aboutsummaryrefslogtreecommitdiff
path: root/webrtc/modules/remote_bitrate_estimator/test/estimators/nada_unittest.cc
diff options
context:
space:
mode:
authorChih-hung Hsieh <chh@google.com>2015-12-01 17:07:48 +0000
committerandroid-build-merger <android-build-merger@google.com>2015-12-01 17:07:48 +0000
commita4acd9d6bc9b3b033d7d274316e75ee067df8d20 (patch)
tree672a185b294789cf991f385c3e395dd63bea9063 /webrtc/modules/remote_bitrate_estimator/test/estimators/nada_unittest.cc
parent3681b90ba4fe7a27232dd3e27897d5d7ed9d651c (diff)
parentfe8b4a657979b49e1701bd92f6d5814a99e0b2be (diff)
downloadwebrtc-a4acd9d6bc9b3b033d7d274316e75ee067df8d20.tar.gz
Merge changes I7bbf776e,I1b827825
am: fe8b4a6579 * commit 'fe8b4a657979b49e1701bd92f6d5814a99e0b2be': (7237 commits) WIP: Changes after merge commit 'cb3f9bd' Make the nonlinear beamformer steerable Utilize bitrate above codec max to protect video. Enable VP9 internal resize by default. Filter overlapping RTP header extensions. Make VCMEncodedFrameCallback const. MediaCodecVideoEncoder: Add number of quality resolution downscales to Encoded callback. Remove redudant encoder rate calls. Create isolate files for nonparallel tests. Register header extensions in RtpRtcpObserver to avoid log spam. Make an enum class out of NetEqDecoder, and hide the neteq_decoders_ table ACM: Move NACK functionality inside NetEq Fix chromium-style warnings in webrtc/sound/. Create a 'webrtc_nonparallel_tests' target. Update scalability structure data according to updates in the RTP payload profile. audio_coding: rename interface -> include Rewrote perform_action_on_all_files to be parallell. Update reference indices according to updates in the RTP payload profile. Disable P2PTransport...TestFailoverControlledSide on Memcheck pass clangcl compile options to ignore warnings in gflags.cc ...
Diffstat (limited to 'webrtc/modules/remote_bitrate_estimator/test/estimators/nada_unittest.cc')
-rw-r--r--webrtc/modules/remote_bitrate_estimator/test/estimators/nada_unittest.cc495
1 files changed, 495 insertions, 0 deletions
diff --git a/webrtc/modules/remote_bitrate_estimator/test/estimators/nada_unittest.cc b/webrtc/modules/remote_bitrate_estimator/test/estimators/nada_unittest.cc
new file mode 100644
index 0000000000..a0f56b73b7
--- /dev/null
+++ b/webrtc/modules/remote_bitrate_estimator/test/estimators/nada_unittest.cc
@@ -0,0 +1,495 @@
+/*
+ * Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include "webrtc/modules/remote_bitrate_estimator/test/estimators/nada.h"
+
+#include <algorithm>
+#include <numeric>
+
+#include "webrtc/base/common.h"
+#include "webrtc/base/scoped_ptr.h"
+#include "webrtc/modules/remote_bitrate_estimator/test/bwe_test_framework.h"
+#include "webrtc/modules/remote_bitrate_estimator/test/packet.h"
+#include "testing/gtest/include/gtest/gtest.h"
+#include "webrtc/base/constructormagic.h"
+#include "webrtc/modules/remote_bitrate_estimator/test/packet_sender.h"
+#include "webrtc/test/testsupport/fileutils.h"
+
+namespace webrtc {
+namespace testing {
+namespace bwe {
+
+class FilterTest : public ::testing::Test {
+ public:
+ void MedianFilterConstantArray() {
+ std::fill_n(raw_signal_, kNumElements, kSignalValue);
+ for (int i = 0; i < kNumElements; ++i) {
+ int size = std::min(5, i + 1);
+ median_filtered_[i] =
+ NadaBweReceiver::MedianFilter(&raw_signal_[i + 1 - size], size);
+ }
+ }
+
+ void MedianFilterIntermittentNoise() {
+ const int kValue = 500;
+ const int kNoise = 100;
+
+ for (int i = 0; i < kNumElements; ++i) {
+ raw_signal_[i] = kValue + kNoise * (i % 10 == 9 ? 1 : 0);
+ }
+ for (int i = 0; i < kNumElements; ++i) {
+ int size = std::min(5, i + 1);
+ median_filtered_[i] =
+ NadaBweReceiver::MedianFilter(&raw_signal_[i + 1 - size], size);
+ EXPECT_EQ(median_filtered_[i], kValue);
+ }
+ }
+
+ void ExponentialSmoothingFilter(const int64_t raw_signal_[],
+ int num_elements,
+ int64_t exp_smoothed[]) {
+ exp_smoothed[0] =
+ NadaBweReceiver::ExponentialSmoothingFilter(raw_signal_[0], -1, kAlpha);
+ for (int i = 1; i < num_elements; ++i) {
+ exp_smoothed[i] = NadaBweReceiver::ExponentialSmoothingFilter(
+ raw_signal_[i], exp_smoothed[i - 1], kAlpha);
+ }
+ }
+
+ void ExponentialSmoothingConstantArray(int64_t exp_smoothed[]) {
+ std::fill_n(raw_signal_, kNumElements, kSignalValue);
+ ExponentialSmoothingFilter(raw_signal_, kNumElements, exp_smoothed);
+ }
+
+ protected:
+ static const int kNumElements = 1000;
+ static const int64_t kSignalValue;
+ static const float kAlpha;
+ int64_t raw_signal_[kNumElements];
+ int64_t median_filtered_[kNumElements];
+};
+
+const int64_t FilterTest::kSignalValue = 200;
+const float FilterTest::kAlpha = 0.1f;
+
+class TestBitrateObserver : public BitrateObserver {
+ public:
+ TestBitrateObserver()
+ : last_bitrate_(0), last_fraction_loss_(0), last_rtt_(0) {}
+
+ virtual void OnNetworkChanged(uint32_t bitrate,
+ uint8_t fraction_loss,
+ int64_t rtt) {
+ last_bitrate_ = bitrate;
+ last_fraction_loss_ = fraction_loss;
+ last_rtt_ = rtt;
+ }
+ uint32_t last_bitrate_;
+ uint8_t last_fraction_loss_;
+ int64_t last_rtt_;
+};
+
+class NadaSenderSideTest : public ::testing::Test {
+ public:
+ NadaSenderSideTest()
+ : observer_(),
+ simulated_clock_(0),
+ nada_sender_(&observer_, &simulated_clock_) {}
+ ~NadaSenderSideTest() {}
+
+ private:
+ TestBitrateObserver observer_;
+ SimulatedClock simulated_clock_;
+
+ protected:
+ NadaBweSender nada_sender_;
+};
+
+class NadaReceiverSideTest : public ::testing::Test {
+ public:
+ NadaReceiverSideTest() : nada_receiver_(kFlowId) {}
+ ~NadaReceiverSideTest() {}
+
+ protected:
+ const int kFlowId = 1; // Arbitrary.
+ NadaBweReceiver nada_receiver_;
+};
+
+class NadaFbGenerator {
+ public:
+ NadaFbGenerator();
+
+ static NadaFeedback NotCongestedFb(size_t receiving_rate,
+ int64_t ref_signal_ms,
+ int64_t send_time_ms) {
+ int64_t exp_smoothed_delay_ms = ref_signal_ms;
+ int64_t est_queuing_delay_signal_ms = ref_signal_ms;
+ int64_t congestion_signal_ms = ref_signal_ms;
+ float derivative = 0.0f;
+ return NadaFeedback(kFlowId, kNowMs, exp_smoothed_delay_ms,
+ est_queuing_delay_signal_ms, congestion_signal_ms,
+ derivative, receiving_rate, send_time_ms);
+ }
+
+ static NadaFeedback CongestedFb(size_t receiving_rate, int64_t send_time_ms) {
+ int64_t exp_smoothed_delay_ms = 1000;
+ int64_t est_queuing_delay_signal_ms = 800;
+ int64_t congestion_signal_ms = 1000;
+ float derivative = 1.0f;
+ return NadaFeedback(kFlowId, kNowMs, exp_smoothed_delay_ms,
+ est_queuing_delay_signal_ms, congestion_signal_ms,
+ derivative, receiving_rate, send_time_ms);
+ }
+
+ static NadaFeedback ExtremelyCongestedFb(size_t receiving_rate,
+ int64_t send_time_ms) {
+ int64_t exp_smoothed_delay_ms = 100000;
+ int64_t est_queuing_delay_signal_ms = 0;
+ int64_t congestion_signal_ms = 100000;
+ float derivative = 10000.0f;
+ return NadaFeedback(kFlowId, kNowMs, exp_smoothed_delay_ms,
+ est_queuing_delay_signal_ms, congestion_signal_ms,
+ derivative, receiving_rate, send_time_ms);
+ }
+
+ private:
+ // Arbitrary values, won't change these test results.
+ static const int kFlowId = 2;
+ static const int64_t kNowMs = 1000;
+};
+
+// Verify if AcceleratedRampUp is called and that bitrate increases.
+TEST_F(NadaSenderSideTest, AcceleratedRampUp) {
+ const int64_t kRefSignalMs = 1;
+ const int64_t kOneWayDelayMs = 50;
+ int original_bitrate = 2 * kMinBitrateKbps;
+ size_t receiving_rate = static_cast<size_t>(original_bitrate);
+ int64_t send_time_ms = nada_sender_.NowMs() - kOneWayDelayMs;
+
+ NadaFeedback not_congested_fb = NadaFbGenerator::NotCongestedFb(
+ receiving_rate, kRefSignalMs, send_time_ms);
+
+ nada_sender_.set_original_operating_mode(true);
+ nada_sender_.set_bitrate_kbps(original_bitrate);
+
+ // Trigger AcceleratedRampUp mode.
+ nada_sender_.GiveFeedback(not_congested_fb);
+ int bitrate_1_kbps = nada_sender_.bitrate_kbps();
+ EXPECT_GT(bitrate_1_kbps, original_bitrate);
+ // Updates the bitrate according to the receiving rate and other constant
+ // parameters.
+ nada_sender_.AcceleratedRampUp(not_congested_fb);
+ EXPECT_EQ(nada_sender_.bitrate_kbps(), bitrate_1_kbps);
+
+ nada_sender_.set_original_operating_mode(false);
+ nada_sender_.set_bitrate_kbps(original_bitrate);
+ // Trigger AcceleratedRampUp mode.
+ nada_sender_.GiveFeedback(not_congested_fb);
+ bitrate_1_kbps = nada_sender_.bitrate_kbps();
+ EXPECT_GT(bitrate_1_kbps, original_bitrate);
+ nada_sender_.AcceleratedRampUp(not_congested_fb);
+ EXPECT_EQ(nada_sender_.bitrate_kbps(), bitrate_1_kbps);
+}
+
+// Verify if AcceleratedRampDown is called and if bitrate decreases.
+TEST_F(NadaSenderSideTest, AcceleratedRampDown) {
+ const int64_t kOneWayDelayMs = 50;
+ int original_bitrate = 3 * kMinBitrateKbps;
+ size_t receiving_rate = static_cast<size_t>(original_bitrate);
+ int64_t send_time_ms = nada_sender_.NowMs() - kOneWayDelayMs;
+
+ NadaFeedback congested_fb =
+ NadaFbGenerator::CongestedFb(receiving_rate, send_time_ms);
+
+ nada_sender_.set_original_operating_mode(false);
+ nada_sender_.set_bitrate_kbps(original_bitrate);
+ nada_sender_.GiveFeedback(congested_fb); // Trigger AcceleratedRampDown mode.
+ int bitrate_1_kbps = nada_sender_.bitrate_kbps();
+ EXPECT_LE(bitrate_1_kbps, original_bitrate * 0.9f + 0.5f);
+ EXPECT_LT(bitrate_1_kbps, original_bitrate);
+
+ // Updates the bitrate according to the receiving rate and other constant
+ // parameters.
+ nada_sender_.AcceleratedRampDown(congested_fb);
+ int bitrate_2_kbps = std::max(nada_sender_.bitrate_kbps(), kMinBitrateKbps);
+ EXPECT_EQ(bitrate_2_kbps, bitrate_1_kbps);
+}
+
+TEST_F(NadaSenderSideTest, GradualRateUpdate) {
+ const int64_t kDeltaSMs = 20;
+ const int64_t kRefSignalMs = 20;
+ const int64_t kOneWayDelayMs = 50;
+ int original_bitrate = 2 * kMinBitrateKbps;
+ size_t receiving_rate = static_cast<size_t>(original_bitrate);
+ int64_t send_time_ms = nada_sender_.NowMs() - kOneWayDelayMs;
+
+ NadaFeedback congested_fb =
+ NadaFbGenerator::CongestedFb(receiving_rate, send_time_ms);
+ NadaFeedback not_congested_fb = NadaFbGenerator::NotCongestedFb(
+ original_bitrate, kRefSignalMs, send_time_ms);
+
+ nada_sender_.set_bitrate_kbps(original_bitrate);
+ double smoothing_factor = 0.0;
+ nada_sender_.GradualRateUpdate(congested_fb, kDeltaSMs, smoothing_factor);
+ EXPECT_EQ(nada_sender_.bitrate_kbps(), original_bitrate);
+
+ smoothing_factor = 1.0;
+ nada_sender_.GradualRateUpdate(congested_fb, kDeltaSMs, smoothing_factor);
+ EXPECT_LT(nada_sender_.bitrate_kbps(), original_bitrate);
+
+ nada_sender_.set_bitrate_kbps(original_bitrate);
+ nada_sender_.GradualRateUpdate(not_congested_fb, kDeltaSMs, smoothing_factor);
+ EXPECT_GT(nada_sender_.bitrate_kbps(), original_bitrate);
+}
+
+// Sending bitrate should decrease and reach its Min bound.
+TEST_F(NadaSenderSideTest, VeryLowBandwith) {
+ const int64_t kOneWayDelayMs = 50;
+
+ size_t receiving_rate = static_cast<size_t>(kMinBitrateKbps);
+ int64_t send_time_ms = nada_sender_.NowMs() - kOneWayDelayMs;
+
+ NadaFeedback extremely_congested_fb =
+ NadaFbGenerator::ExtremelyCongestedFb(receiving_rate, send_time_ms);
+ NadaFeedback congested_fb =
+ NadaFbGenerator::CongestedFb(receiving_rate, send_time_ms);
+
+ nada_sender_.set_bitrate_kbps(5 * kMinBitrateKbps);
+ nada_sender_.set_original_operating_mode(true);
+ for (int i = 0; i < 100; ++i) {
+ // Trigger GradualRateUpdate mode.
+ nada_sender_.GiveFeedback(extremely_congested_fb);
+ }
+ // The original implementation doesn't allow the bitrate to stay at kMin,
+ // even if the congestion signal is very high.
+ EXPECT_GE(nada_sender_.bitrate_kbps(), kMinBitrateKbps);
+
+ nada_sender_.set_original_operating_mode(false);
+ nada_sender_.set_bitrate_kbps(5 * kMinBitrateKbps);
+
+ for (int i = 0; i < 1000; ++i) {
+ int previous_bitrate = nada_sender_.bitrate_kbps();
+ // Trigger AcceleratedRampDown mode.
+ nada_sender_.GiveFeedback(congested_fb);
+ EXPECT_LE(nada_sender_.bitrate_kbps(), previous_bitrate);
+ }
+ EXPECT_EQ(nada_sender_.bitrate_kbps(), kMinBitrateKbps);
+}
+
+// Sending bitrate should increase and reach its Max bound.
+TEST_F(NadaSenderSideTest, VeryHighBandwith) {
+ const int64_t kOneWayDelayMs = 50;
+ const size_t kRecentReceivingRate = static_cast<size_t>(kMaxBitrateKbps);
+ const int64_t kRefSignalMs = 1;
+ int64_t send_time_ms = nada_sender_.NowMs() - kOneWayDelayMs;
+
+ NadaFeedback not_congested_fb = NadaFbGenerator::NotCongestedFb(
+ kRecentReceivingRate, kRefSignalMs, send_time_ms);
+
+ nada_sender_.set_original_operating_mode(true);
+ for (int i = 0; i < 100; ++i) {
+ int previous_bitrate = nada_sender_.bitrate_kbps();
+ nada_sender_.GiveFeedback(not_congested_fb);
+ EXPECT_GE(nada_sender_.bitrate_kbps(), previous_bitrate);
+ }
+ EXPECT_EQ(nada_sender_.bitrate_kbps(), kMaxBitrateKbps);
+
+ nada_sender_.set_original_operating_mode(false);
+ nada_sender_.set_bitrate_kbps(kMinBitrateKbps);
+
+ for (int i = 0; i < 100; ++i) {
+ int previous_bitrate = nada_sender_.bitrate_kbps();
+ nada_sender_.GiveFeedback(not_congested_fb);
+ EXPECT_GE(nada_sender_.bitrate_kbps(), previous_bitrate);
+ }
+ EXPECT_EQ(nada_sender_.bitrate_kbps(), kMaxBitrateKbps);
+}
+
+TEST_F(NadaReceiverSideTest, FeedbackInitialCases) {
+ rtc::scoped_ptr<NadaFeedback> nada_feedback(
+ static_cast<NadaFeedback*>(nada_receiver_.GetFeedback(0)));
+ EXPECT_EQ(nada_feedback, nullptr);
+
+ nada_feedback.reset(
+ static_cast<NadaFeedback*>(nada_receiver_.GetFeedback(100)));
+ EXPECT_EQ(nada_feedback->exp_smoothed_delay_ms(), -1);
+ EXPECT_EQ(nada_feedback->est_queuing_delay_signal_ms(), 0L);
+ EXPECT_EQ(nada_feedback->congestion_signal(), 0L);
+ EXPECT_EQ(nada_feedback->derivative(), 0.0f);
+ EXPECT_EQ(nada_feedback->receiving_rate(), 0.0f);
+}
+
+TEST_F(NadaReceiverSideTest, FeedbackEmptyQueues) {
+ const int64_t kTimeGapMs = 50; // Between each packet.
+ const int64_t kOneWayDelayMs = 50;
+
+ // No added latency, delay = kOneWayDelayMs.
+ for (int i = 1; i < 10; ++i) {
+ int64_t send_time_us = i * kTimeGapMs * 1000;
+ int64_t arrival_time_ms = send_time_us / 1000 + kOneWayDelayMs;
+ uint16_t sequence_number = static_cast<uint16_t>(i);
+ // Payload sizes are not important here.
+ const MediaPacket media_packet(kFlowId, send_time_us, 0, sequence_number);
+ nada_receiver_.ReceivePacket(arrival_time_ms, media_packet);
+ }
+
+ // Baseline delay will be equal kOneWayDelayMs.
+ rtc::scoped_ptr<NadaFeedback> nada_feedback(
+ static_cast<NadaFeedback*>(nada_receiver_.GetFeedback(500)));
+ EXPECT_EQ(nada_feedback->exp_smoothed_delay_ms(), 0L);
+ EXPECT_EQ(nada_feedback->est_queuing_delay_signal_ms(), 0L);
+ EXPECT_EQ(nada_feedback->congestion_signal(), 0L);
+ EXPECT_EQ(nada_feedback->derivative(), 0.0f);
+}
+
+TEST_F(NadaReceiverSideTest, FeedbackIncreasingDelay) {
+ // Since packets are 100ms apart, each one corresponds to a feedback.
+ const int64_t kTimeGapMs = 100; // Between each packet.
+
+ // Raw delays are = [10 20 30 40 50 60 70 80] ms.
+ // Baseline delay will be 50 ms.
+ // Delay signals should be: [0 10 20 30 40 50 60 70] ms.
+ const int64_t kMedianFilteredDelaysMs[] = {0, 5, 10, 15, 20, 30, 40, 50};
+ const int kNumPackets = ARRAY_SIZE(kMedianFilteredDelaysMs);
+ const float kAlpha = 0.1f; // Used for exponential smoothing.
+
+ int64_t exp_smoothed_delays_ms[kNumPackets];
+ exp_smoothed_delays_ms[0] = kMedianFilteredDelaysMs[0];
+
+ for (int i = 1; i < kNumPackets; ++i) {
+ exp_smoothed_delays_ms[i] = static_cast<int64_t>(
+ kAlpha * kMedianFilteredDelaysMs[i] +
+ (1.0f - kAlpha) * exp_smoothed_delays_ms[i - 1] + 0.5f);
+ }
+
+ for (int i = 0; i < kNumPackets; ++i) {
+ int64_t send_time_us = (i + 1) * kTimeGapMs * 1000;
+ int64_t arrival_time_ms = send_time_us / 1000 + 10 * (i + 1);
+ uint16_t sequence_number = static_cast<uint16_t>(i + 1);
+ // Payload sizes are not important here.
+ const MediaPacket media_packet(kFlowId, send_time_us, 0, sequence_number);
+ nada_receiver_.ReceivePacket(arrival_time_ms, media_packet);
+
+ rtc::scoped_ptr<NadaFeedback> nada_feedback(static_cast<NadaFeedback*>(
+ nada_receiver_.GetFeedback(arrival_time_ms)));
+ EXPECT_EQ(nada_feedback->exp_smoothed_delay_ms(),
+ exp_smoothed_delays_ms[i]);
+ // Since delay signals are lower than 50ms, they will not be non-linearly
+ // warped.
+ EXPECT_EQ(nada_feedback->est_queuing_delay_signal_ms(),
+ exp_smoothed_delays_ms[i]);
+ // Zero loss, congestion signal = queuing_delay
+ EXPECT_EQ(nada_feedback->congestion_signal(), exp_smoothed_delays_ms[i]);
+ if (i == 0) {
+ EXPECT_NEAR(nada_feedback->derivative(),
+ static_cast<float>(exp_smoothed_delays_ms[i]) / kTimeGapMs,
+ 0.005f);
+ } else {
+ EXPECT_NEAR(nada_feedback->derivative(),
+ static_cast<float>(exp_smoothed_delays_ms[i] -
+ exp_smoothed_delays_ms[i - 1]) /
+ kTimeGapMs,
+ 0.005f);
+ }
+ }
+}
+
+int64_t Warp(int64_t input) {
+ const int64_t kMinThreshold = 50; // Referred as d_th.
+ const int64_t kMaxThreshold = 400; // Referred as d_max.
+ if (input < kMinThreshold) {
+ return input;
+ } else if (input < kMaxThreshold) {
+ return static_cast<int64_t>(
+ pow((static_cast<double>(kMaxThreshold - input)) /
+ (kMaxThreshold - kMinThreshold),
+ 4.0) *
+ kMinThreshold);
+ } else {
+ return 0L;
+ }
+}
+
+TEST_F(NadaReceiverSideTest, FeedbackWarpedDelay) {
+ // Since packets are 100ms apart, each one corresponds to a feedback.
+ const int64_t kTimeGapMs = 100; // Between each packet.
+
+ // Raw delays are = [50 250 450 650 850 1050 1250 1450] ms.
+ // Baseline delay will be 50 ms.
+ // Delay signals should be: [0 200 400 600 800 1000 1200 1400] ms.
+ const int64_t kMedianFilteredDelaysMs[] = {
+ 0, 100, 200, 300, 400, 600, 800, 1000};
+ const int kNumPackets = ARRAY_SIZE(kMedianFilteredDelaysMs);
+ const float kAlpha = 0.1f; // Used for exponential smoothing.
+
+ int64_t exp_smoothed_delays_ms[kNumPackets];
+ exp_smoothed_delays_ms[0] = kMedianFilteredDelaysMs[0];
+
+ for (int i = 1; i < kNumPackets; ++i) {
+ exp_smoothed_delays_ms[i] = static_cast<int64_t>(
+ kAlpha * kMedianFilteredDelaysMs[i] +
+ (1.0f - kAlpha) * exp_smoothed_delays_ms[i - 1] + 0.5f);
+ }
+
+ for (int i = 0; i < kNumPackets; ++i) {
+ int64_t send_time_us = (i + 1) * kTimeGapMs * 1000;
+ int64_t arrival_time_ms = send_time_us / 1000 + 50 + 200 * i;
+ uint16_t sequence_number = static_cast<uint16_t>(i + 1);
+ // Payload sizes are not important here.
+ const MediaPacket media_packet(kFlowId, send_time_us, 0, sequence_number);
+ nada_receiver_.ReceivePacket(arrival_time_ms, media_packet);
+
+ rtc::scoped_ptr<NadaFeedback> nada_feedback(static_cast<NadaFeedback*>(
+ nada_receiver_.GetFeedback(arrival_time_ms)));
+ EXPECT_EQ(nada_feedback->exp_smoothed_delay_ms(),
+ exp_smoothed_delays_ms[i]);
+ // Delays can be non-linearly warped.
+ EXPECT_EQ(nada_feedback->est_queuing_delay_signal_ms(),
+ Warp(exp_smoothed_delays_ms[i]));
+ // Zero loss, congestion signal = queuing_delay
+ EXPECT_EQ(nada_feedback->congestion_signal(),
+ Warp(exp_smoothed_delays_ms[i]));
+ }
+}
+
+TEST_F(FilterTest, MedianConstantArray) {
+ MedianFilterConstantArray();
+ for (int i = 0; i < kNumElements; ++i) {
+ EXPECT_EQ(median_filtered_[i], raw_signal_[i]);
+ }
+}
+
+TEST_F(FilterTest, MedianIntermittentNoise) {
+ MedianFilterIntermittentNoise();
+}
+
+TEST_F(FilterTest, ExponentialSmoothingConstantArray) {
+ int64_t exp_smoothed[kNumElements];
+ ExponentialSmoothingConstantArray(exp_smoothed);
+ for (int i = 0; i < kNumElements; ++i) {
+ EXPECT_EQ(exp_smoothed[i], kSignalValue);
+ }
+}
+
+TEST_F(FilterTest, ExponentialSmoothingInitialPertubation) {
+ const int64_t kSignal[] = {90000, 0, 0, 0, 0, 0};
+ const int kNumElements = ARRAY_SIZE(kSignal);
+ int64_t exp_smoothed[kNumElements];
+ ExponentialSmoothingFilter(kSignal, kNumElements, exp_smoothed);
+ for (int i = 1; i < kNumElements; ++i) {
+ EXPECT_EQ(
+ exp_smoothed[i],
+ static_cast<int64_t>(exp_smoothed[i - 1] * (1.0f - kAlpha) + 0.5f));
+ }
+}
+
+} // namespace bwe
+} // namespace testing
+} // namespace webrtc