low amplitude and
+ // |current_voice_mix_factor| is larger than 0.5.
+ if ((parameters.mute_factor > 819) &&
+ (parameters.current_voice_mix_factor > 8192)) {
+ size_t start_ix = sync_buffer_->Size() - overlap_length_;
+ for (size_t i = 0; i < overlap_length_; i++) {
+ // Do overlap add between new vector and overlap.
+ (*sync_buffer_)[channel_ix][start_ix + i] =
+ (((*sync_buffer_)[channel_ix][start_ix + i] * muting_window) +
+ (((parameters.mute_factor * voiced_vector_storage[i]) >> 14) *
+ unmuting_window) + 16384) >> 15;
+ muting_window += muting_window_increment;
+ unmuting_window += unmuting_window_increment;
+ }
+ } else if (parameters.mute_factor == 0) {
+ // The expanded signal will consist of only comfort noise if
+ // mute_factor = 0. Set the output length to 15 ms for best noise
+ // production.
+ // TODO(hlundin): This has been disabled since the length of
+ // parameters.expand_vector0 and parameters.expand_vector1 no longer
+ // match with expand_lags_, causing invalid reads and writes. Is it a good
+ // idea to enable this again, and solve the vector size problem?
+// max_lag_ = fs_mult * 120;
+// expand_lags_[0] = fs_mult * 120;
+// expand_lags_[1] = fs_mult * 120;
+// expand_lags_[2] = fs_mult * 120;
+ }
+
+ // Unvoiced part.
+ // Filter |scaled_random_vector| through |ar_filter_|.
+ memcpy(unvoiced_vector - kUnvoicedLpcOrder, parameters.ar_filter_state,
+ sizeof(int16_t) * kUnvoicedLpcOrder);
+ int32_t add_constant = 0;
+ if (parameters.ar_gain_scale > 0) {
+ add_constant = 1 << (parameters.ar_gain_scale - 1);
+ }
+ WebRtcSpl_AffineTransformVector(scaled_random_vector, random_vector,
+ parameters.ar_gain, add_constant,
+ parameters.ar_gain_scale,
+ current_lag);
+ WebRtcSpl_FilterARFastQ12(scaled_random_vector, unvoiced_vector,
+ parameters.ar_filter, kUnvoicedLpcOrder + 1,
+ current_lag);
+ memcpy(parameters.ar_filter_state,
+ &(unvoiced_vector[current_lag - kUnvoicedLpcOrder]),
+ sizeof(int16_t) * kUnvoicedLpcOrder);
+
+ // Combine voiced and unvoiced contributions.
+
+ // Set a suitable cross-fading slope.
+ // For lag =
+ // <= 31 * fs_mult => go from 1 to 0 in about 8 ms;
+ // (>= 31 .. <= 63) * fs_mult => go from 1 to 0 in about 16 ms;
+ // >= 64 * fs_mult => go from 1 to 0 in about 32 ms.
+ // temp_shift = getbits(max_lag_) - 5.
+ int temp_shift =
+ (31 - WebRtcSpl_NormW32(rtc::checked_cast<int32_t>(max_lag_))) - 5;
+ int16_t mix_factor_increment = 256 >> temp_shift;
+ if (stop_muting_) {
+ mix_factor_increment = 0;
+ }
+
+ // Create combined signal by shifting in more and more of unvoiced part.
+ temp_shift = 8 - temp_shift; // = getbits(mix_factor_increment).
+ size_t temp_length = (parameters.current_voice_mix_factor -
+ parameters.voice_mix_factor) >> temp_shift;
+ temp_length = std::min(temp_length, current_lag);
+ DspHelper::CrossFade(voiced_vector, unvoiced_vector, temp_length,
+ &parameters.current_voice_mix_factor,
+ mix_factor_increment, temp_data);
+
+ // End of cross-fading period was reached before end of expanded signal
+ // path. Mix the rest with a fixed mixing factor.
+ if (temp_length < current_lag) {
+ if (mix_factor_increment != 0) {
+ parameters.current_voice_mix_factor = parameters.voice_mix_factor;
+ }
+ int16_t temp_scale = 16384 - parameters.current_voice_mix_factor;
+ WebRtcSpl_ScaleAndAddVectorsWithRound(
+ voiced_vector + temp_length, parameters.current_voice_mix_factor,
+ unvoiced_vector + temp_length, temp_scale, 14,
+ temp_data + temp_length, current_lag - temp_length);
+ }
+
+ // Select muting slope depending on how many consecutive expands we have
+ // done.
+ if (consecutive_expands_ == 3) {
+ // Let the mute factor decrease from 1.0 to 0.95 in 6.25 ms.
+ // mute_slope = 0.0010 / fs_mult in Q20.
+ parameters.mute_slope = std::max(parameters.mute_slope, 1049 / fs_mult);
+ }
+ if (consecutive_expands_ == 7) {
+ // Let the mute factor decrease from 1.0 to 0.90 in 6.25 ms.
+ // mute_slope = 0.0020 / fs_mult in Q20.
+ parameters.mute_slope = std::max(parameters.mute_slope, 2097 / fs_mult);
+ }
+
+ // Mute segment according to slope value.
+ if ((consecutive_expands_ != 0) || !parameters.onset) {
+ // Mute to the previous level, then continue with the muting.
+ WebRtcSpl_AffineTransformVector(temp_data, temp_data,
+ parameters.mute_factor, 8192,
+ 14, current_lag);
+
+ if (!stop_muting_) {
+ DspHelper::MuteSignal(temp_data, parameters.mute_slope, current_lag);
+
+ // Shift by 6 to go from Q20 to Q14.
+ // TODO(hlundin): Adding 8192 before shifting 6 steps seems wrong.
+ // Legacy.
+ int16_t gain = static_cast<int16_t>(16384 -
+ (((current_lag * parameters.mute_slope) + 8192) >> 6));
+ gain = ((gain * parameters.mute_factor) + 8192) >> 14;
+
+ // Guard against getting stuck with very small (but sometimes audible)
+ // gain.
+ if ((consecutive_expands_ > 3) && (gain >= parameters.mute_factor)) {
+ parameters.mute_factor = 0;
+ } else {
+ parameters.mute_factor = gain;
+ }
+ }
+ }
+
+ // Background noise part.
+ GenerateBackgroundNoise(random_vector,
+ channel_ix,
+ channel_parameters_[channel_ix].mute_slope,
+ TooManyExpands(),
+ current_lag,
+ unvoiced_array_memory);
+
+ // Add background noise to the combined voiced-unvoiced signal.
+ for (size_t i = 0; i < current_lag; i++) {
+ temp_data[i] = temp_data[i] + noise_vector[i];
+ }
+ if (channel_ix == 0) {
+ output->AssertSize(current_lag);
+ } else {
+ assert(output->Size() == current_lag);
+ }
+ memcpy(&(*output)[channel_ix][0], temp_data,
+ sizeof(temp_data[0]) * current_lag);
+ }
+
+ // Increase call number and cap it.
+ consecutive_expands_ = consecutive_expands_ >= kMaxConsecutiveExpands ?
+ kMaxConsecutiveExpands : consecutive_expands_ + 1;
+ expand_duration_samples_ += output->Size();
+ // Clamp the duration counter at 2 seconds.
+ expand_duration_samples_ =
+ std::min(expand_duration_samples_, rtc::checked_cast<size_t>(fs_hz_ * 2));
+ return 0;
+}
+
+void Expand::SetParametersForNormalAfterExpand() {
+ current_lag_index_ = 0;
+ lag_index_direction_ = 0;
+ stop_muting_ = true; // Do not mute signal any more.
+ statistics_->LogDelayedPacketOutageEvent(
+ rtc::checked_cast<int>(expand_duration_samples_) / (fs_hz_ / 1000));
+}
+
+void Expand::SetParametersForMergeAfterExpand() {
+ current_lag_index_ = -1; /* out of the 3 possible ones */
+ lag_index_direction_ = 1; /* make sure we get the "optimal" lag */
+ stop_muting_ = true;
+}
+
+size_t Expand::overlap_length() const {
+ return overlap_length_;
+}
+
+void Expand::InitializeForAnExpandPeriod() {
+ lag_index_direction_ = 1;
+ current_lag_index_ = -1;
+ stop_muting_ = false;
+ random_vector_->set_seed_increment(1);
+ consecutive_expands_ = 0;
+ for (size_t ix = 0; ix < num_channels_; ++ix) {
+ channel_parameters_[ix].current_voice_mix_factor = 16384; // 1.0 in Q14.
+ channel_parameters_[ix].mute_factor = 16384; // 1.0 in Q14.
+ // Start with 0 gain for background noise.
+ background_noise_->SetMuteFactor(ix, 0);
+ }
+}
+
+bool Expand::TooManyExpands() {
+ return consecutive_expands_ >= kMaxConsecutiveExpands;
+}
+
+void Expand::AnalyzeSignal(int16_t* random_vector) {
+ int32_t auto_correlation[kUnvoicedLpcOrder + 1];
+ int16_t reflection_coeff[kUnvoicedLpcOrder];
+ int16_t correlation_vector[kMaxSampleRate / 8000 * 102];
+ size_t best_correlation_index[kNumCorrelationCandidates];
+ int16_t best_correlation[kNumCorrelationCandidates];
+ size_t best_distortion_index[kNumCorrelationCandidates];
+ int16_t best_distortion[kNumCorrelationCandidates];
+ int32_t correlation_vector2[(99 * kMaxSampleRate / 8000) + 1];
+ int32_t best_distortion_w32[kNumCorrelationCandidates];
+ static const size_t kNoiseLpcOrder = BackgroundNoise::kMaxLpcOrder;
+ int16_t unvoiced_array_memory[kNoiseLpcOrder + kMaxSampleRate / 8000 * 125];
+ int16_t* unvoiced_vector = unvoiced_array_memory + kUnvoicedLpcOrder;
+
+ int fs_mult = fs_hz_ / 8000;
+
+ // Pre-calculate common multiplications with fs_mult.
+ size_t fs_mult_4 = static_cast<size_t>(fs_mult * 4);
+ size_t fs_mult_20 = static_cast<size_t>(fs_mult * 20);
+ size_t fs_mult_120 = static_cast<size_t>(fs_mult * 120);
+ size_t fs_mult_dist_len = fs_mult * kDistortionLength;
+ size_t fs_mult_lpc_analysis_len = fs_mult * kLpcAnalysisLength;
+
+ const size_t signal_length = static_cast<size_t>(256 * fs_mult);
+ const int16_t* audio_history =
+ &(*sync_buffer_)[0][sync_buffer_->Size() - signal_length];
+
+ // Initialize.
+ InitializeForAnExpandPeriod();
+
+ // Calculate correlation in downsampled domain (4 kHz sample rate).
+ int correlation_scale;
+ size_t correlation_length = 51; // TODO(hlundin): Legacy bit-exactness.
+ // If it is decided to break bit-exactness |correlation_length| should be
+ // initialized to the return value of Correlation().
+ Correlation(audio_history, signal_length, correlation_vector,
+ &correlation_scale);
+
+ // Find peaks in correlation vector.
+ DspHelper::PeakDetection(correlation_vector, correlation_length,
+ kNumCorrelationCandidates, fs_mult,
+ best_correlation_index, best_correlation);
+
+ // Adjust peak locations; cross-correlation lags start at 2.5 ms
+ // (20 * fs_mult samples).
+ best_correlation_index[0] += fs_mult_20;
+ best_correlation_index[1] += fs_mult_20;
+ best_correlation_index[2] += fs_mult_20;
+
+ // Calculate distortion around the |kNumCorrelationCandidates| best lags.
+ int distortion_scale = 0;
+ for (size_t i = 0; i < kNumCorrelationCandidates; i++) {
+ size_t min_index = std::max(fs_mult_20,
+ best_correlation_index[i] - fs_mult_4);
+ size_t max_index = std::min(fs_mult_120 - 1,
+ best_correlation_index[i] + fs_mult_4);
+ best_distortion_index[i] = DspHelper::MinDistortion(
+ &(audio_history[signal_length - fs_mult_dist_len]), min_index,
+ max_index, fs_mult_dist_len, &best_distortion_w32[i]);
+ distortion_scale = std::max(16 - WebRtcSpl_NormW32(best_distortion_w32[i]),
+ distortion_scale);
+ }
+ // Shift the distortion values to fit in 16 bits.
+ WebRtcSpl_VectorBitShiftW32ToW16(best_distortion, kNumCorrelationCandidates,
+ best_distortion_w32, distortion_scale);
+
+ // Find the maximizing index |i| of the cost function
+ // f[i] = best_correlation[i] / best_distortion[i].
+ int32_t best_ratio = std::numeric_limits<int32_t>::min();
+ size_t best_index = std::numeric_limits<size_t>::max();
+ for (size_t i = 0; i < kNumCorrelationCandidates; ++i) {
+ int32_t ratio;
+ if (best_distortion[i] > 0) {
+ ratio = (best_correlation[i] << 16) / best_distortion[i];
+ } else if (best_correlation[i] == 0) {
+ ratio = 0; // No correlation set result to zero.
+ } else {
+ ratio = std::numeric_limits<int32_t>::max(); // Denominator is zero.
+ }
+ if (ratio > best_ratio) {
+ best_index = i;
+ best_ratio = ratio;
+ }
+ }
+
+ size_t distortion_lag = best_distortion_index[best_index];
+ size_t correlation_lag = best_correlation_index[best_index];
+ max_lag_ = std::max(distortion_lag, correlation_lag);
+
+ // Calculate the exact best correlation in the range between
+ // |correlation_lag| and |distortion_lag|.
+ correlation_length =
+ std::max(std::min(distortion_lag + 10, fs_mult_120),
+ static_cast<size_t>(60 * fs_mult));
+
+ size_t start_index = std::min(distortion_lag, correlation_lag);
+ size_t correlation_lags = static_cast<size_t>(
+ WEBRTC_SPL_ABS_W16((distortion_lag-correlation_lag)) + 1);
+ assert(correlation_lags <= static_cast<size_t>(99 * fs_mult + 1));
+
+ for (size_t channel_ix = 0; channel_ix < num_channels_; ++channel_ix) {
+ ChannelParameters& parameters = channel_parameters_[channel_ix];
+ // Calculate suitable scaling.
+ int16_t signal_max = WebRtcSpl_MaxAbsValueW16(
+ &audio_history[signal_length - correlation_length - start_index
+ - correlation_lags],
+ correlation_length + start_index + correlation_lags - 1);
+ correlation_scale = (31 - WebRtcSpl_NormW32(signal_max * signal_max)) +
+ (31 - WebRtcSpl_NormW32(static_cast<int32_t>(correlation_length))) - 31;
+ correlation_scale = std::max(0, correlation_scale);
+
+ // Calculate the correlation, store in |correlation_vector2|.
+ WebRtcSpl_CrossCorrelation(
+ correlation_vector2,
+ &(audio_history[signal_length - correlation_length]),
+ &(audio_history[signal_length - correlation_length - start_index]),
+ correlation_length, correlation_lags, correlation_scale, -1);
+
+ // Find maximizing index.
+ best_index = WebRtcSpl_MaxIndexW32(correlation_vector2, correlation_lags);
+ int32_t max_correlation = correlation_vector2[best_index];
+ // Compensate index with start offset.
+ best_index = best_index + start_index;
+
+ // Calculate energies.
+ int32_t energy1 = WebRtcSpl_DotProductWithScale(
+ &(audio_history[signal_length - correlation_length]),
+ &(audio_history[signal_length - correlation_length]),
+ correlation_length, correlation_scale);
+ int32_t energy2 = WebRtcSpl_DotProductWithScale(
+ &(audio_history[signal_length - correlation_length - best_index]),
+ &(audio_history[signal_length - correlation_length - best_index]),
+ correlation_length, correlation_scale);
+
+ // Calculate the correlation coefficient between the two portions of the
+ // signal.
+ int32_t corr_coefficient;
+ if ((energy1 > 0) && (energy2 > 0)) {
+ int energy1_scale = std::max(16 - WebRtcSpl_NormW32(energy1), 0);
+ int energy2_scale = std::max(16 - WebRtcSpl_NormW32(energy2), 0);
+ // Make sure total scaling is even (to simplify scale factor after sqrt).
+ if ((energy1_scale + energy2_scale) & 1) {
+ // If sum is odd, add 1 to make it even.
+ energy1_scale += 1;
+ }
+ int32_t scaled_energy1 = energy1 >> energy1_scale;
+ int32_t scaled_energy2 = energy2 >> energy2_scale;
+ int16_t sqrt_energy_product = static_cast<int16_t>(
+ WebRtcSpl_SqrtFloor(scaled_energy1 * scaled_energy2));
+ // Calculate max_correlation / sqrt(energy1 * energy2) in Q14.
+ int cc_shift = 14 - (energy1_scale + energy2_scale) / 2;
+ max_correlation = WEBRTC_SPL_SHIFT_W32(max_correlation, cc_shift);
+ corr_coefficient = WebRtcSpl_DivW32W16(max_correlation,
+ sqrt_energy_product);
+ // Cap at 1.0 in Q14.
+ corr_coefficient = std::min(16384, corr_coefficient);
+ } else {
+ corr_coefficient = 0;
+ }
+
+ // Extract the two vectors expand_vector0 and expand_vector1 from
+ // |audio_history|.
+ size_t expansion_length = max_lag_ + overlap_length_;
+ const int16_t* vector1 = &(audio_history[signal_length - expansion_length]);
+ const int16_t* vector2 = vector1 - distortion_lag;
+ // Normalize the second vector to the same energy as the first.
+ energy1 = WebRtcSpl_DotProductWithScale(vector1, vector1, expansion_length,
+ correlation_scale);
+ energy2 = WebRtcSpl_DotProductWithScale(vector2, vector2, expansion_length,
+ correlation_scale);
+ // Confirm that amplitude ratio sqrt(energy1 / energy2) is within 0.5 - 2.0,
+ // i.e., energy1 / energy1 is within 0.25 - 4.
+ int16_t amplitude_ratio;
+ if ((energy1 / 4 < energy2) && (energy1 > energy2 / 4)) {
+ // Energy constraint fulfilled. Use both vectors and scale them
+ // accordingly.
+ int32_t scaled_energy2 = std::max(16 - WebRtcSpl_NormW32(energy2), 0);
+ int32_t scaled_energy1 = scaled_energy2 - 13;
+ // Calculate scaled_energy1 / scaled_energy2 in Q13.
+ int32_t energy_ratio = WebRtcSpl_DivW32W16(
+ WEBRTC_SPL_SHIFT_W32(energy1, -scaled_energy1),
+ static_cast<int16_t>(energy2 >> scaled_energy2));
+ // Calculate sqrt ratio in Q13 (sqrt of en1/en2 in Q26).
+ amplitude_ratio =
+ static_cast<int16_t>(WebRtcSpl_SqrtFloor(energy_ratio << 13));
+ // Copy the two vectors and give them the same energy.
+ parameters.expand_vector0.Clear();
+ parameters.expand_vector0.PushBack(vector1, expansion_length);
+ parameters.expand_vector1.Clear();
+ if (parameters.expand_vector1.Size() < expansion_length) {
+ parameters.expand_vector1.Extend(
+ expansion_length - parameters.expand_vector1.Size());
+ }
+ WebRtcSpl_AffineTransformVector(&parameters.expand_vector1[0],
+ const_cast<int16_t*>(vector2),
+ amplitude_ratio,
+ 4096,
+ 13,
+ expansion_length);
+ } else {
+ // Energy change constraint not fulfilled. Only use last vector.
+ parameters.expand_vector0.Clear();
+ parameters.expand_vector0.PushBack(vector1, expansion_length);
+ // Copy from expand_vector0 to expand_vector1.
+ parameters.expand_vector0.CopyTo(&parameters.expand_vector1);
+ // Set the energy_ratio since it is used by muting slope.
+ if ((energy1 / 4 < energy2) || (energy2 == 0)) {
+ amplitude_ratio = 4096; // 0.5 in Q13.
+ } else {
+ amplitude_ratio = 16384; // 2.0 in Q13.
+ }
+ }
+
+ // Set the 3 lag values.
+ if (distortion_lag == correlation_lag) {
+ expand_lags_[0] = distortion_lag;
+ expand_lags_[1] = distortion_lag;
+ expand_lags_[2] = distortion_lag;
+ } else {
+ // |distortion_lag| and |correlation_lag| are not equal; use different
+ // combinations of the two.
+ // First lag is |distortion_lag| only.
+ expand_lags_[0] = distortion_lag;
+ // Second lag is the average of the two.
+ expand_lags_[1] = (distortion_lag + correlation_lag) / 2;
+ // Third lag is the average again, but rounding towards |correlation_lag|.
+ if (distortion_lag > correlation_lag) {
+ expand_lags_[2] = (distortion_lag + correlation_lag - 1) / 2;
+ } else {
+ expand_lags_[2] = (distortion_lag + correlation_lag + 1) / 2;
+ }
+ }
+
+ // Calculate the LPC and the gain of the filters.
+ // Calculate scale value needed for auto-correlation.
+ correlation_scale = WebRtcSpl_MaxAbsValueW16(
+ &(audio_history[signal_length - fs_mult_lpc_analysis_len]),
+ fs_mult_lpc_analysis_len);
+
+ correlation_scale = std::min(16 - WebRtcSpl_NormW32(correlation_scale), 0);
+ correlation_scale = std::max(correlation_scale * 2 + 7, 0);
+
+ // Calculate kUnvoicedLpcOrder + 1 lags of the auto-correlation function.
+ size_t temp_index = signal_length - fs_mult_lpc_analysis_len -
+ kUnvoicedLpcOrder;
+ // Copy signal to temporary vector to be able to pad with leading zeros.
+ int16_t* temp_signal = new int16_t[fs_mult_lpc_analysis_len
+ + kUnvoicedLpcOrder];
+ memset(temp_signal, 0,
+ sizeof(int16_t) * (fs_mult_lpc_analysis_len + kUnvoicedLpcOrder));
+ memcpy(&temp_signal[kUnvoicedLpcOrder],
+ &audio_history[temp_index + kUnvoicedLpcOrder],
+ sizeof(int16_t) * fs_mult_lpc_analysis_len);
+ WebRtcSpl_CrossCorrelation(auto_correlation,
+ &temp_signal[kUnvoicedLpcOrder],
+ &temp_signal[kUnvoicedLpcOrder],
+ fs_mult_lpc_analysis_len, kUnvoicedLpcOrder + 1,
+ correlation_scale, -1);
+ delete [] temp_signal;
+
+ // Verify that variance is positive.
+ if (auto_correlation[0] > 0) {
+ // Estimate AR filter parameters using Levinson-Durbin algorithm;
+ // kUnvoicedLpcOrder + 1 filter coefficients.
+ int16_t stability = WebRtcSpl_LevinsonDurbin(auto_correlation,
+ parameters.ar_filter,
+ reflection_coeff,
+ kUnvoicedLpcOrder);
+
+ // Keep filter parameters only if filter is stable.
+ if (stability != 1) {
+ // Set first coefficient to 4096 (1.0 in Q12).
+ parameters.ar_filter[0] = 4096;
+ // Set remaining |kUnvoicedLpcOrder| coefficients to zero.
+ WebRtcSpl_MemSetW16(parameters.ar_filter + 1, 0, kUnvoicedLpcOrder);
+ }
+ }
+
+ if (channel_ix == 0) {
+ // Extract a noise segment.
+ size_t noise_length;
+ if (distortion_lag < 40) {
+ noise_length = 2 * distortion_lag + 30;
+ } else {
+ noise_length = distortion_lag + 30;
+ }
+ if (noise_length <= RandomVector::kRandomTableSize) {
+ memcpy(random_vector, RandomVector::kRandomTable,
+ sizeof(int16_t) * noise_length);
+ } else {
+ // Only applies to SWB where length could be larger than
+ // |kRandomTableSize|.
+ memcpy(random_vector, RandomVector::kRandomTable,
+ sizeof(int16_t) * RandomVector::kRandomTableSize);
+ assert(noise_length <= kMaxSampleRate / 8000 * 120 + 30);
+ random_vector_->IncreaseSeedIncrement(2);
+ random_vector_->Generate(
+ noise_length - RandomVector::kRandomTableSize,
+ &random_vector[RandomVector::kRandomTableSize]);
+ }
+ }
+
+ // Set up state vector and calculate scale factor for unvoiced filtering.
+ memcpy(parameters.ar_filter_state,
+ &(audio_history[signal_length - kUnvoicedLpcOrder]),
+ sizeof(int16_t) * kUnvoicedLpcOrder);
+ memcpy(unvoiced_vector - kUnvoicedLpcOrder,
+ &(audio_history[signal_length - 128 - kUnvoicedLpcOrder]),
+ sizeof(int16_t) * kUnvoicedLpcOrder);
+ WebRtcSpl_FilterMAFastQ12(&audio_history[signal_length - 128],
+ unvoiced_vector,
+ parameters.ar_filter,
+ kUnvoicedLpcOrder + 1,
+ 128);
+ int16_t unvoiced_prescale;
+ if (WebRtcSpl_MaxAbsValueW16(unvoiced_vector, 128) > 4000) {
+ unvoiced_prescale = 4;
+ } else {
+ unvoiced_prescale = 0;
+ }
+ int32_t unvoiced_energy = WebRtcSpl_DotProductWithScale(unvoiced_vector,
+ unvoiced_vector,
+ 128,
+ unvoiced_prescale);
+
+ // Normalize |unvoiced_energy| to 28 or 29 bits to preserve sqrt() accuracy.
+ int16_t unvoiced_scale = WebRtcSpl_NormW32(unvoiced_energy) - 3;
+ // Make sure we do an odd number of shifts since we already have 7 shifts
+ // from dividing with 128 earlier. This will make the total scale factor
+ // even, which is suitable for the sqrt.
+ unvoiced_scale += ((unvoiced_scale & 0x1) ^ 0x1);
+ unvoiced_energy = WEBRTC_SPL_SHIFT_W32(unvoiced_energy, unvoiced_scale);
+ int16_t unvoiced_gain =
+ static_cast<int16_t>(WebRtcSpl_SqrtFloor(unvoiced_energy));
+ parameters.ar_gain_scale = 13
+ + (unvoiced_scale + 7 - unvoiced_prescale) / 2;
+ parameters.ar_gain = unvoiced_gain;
+
+ // Calculate voice_mix_factor from corr_coefficient.
+ // Let x = corr_coefficient. Then, we compute:
+ // if (x > 0.48)
+ // voice_mix_factor = (-5179 + 19931x - 16422x^2 + 5776x^3) / 4096;
+ // else
+ // voice_mix_factor = 0;
+ if (corr_coefficient > 7875) {
+ int16_t x1, x2, x3;
+ // |corr_coefficient| is in Q14.
+ x1 = static_cast<int16_t>(corr_coefficient);
+ x2 = (x1 * x1) >> 14; // Shift 14 to keep result in Q14.
+ x3 = (x1 * x2) >> 14;
+ static const int kCoefficients[4] = { -5179, 19931, -16422, 5776 };
+ int32_t temp_sum = kCoefficients[0] << 14;
+ temp_sum += kCoefficients[1] * x1;
+ temp_sum += kCoefficients[2] * x2;
+ temp_sum += kCoefficients[3] * x3;
+ parameters.voice_mix_factor =
+ static_cast<int16_t>(std::min(temp_sum / 4096, 16384));
+ parameters.voice_mix_factor = std::max(parameters.voice_mix_factor,
+ static_cast<int16_t>(0));
+ } else {
+ parameters.voice_mix_factor = 0;
+ }
+
+ // Calculate muting slope. Reuse value from earlier scaling of
+ // |expand_vector0| and |expand_vector1|.
+ int16_t slope = amplitude_ratio;
+ if (slope > 12288) {
+ // slope > 1.5.
+ // Calculate (1 - (1 / slope)) / distortion_lag =
+ // (slope - 1) / (distortion_lag * slope).
+ // |slope| is in Q13, so 1 corresponds to 8192. Shift up to Q25 before
+ // the division.
+ // Shift the denominator from Q13 to Q5 before the division. The result of
+ // the division will then be in Q20.
+ int temp_ratio = WebRtcSpl_DivW32W16(
+ (slope - 8192) << 12,
+ static_cast<int16_t>((distortion_lag * slope) >> 8));
+ if (slope > 14746) {
+ // slope > 1.8.
+ // Divide by 2, with proper rounding.
+ parameters.mute_slope = (temp_ratio + 1) / 2;
+ } else {
+ // Divide by 8, with proper rounding.
+ parameters.mute_slope = (temp_ratio + 4) / 8;
+ }
+ parameters.onset = true;
+ } else {
+ // Calculate (1 - slope) / distortion_lag.
+ // Shift |slope| by 7 to Q20 before the division. The result is in Q20.
+ parameters.mute_slope = WebRtcSpl_DivW32W16(
+ (8192 - slope) << 7, static_cast<int16_t>(distortion_lag));
+ if (parameters.voice_mix_factor <= 13107) {
+ // Make sure the mute factor decreases from 1.0 to 0.9 in no more than
+ // 6.25 ms.
+ // mute_slope >= 0.005 / fs_mult in Q20.
+ parameters.mute_slope = std::max(5243 / fs_mult, parameters.mute_slope);
+ } else if (slope > 8028) {
+ parameters.mute_slope = 0;
+ }
+ parameters.onset = false;
+ }
+ }
+}
+
+Expand::ChannelParameters::ChannelParameters()
+ : mute_factor(16384),
+ ar_gain(0),
+ ar_gain_scale(0),
+ voice_mix_factor(0),
+ current_voice_mix_factor(0),
+ onset(false),
+ mute_slope(0) {
+ memset(ar_filter, 0, sizeof(ar_filter));
+ memset(ar_filter_state, 0, sizeof(ar_filter_state));
+}
+
+void Expand::Correlation(const int16_t* input,
+ size_t input_length,
+ int16_t* output,
+ int* output_scale) const {
+ // Set parameters depending on sample rate.
+ const int16_t* filter_coefficients;
+ size_t num_coefficients;
+ int16_t downsampling_factor;
+ if (fs_hz_ == 8000) {
+ num_coefficients = 3;
+ downsampling_factor = 2;
+ filter_coefficients = DspHelper::kDownsample8kHzTbl;
+ } else if (fs_hz_ == 16000) {
+ num_coefficients = 5;
+ downsampling_factor = 4;
+ filter_coefficients = DspHelper::kDownsample16kHzTbl;
+ } else if (fs_hz_ == 32000) {
+ num_coefficients = 7;
+ downsampling_factor = 8;
+ filter_coefficients = DspHelper::kDownsample32kHzTbl;
+ } else { // fs_hz_ == 48000.
+ num_coefficients = 7;
+ downsampling_factor = 12;
+ filter_coefficients = DspHelper::kDownsample48kHzTbl;
+ }
+
+ // Correlate from lag 10 to lag 60 in downsampled domain.
+ // (Corresponds to 20-120 for narrow-band, 40-240 for wide-band, and so on.)
+ static const size_t kCorrelationStartLag = 10;
+ static const size_t kNumCorrelationLags = 54;
+ static const size_t kCorrelationLength = 60;
+ // Downsample to 4 kHz sample rate.
+ static const size_t kDownsampledLength = kCorrelationStartLag
+ + kNumCorrelationLags + kCorrelationLength;
+ int16_t downsampled_input[kDownsampledLength];
+ static const size_t kFilterDelay = 0;
+ WebRtcSpl_DownsampleFast(
+ input + input_length - kDownsampledLength * downsampling_factor,
+ kDownsampledLength * downsampling_factor, downsampled_input,
+ kDownsampledLength, filter_coefficients, num_coefficients,
+ downsampling_factor, kFilterDelay);
+
+ // Normalize |downsampled_input| to using all 16 bits.
+ int16_t max_value = WebRtcSpl_MaxAbsValueW16(downsampled_input,
+ kDownsampledLength);
+ int16_t norm_shift = 16 - WebRtcSpl_NormW32(max_value);
+ WebRtcSpl_VectorBitShiftW16(downsampled_input, kDownsampledLength,
+ downsampled_input, norm_shift);
+
+ int32_t correlation[kNumCorrelationLags];
+ static const int kCorrelationShift = 6;
+ WebRtcSpl_CrossCorrelation(
+ correlation,
+ &downsampled_input[kDownsampledLength - kCorrelationLength],
+ &downsampled_input[kDownsampledLength - kCorrelationLength
+ - kCorrelationStartLag],
+ kCorrelationLength, kNumCorrelationLags, kCorrelationShift, -1);
+
+ // Normalize and move data from 32-bit to 16-bit vector.
+ int32_t max_correlation = WebRtcSpl_MaxAbsValueW32(correlation,
+ kNumCorrelationLags);
+ int16_t norm_shift2 = static_cast<int16_t>(
+ std::max(18 - WebRtcSpl_NormW32(max_correlation), 0));
+ WebRtcSpl_VectorBitShiftW32ToW16(output, kNumCorrelationLags, correlation,
+ norm_shift2);
+ // Total scale factor (right shifts) of correlation value.
+ *output_scale = 2 * norm_shift + kCorrelationShift + norm_shift2;
+}
+
+void Expand::UpdateLagIndex() {
+ current_lag_index_ = current_lag_index_ + lag_index_direction_;
+ // Change direction if needed.
+ if (current_lag_index_ <= 0) {
+ lag_index_direction_ = 1;
+ }
+ if (current_lag_index_ >= kNumLags - 1) {
+ lag_index_direction_ = -1;
+ }
+}
+
+Expand* ExpandFactory::Create(BackgroundNoise* background_noise,
+ SyncBuffer* sync_buffer,
+ RandomVector* random_vector,
+ StatisticsCalculator* statistics,
+ int fs,
+ size_t num_channels) const {
+ return new Expand(background_noise, sync_buffer, random_vector, statistics,
+ fs, num_channels);
+}
+
+// TODO(turajs): This can be moved to BackgroundNoise class.
+void Expand::GenerateBackgroundNoise(int16_t* random_vector,
+ size_t channel,
+ int mute_slope,
+ bool too_many_expands,
+ size_t num_noise_samples,
+ int16_t* buffer) {
+ static const size_t kNoiseLpcOrder = BackgroundNoise::kMaxLpcOrder;
+ int16_t scaled_random_vector[kMaxSampleRate / 8000 * 125];
+ assert(num_noise_samples <= (kMaxSampleRate / 8000 * 125));
+ int16_t* noise_samples = &buffer[kNoiseLpcOrder];
+ if (background_noise_->initialized()) {
+ // Use background noise parameters.
+ memcpy(noise_samples - kNoiseLpcOrder,
+ background_noise_->FilterState(channel),
+ sizeof(int16_t) * kNoiseLpcOrder);
+
+ int dc_offset = 0;
+ if (background_noise_->ScaleShift(channel) > 1) {
+ dc_offset = 1 << (background_noise_->ScaleShift(channel) - 1);
+ }
+
+ // Scale random vector to correct energy level.
+ WebRtcSpl_AffineTransformVector(
+ scaled_random_vector, random_vector,
+ background_noise_->Scale(channel), dc_offset,
+ background_noise_->ScaleShift(channel),
+ num_noise_samples);
+
+ WebRtcSpl_FilterARFastQ12(scaled_random_vector, noise_samples,
+ background_noise_->Filter(channel),
+ kNoiseLpcOrder + 1,
+ num_noise_samples);
+
+ background_noise_->SetFilterState(
+ channel,
+ &(noise_samples[num_noise_samples - kNoiseLpcOrder]),
+ kNoiseLpcOrder);
+
+ // Unmute the background noise.
+ int16_t bgn_mute_factor = background_noise_->MuteFactor(channel);
+ NetEq::BackgroundNoiseMode bgn_mode = background_noise_->mode();
+ if (bgn_mode == NetEq::kBgnFade && too_many_expands &&
+ bgn_mute_factor > 0) {
+ // Fade BGN to zero.
+ // Calculate muting slope, approximately -2^18 / fs_hz.
+ int mute_slope;
+ if (fs_hz_ == 8000) {
+ mute_slope = -32;
+ } else if (fs_hz_ == 16000) {
+ mute_slope = -16;
+ } else if (fs_hz_ == 32000) {
+ mute_slope = -8;
+ } else {
+ mute_slope = -5;
+ }
+ // Use UnmuteSignal function with negative slope.
+ // |bgn_mute_factor| is in Q14. |mute_slope| is in Q20.
+ DspHelper::UnmuteSignal(noise_samples,
+ num_noise_samples,
+ &bgn_mute_factor,
+ mute_slope,
+ noise_samples);
+ } else if (bgn_mute_factor < 16384) {
+ // If mode is kBgnOn, or if kBgnFade has started fading,
+ // use regular |mute_slope|.
+ if (!stop_muting_ && bgn_mode != NetEq::kBgnOff &&
+ !(bgn_mode == NetEq::kBgnFade && too_many_expands)) {
+ DspHelper::UnmuteSignal(noise_samples,
+ static_cast<int>(num_noise_samples),
+ &bgn_mute_factor,
+ mute_slope,
+ noise_samples);
+ } else {
+ // kBgnOn and stop muting, or
+ // kBgnOff (mute factor is always 0), or
+ // kBgnFade has reached 0.
+ WebRtcSpl_AffineTransformVector(noise_samples, noise_samples,
+ bgn_mute_factor, 8192, 14,
+ num_noise_samples);
+ }
+ }
+ // Update mute_factor in BackgroundNoise class.
+ background_noise_->SetMuteFactor(channel, bgn_mute_factor);
+ } else {
+ // BGN parameters have not been initialized; use zero noise.
+ memset(noise_samples, 0, sizeof(int16_t) * num_noise_samples);
+ }
+}
+
+void Expand::GenerateRandomVector(int16_t seed_increment,
+ size_t length,
+ int16_t* random_vector) {
+ // TODO(turajs): According to hlundin The loop should not be needed. Should be
+ // just as good to generate all of the vector in one call.
+ size_t samples_generated = 0;
+ const size_t kMaxRandSamples = RandomVector::kRandomTableSize;
+ while (samples_generated < length) {
+ size_t rand_length = std::min(length - samples_generated, kMaxRandSamples);
+ random_vector_->IncreaseSeedIncrement(seed_increment);
+ random_vector_->Generate(rand_length, &random_vector[samples_generated]);
+ samples_generated += rand_length;
+ }
+}
+
+} // namespace webrtc