aboutsummaryrefslogtreecommitdiff
path: root/src/modules/audio_processing/aecm/main/matlab/compsup.m
diff options
context:
space:
mode:
Diffstat (limited to 'src/modules/audio_processing/aecm/main/matlab/compsup.m')
-rw-r--r--src/modules/audio_processing/aecm/main/matlab/compsup.m447
1 files changed, 0 insertions, 447 deletions
diff --git a/src/modules/audio_processing/aecm/main/matlab/compsup.m b/src/modules/audio_processing/aecm/main/matlab/compsup.m
deleted file mode 100644
index 9575ec40fc..0000000000
--- a/src/modules/audio_processing/aecm/main/matlab/compsup.m
+++ /dev/null
@@ -1,447 +0,0 @@
-function [emicrophone,aaa]=compsup(microphone,TheFarEnd,avtime,samplingfreq);
-% microphone = microphone signal
-% aaa = nonlinearity input variable
-% TheFarEnd = far end signal
-% avtime = interval to compute suppression from (seconds)
-% samplingfreq = sampling frequency
-
-%if(nargin==6)
-% fprintf(1,'suppress has received a delay sequence\n');
-%end
-
-
-Ap500=[ 1.00, -4.95, 9.801, -9.70299, 4.80298005, -0.9509900499];
-Bp500=[ 0.662743088639636, -2.5841655608125, 3.77668102146288, -2.45182477425154, 0.596566274575251, 0.0];
-
-
-Ap200=[ 1.00, -4.875, 9.50625, -9.26859375, 4.518439453125, -0.881095693359375];
-Bp200=[ 0.862545460994275, -3.2832804496114, 4.67892032308828, -2.95798023879133, 0.699796870041299, 0.0];
-
-maxDelay=0.4; %[s]
-histLen=1; %[s]
-
-
-% CONSTANTS THAT YOU CAN EXPERIMENT WITH
-A_GAIN=10.0; % for the suppress case
-oversampling = 2; % must be power of 2; minimum is 2; 4 works
-% fine for support=64, but for support=128,
-% 8 gives better results.
-support=64; %512 % fft support (frequency resolution; at low
-% settings you can hear more distortion
-% (e.g. pitch that is left-over from far-end))
-% 128 works well, 64 is ok)
-
-lowlevel = mean(abs(microphone))*0.0001;
-
-G_ol = 0; % Use overlapping sets of estimates
-
-% ECHO SUPPRESSION SPECIFIC PARAMETERS
-suppress_overdrive=1.0; % overdrive factor for suppression 1.4 is good
-gamma_echo=1.0; % same as suppress_overdrive but at different place
-de_echo_bound=0.0;
-mLim=10; % rank of matrix G
-%limBW = 1; % use bandwidth-limited response for G
-if mLim > (support/2+1)
- error('mLim in suppress.m too large\n');
-end
-
-
-dynrange=1.0000e-004;
-
-% other, constants
-hsupport = support/2;
-hsupport1 = hsupport+1;
-factor = 2 / oversampling;
-updatel = support/oversampling;
-win=sqrt(designwindow(0,support));
-estLen = round(avtime * samplingfreq/updatel)
-
-runningfmean =0.0;
-
-mLim = floor(hsupport1/2);
-V = sqrt(2/hsupport1)*cos(pi/hsupport1*(repmat((0:hsupport1-1) + 0.5, mLim, 1).* ...
- repmat((0:mLim-1)' + 0.5, 1, hsupport1)));
-
-fprintf(1,'updatel is %5.3f s\n', updatel/samplingfreq);
-
-
-
-bandfirst=8; bandlast=25;
-dosmooth=0; % to get rid of wavy bin counts (can be worse or better)
-
-% compute some constants
-blockLen = support/oversampling;
-maxDelayb = floor(samplingfreq*maxDelay/updatel); % in blocks
-histLenb = floor(samplingfreq*histLen/updatel); % in blocks
-
-x0=TheFarEnd;
-y0=microphone;
-
-
-%input
-tlength=min([length(microphone),length(TheFarEnd)]);
-updateno=floor(tlength/updatel);
-tlength=updatel*updateno;
-updateno = updateno - oversampling + 1;
-
-TheFarEnd =TheFarEnd(1:tlength);
-microphone =microphone(1:tlength);
-
-TheFarEnd =[zeros(hsupport,1);TheFarEnd(1:tlength)];
-microphone =[zeros(hsupport,1);microphone(1:tlength)];
-
-
-% signal length
-n = min([floor(length(x0)/support)*support,floor(length(y0)/support)*support]);
-nb = n/blockLen - oversampling + 1; % in blocks
-
-% initialize space
-win = sqrt([0 ; hanning(support-1)]);
-sxAll2 = zeros(hsupport1,nb);
-syAll2 = zeros(hsupport1,nb);
-
-z500=zeros(5,maxDelayb+1);
-z200=zeros(5,hsupport1);
-
-bxspectrum=uint32(zeros(nb,1));
-bxhist=uint32(zeros(maxDelayb+1,1));
-byspectrum=uint32(zeros(nb,1));
-bcount=zeros(1+maxDelayb,nb);
-fcount=zeros(1+maxDelayb,nb);
-fout=zeros(1+maxDelayb,nb);
-delay=zeros(nb,1);
-tdelay=zeros(nb,1);
-nlgains=zeros(nb,1);
-
-% create space (mainly for debugging)
-emicrophone=zeros(tlength,1);
-femicrophone=complex(zeros(hsupport1,updateno));
-thefilter=zeros(hsupport1,updateno);
-thelimiter=ones(hsupport1,updateno);
-fTheFarEnd=complex(zeros(hsupport1,updateno));
-afTheFarEnd=zeros(hsupport1,updateno);
-fmicrophone=complex(zeros(hsupport1,updateno));
-afmicrophone=zeros(hsupport1,updateno);
-
-G = zeros(hsupport1, hsupport1);
-zerovec = zeros(hsupport1,1);
-zeromat = zeros(hsupport1);
-
-% Reset sums
-mmxs_a = zerovec;
-mmys_a = zerovec;
-s2xs_a = zerovec;
-s2ys_a = zerovec;
-Rxxs_a = zeromat;
-Ryxs_a = zeromat;
-count_a = 1;
-
-mmxs_b = zerovec;
-mmys_b = zerovec;
-s2xs_b = zerovec;
-s2ys_b = zerovec;
-Rxxs_b = zeromat;
-Ryxs_b = zeromat;
-count_b = 1;
-
-nog=0;
-
-aaa=zeros(size(TheFarEnd));
-
-% loop over signal blocks
-fprintf(1,'.. Suppression; averaging G over %5.1f seconds; file length %5.1f seconds ..\n',avtime, length(microphone)/samplingfreq);
-fprintf(1,'.. SUPPRESSING ONLY AFTER %5.1f SECONDS! ..\n',avtime);
-fprintf(1,'.. 20 seconds is good ..\n');
-hh = waitbar_j(0,'Please wait...');
-
-
-for i=1:updateno
-
- sb = (i-1)*updatel + 1;
- se=sb+support-1;
-
- % analysis FFTs
- temp=fft(win .* TheFarEnd(sb:se));
- fTheFarEnd(:,i)=temp(1:hsupport1);
- xf=fTheFarEnd(:,i);
- afTheFarEnd(:,i)= abs(fTheFarEnd(:,i));
-
- temp=win .* microphone(sb:se);
-
- temp=fft(win .* microphone(sb:se));
- fmicrophone(:,i)=temp(1:hsupport1);
- yf=fmicrophone(:,i);
- afmicrophone(:,i)= abs(fmicrophone(:,i));
-
-
- ener_orig = afmicrophone(:,i)'*afmicrophone(:,i);
- if( ener_orig == 0)
- afmicrophone(:,i)=lowlevel*ones(size(afmicrophone(:,i)));
- end
-
-
- % use log domain (showed improved performance)
-xxf= sqrt(real(xf.*conj(xf))+1e-20);
-yyf= sqrt(real(yf.*conj(yf))+1e-20);
- sxAll2(:,i) = 20*log10(xxf);
- syAll2(:,i) = 20*log10(yyf);
-
- mD=min(i-1,maxDelayb);
- xthreshold = sum(sxAll2(:,i-mD:i),2)/(maxDelayb+1);
-
- [yout, z200] = filter(Bp200,Ap200,syAll2(:,i),z200,2);
- yout=yout/(maxDelayb+1);
- ythreshold = mean(syAll2(:,i-mD:i),2);
-
-
- bxspectrum(i)=getBspectrum(sxAll2(:,i),xthreshold,bandfirst,bandlast);
- byspectrum(i)=getBspectrum(syAll2(:,i),yout,bandfirst,bandlast);
-
- bxhist(end-mD:end)=bxspectrum(i-mD:i);
-
- bcount(:,i)=hisser2( ...
- byspectrum(i),flipud(bxhist),bandfirst,bandlast);
-
-
- [fout(:,i), z500] = filter(Bp500,Ap500,bcount(:,i),z500,2);
- fcount(:,i)=sum(bcount(:,max(1,i-histLenb+1):i),2); % using the history range
- fout(:,i)=round(fout(:,i));
- [value,delay(i)]=min(fout(:,i),[],1);
- tdelay(i)=(delay(i)-1)*support/(samplingfreq*oversampling);
-
- % compensate
-
- idel = max(i - delay(i) + 1,1);
-
-
- % echo suppression
-
- noisyspec = afmicrophone(:,i);
-
- % Estimate G using covariance matrices
-
- % Cumulative estimates
- xx = afTheFarEnd(:,idel);
- yy = afmicrophone(:,i);
-
- % Means
- mmxs_a = mmxs_a + xx;
- mmys_a = mmys_a + yy;
- if (G_ol)
- mmxs_b = mmxs_b + xx;
- mmys_b = mmys_b + yy;
- mmy = mean([mmys_a/count_a mmys_b/count_b],2);
- mmx = mean([mmxs_a/count_a mmxs_b/count_b],2);
- else
- mmx = mmxs_a/count_a;
- mmy = mmys_a/count_a;
- end
- count_a = count_a + 1;
- count_b = count_b + 1;
-
- % Mean removal
- xxm = xx - mmx;
- yym = yy - mmy;
-
- % Variances
- s2xs_a = s2xs_a + xxm .* xxm;
- s2ys_a = s2ys_a + yym .* yym;
- s2xs_b = s2xs_b + xxm .* xxm;
- s2ys_b = s2ys_b + yym .* yym;
-
- % Correlation matrices
- Rxxs_a = Rxxs_a + xxm * xxm';
- Ryxs_a = Ryxs_a + yym * xxm';
- Rxxs_b = Rxxs_b + xxm * xxm';
- Ryxs_b = Ryxs_b + yym * xxm';
-
-
- % Gain matrix A
-
- if mod(i, estLen) == 0
-
-
- % Cumulative based estimates
- Rxxf = Rxxs_a / (estLen - 1);
- Ryxf = Ryxs_a / (estLen - 1);
-
- % Variance normalization
- s2x2 = s2xs_a / (estLen - 1);
- s2x2 = sqrt(s2x2);
- % Sx = diag(max(s2x2,dynrange*max(s2x2)));
- Sx = diag(s2x2);
- if (sum(s2x2) > 0)
- iSx = inv(Sx);
- else
- iSx= Sx + 0.01;
- end
-
- s2y2 = s2ys_a / (estLen - 1);
- s2y2 = sqrt(s2y2);
- % Sy = diag(max(s2y2,dynrange*max(s2y2)));
- Sy = diag(s2y2);
- iSy = inv(Sy);
- rx = iSx * Rxxf * iSx;
- ryx = iSy * Ryxf * iSx;
-
-
-
- dbd= 7; % Us less than the full matrix
-
- % k x m
- % Bandlimited structure on G
- LSEon = 0; % Default is using MMSE
- if (LSEon)
- ryx = ryx*rx;
- rx = rx*rx;
- end
- p = dbd-1;
- gaj = min(min(hsupport1,2*p+1),min([p+(1:hsupport1); hsupport1+p+1-(1:hsupport1)]));
- cgaj = [0 cumsum(gaj)];
-
- G3 = zeros(hsupport1);
- for kk=1:hsupport1
- ki = max(0,kk-p-1);
- if (sum(sum(rx(ki+1:ki+gaj(kk),ki+1:ki+gaj(kk))))>0)
- G3(kk,ki+1:ki+gaj(kk)) = ryx(kk,ki+1:ki+gaj(kk))/rx(ki+1:ki+gaj(kk),ki+1:ki+gaj(kk));
- else
- G3(kk,ki+1:ki+gaj(kk)) = ryx(kk,ki+1:ki+gaj(kk));
- end
- end
- % End Bandlimited structure
-
- G = G3;
- G(abs(G)<0.01)=0;
- G = suppress_overdrive * Sy * G * iSx;
-
- if 1
- figure(32); mi=2;
- surf(max(min(G,mi),-mi)); view(2)
- title('Unscaled Masked Limited-bandwidth G');
- end
- pause(0.05);
-
- % Reset sums
- mmxs_a = zerovec;
- mmys_a = zerovec;
- s2xs_a = zerovec;
- s2ys_a = zerovec;
- Rxxs_a = zeromat;
- Ryxs_a = zeromat;
- count_a = 1;
-
- end
-
- if (G_ol)
- % Gain matrix B
-
- if ((mod((i-estLen/2), estLen) == 0) & i>estLen)
-
-
- % Cumulative based estimates
- Rxxf = Rxxs_b / (estLen - 1);
- Ryxf = Ryxs_b / (estLen - 1);
-
- % Variance normalization
- s2x2 = s2xs_b / (estLen - 1);
- s2x2 = sqrt(s2x2);
- Sx = diag(max(s2x2,dynrange*max(s2x2)));
- iSx = inv(Sx);
- s2y2 = s2ys_b / (estLen - 1);
- s2y2 = sqrt(s2y2);
- Sy = diag(max(s2y2,dynrange*max(s2y2)));
- iSy = inv(Sy);
- rx = iSx * Rxxf * iSx;
- ryx = iSy * Ryxf * iSx;
-
-
- % Bandlimited structure on G
- LSEon = 0; % Default is using MMSE
- if (LSEon)
- ryx = ryx*rx;
- rx = rx*rx;
- end
- p = dbd-1;
- gaj = min(min(hsupport1,2*p+1),min([p+(1:hsupport1); hsupport1+p+1-(1:hsupport1)]));
- cgaj = [0 cumsum(gaj)];
-
- G3 = zeros(hsupport1);
- for kk=1:hsupport1
- ki = max(0,kk-p-1);
- G3(kk,ki+1:ki+gaj(kk)) = ryx(kk,ki+1:ki+gaj(kk))/rx(ki+1:ki+gaj(kk),ki+1:ki+gaj(kk));
- end
- % End Bandlimited structure
-
- G = G3;
- G(abs(G)<0.01)=0;
- G = suppress_overdrive * Sy * G * iSx;
-
- if 1
- figure(32); mi=2;
- surf(max(min(G,mi),-mi)); view(2)
- title('Unscaled Masked Limited-bandwidth G');
- end
- pause(0.05);
-
-
- % Reset sums
- mmxs_b = zerovec;
- mmys_b = zerovec;
- s2xs_b = zerovec;
- s2ys_b = zerovec;
- Rxxs_b = zeromat;
- Ryxs_b = zeromat;
- count_b = 1;
-
- end
-
- end
-
- FECestimate2 = G*afTheFarEnd(:,idel);
-
- % compute Wiener filter and suppressor function
- thefilter(:,i) = (noisyspec - gamma_echo*FECestimate2) ./ noisyspec;
- ix0 = find(thefilter(:,i)<de_echo_bound); % bounding trick 1
- thefilter(ix0,i) = de_echo_bound; % bounding trick 2
- ix0 = find(thefilter(:,i)>1); % bounding in reasonable range
- thefilter(ix0,i) = 1;
-
- % NONLINEARITY
- nl_alpha=0.8; % memory; seems not very critical
- nlSeverity=0.3; % nonlinearity severity: 0 does nothing; 1 suppresses all
- thefmean=mean(thefilter(8:16,i));
- if (thefmean<1)
- disp('');
- end
- runningfmean = nl_alpha*runningfmean + (1-nl_alpha)*thefmean;
- aaa(sb+20+1:sb+20+updatel)=10000*runningfmean* ones(updatel,1); % debug
- slope0=1.0/(1.0-nlSeverity); %
- thegain = max(0.0,min(1.0,slope0*(runningfmean-nlSeverity)));
- % END NONLINEARITY
- thefilter(:,i) = thegain*thefilter(:,i);
-
-
- % Wiener filtering
- femicrophone(:,i) = fmicrophone(:,i) .* thefilter(:,i);
- thelimiter(:,i) = (noisyspec - A_GAIN*FECestimate2) ./ noisyspec;
- index = find(thelimiter(:,i)>1.0);
- thelimiter(index,i) = 1.0;
- index = find(thelimiter(:,i)<0.0);
- thelimiter(index,i) = 0.0;
-
- if (rem(i,floor(updateno/20))==0)
- fprintf(1,'.');
- end
- if mod(i,50)==0
- waitbar_j(i/updateno,hh);
- end
-
-
- % reconstruction; first make spectrum odd
- temp=[femicrophone(:,i);flipud(conj(femicrophone(2:hsupport,i)))];
- emicrophone(sb:se) = emicrophone(sb:se) + factor * win .* real(ifft(temp));
-
-end
-fprintf(1,'\n');
-
-close(hh); \ No newline at end of file