aboutsummaryrefslogtreecommitdiff
path: root/src/modules/audio_processing/aecm/main/matlab/compsup.m
diff options
context:
space:
mode:
Diffstat (limited to 'src/modules/audio_processing/aecm/main/matlab/compsup.m')
-rw-r--r--src/modules/audio_processing/aecm/main/matlab/compsup.m447
1 files changed, 447 insertions, 0 deletions
diff --git a/src/modules/audio_processing/aecm/main/matlab/compsup.m b/src/modules/audio_processing/aecm/main/matlab/compsup.m
new file mode 100644
index 0000000000..9575ec40fc
--- /dev/null
+++ b/src/modules/audio_processing/aecm/main/matlab/compsup.m
@@ -0,0 +1,447 @@
+function [emicrophone,aaa]=compsup(microphone,TheFarEnd,avtime,samplingfreq);
+% microphone = microphone signal
+% aaa = nonlinearity input variable
+% TheFarEnd = far end signal
+% avtime = interval to compute suppression from (seconds)
+% samplingfreq = sampling frequency
+
+%if(nargin==6)
+% fprintf(1,'suppress has received a delay sequence\n');
+%end
+
+
+Ap500=[ 1.00, -4.95, 9.801, -9.70299, 4.80298005, -0.9509900499];
+Bp500=[ 0.662743088639636, -2.5841655608125, 3.77668102146288, -2.45182477425154, 0.596566274575251, 0.0];
+
+
+Ap200=[ 1.00, -4.875, 9.50625, -9.26859375, 4.518439453125, -0.881095693359375];
+Bp200=[ 0.862545460994275, -3.2832804496114, 4.67892032308828, -2.95798023879133, 0.699796870041299, 0.0];
+
+maxDelay=0.4; %[s]
+histLen=1; %[s]
+
+
+% CONSTANTS THAT YOU CAN EXPERIMENT WITH
+A_GAIN=10.0; % for the suppress case
+oversampling = 2; % must be power of 2; minimum is 2; 4 works
+% fine for support=64, but for support=128,
+% 8 gives better results.
+support=64; %512 % fft support (frequency resolution; at low
+% settings you can hear more distortion
+% (e.g. pitch that is left-over from far-end))
+% 128 works well, 64 is ok)
+
+lowlevel = mean(abs(microphone))*0.0001;
+
+G_ol = 0; % Use overlapping sets of estimates
+
+% ECHO SUPPRESSION SPECIFIC PARAMETERS
+suppress_overdrive=1.0; % overdrive factor for suppression 1.4 is good
+gamma_echo=1.0; % same as suppress_overdrive but at different place
+de_echo_bound=0.0;
+mLim=10; % rank of matrix G
+%limBW = 1; % use bandwidth-limited response for G
+if mLim > (support/2+1)
+ error('mLim in suppress.m too large\n');
+end
+
+
+dynrange=1.0000e-004;
+
+% other, constants
+hsupport = support/2;
+hsupport1 = hsupport+1;
+factor = 2 / oversampling;
+updatel = support/oversampling;
+win=sqrt(designwindow(0,support));
+estLen = round(avtime * samplingfreq/updatel)
+
+runningfmean =0.0;
+
+mLim = floor(hsupport1/2);
+V = sqrt(2/hsupport1)*cos(pi/hsupport1*(repmat((0:hsupport1-1) + 0.5, mLim, 1).* ...
+ repmat((0:mLim-1)' + 0.5, 1, hsupport1)));
+
+fprintf(1,'updatel is %5.3f s\n', updatel/samplingfreq);
+
+
+
+bandfirst=8; bandlast=25;
+dosmooth=0; % to get rid of wavy bin counts (can be worse or better)
+
+% compute some constants
+blockLen = support/oversampling;
+maxDelayb = floor(samplingfreq*maxDelay/updatel); % in blocks
+histLenb = floor(samplingfreq*histLen/updatel); % in blocks
+
+x0=TheFarEnd;
+y0=microphone;
+
+
+%input
+tlength=min([length(microphone),length(TheFarEnd)]);
+updateno=floor(tlength/updatel);
+tlength=updatel*updateno;
+updateno = updateno - oversampling + 1;
+
+TheFarEnd =TheFarEnd(1:tlength);
+microphone =microphone(1:tlength);
+
+TheFarEnd =[zeros(hsupport,1);TheFarEnd(1:tlength)];
+microphone =[zeros(hsupport,1);microphone(1:tlength)];
+
+
+% signal length
+n = min([floor(length(x0)/support)*support,floor(length(y0)/support)*support]);
+nb = n/blockLen - oversampling + 1; % in blocks
+
+% initialize space
+win = sqrt([0 ; hanning(support-1)]);
+sxAll2 = zeros(hsupport1,nb);
+syAll2 = zeros(hsupport1,nb);
+
+z500=zeros(5,maxDelayb+1);
+z200=zeros(5,hsupport1);
+
+bxspectrum=uint32(zeros(nb,1));
+bxhist=uint32(zeros(maxDelayb+1,1));
+byspectrum=uint32(zeros(nb,1));
+bcount=zeros(1+maxDelayb,nb);
+fcount=zeros(1+maxDelayb,nb);
+fout=zeros(1+maxDelayb,nb);
+delay=zeros(nb,1);
+tdelay=zeros(nb,1);
+nlgains=zeros(nb,1);
+
+% create space (mainly for debugging)
+emicrophone=zeros(tlength,1);
+femicrophone=complex(zeros(hsupport1,updateno));
+thefilter=zeros(hsupport1,updateno);
+thelimiter=ones(hsupport1,updateno);
+fTheFarEnd=complex(zeros(hsupport1,updateno));
+afTheFarEnd=zeros(hsupport1,updateno);
+fmicrophone=complex(zeros(hsupport1,updateno));
+afmicrophone=zeros(hsupport1,updateno);
+
+G = zeros(hsupport1, hsupport1);
+zerovec = zeros(hsupport1,1);
+zeromat = zeros(hsupport1);
+
+% Reset sums
+mmxs_a = zerovec;
+mmys_a = zerovec;
+s2xs_a = zerovec;
+s2ys_a = zerovec;
+Rxxs_a = zeromat;
+Ryxs_a = zeromat;
+count_a = 1;
+
+mmxs_b = zerovec;
+mmys_b = zerovec;
+s2xs_b = zerovec;
+s2ys_b = zerovec;
+Rxxs_b = zeromat;
+Ryxs_b = zeromat;
+count_b = 1;
+
+nog=0;
+
+aaa=zeros(size(TheFarEnd));
+
+% loop over signal blocks
+fprintf(1,'.. Suppression; averaging G over %5.1f seconds; file length %5.1f seconds ..\n',avtime, length(microphone)/samplingfreq);
+fprintf(1,'.. SUPPRESSING ONLY AFTER %5.1f SECONDS! ..\n',avtime);
+fprintf(1,'.. 20 seconds is good ..\n');
+hh = waitbar_j(0,'Please wait...');
+
+
+for i=1:updateno
+
+ sb = (i-1)*updatel + 1;
+ se=sb+support-1;
+
+ % analysis FFTs
+ temp=fft(win .* TheFarEnd(sb:se));
+ fTheFarEnd(:,i)=temp(1:hsupport1);
+ xf=fTheFarEnd(:,i);
+ afTheFarEnd(:,i)= abs(fTheFarEnd(:,i));
+
+ temp=win .* microphone(sb:se);
+
+ temp=fft(win .* microphone(sb:se));
+ fmicrophone(:,i)=temp(1:hsupport1);
+ yf=fmicrophone(:,i);
+ afmicrophone(:,i)= abs(fmicrophone(:,i));
+
+
+ ener_orig = afmicrophone(:,i)'*afmicrophone(:,i);
+ if( ener_orig == 0)
+ afmicrophone(:,i)=lowlevel*ones(size(afmicrophone(:,i)));
+ end
+
+
+ % use log domain (showed improved performance)
+xxf= sqrt(real(xf.*conj(xf))+1e-20);
+yyf= sqrt(real(yf.*conj(yf))+1e-20);
+ sxAll2(:,i) = 20*log10(xxf);
+ syAll2(:,i) = 20*log10(yyf);
+
+ mD=min(i-1,maxDelayb);
+ xthreshold = sum(sxAll2(:,i-mD:i),2)/(maxDelayb+1);
+
+ [yout, z200] = filter(Bp200,Ap200,syAll2(:,i),z200,2);
+ yout=yout/(maxDelayb+1);
+ ythreshold = mean(syAll2(:,i-mD:i),2);
+
+
+ bxspectrum(i)=getBspectrum(sxAll2(:,i),xthreshold,bandfirst,bandlast);
+ byspectrum(i)=getBspectrum(syAll2(:,i),yout,bandfirst,bandlast);
+
+ bxhist(end-mD:end)=bxspectrum(i-mD:i);
+
+ bcount(:,i)=hisser2( ...
+ byspectrum(i),flipud(bxhist),bandfirst,bandlast);
+
+
+ [fout(:,i), z500] = filter(Bp500,Ap500,bcount(:,i),z500,2);
+ fcount(:,i)=sum(bcount(:,max(1,i-histLenb+1):i),2); % using the history range
+ fout(:,i)=round(fout(:,i));
+ [value,delay(i)]=min(fout(:,i),[],1);
+ tdelay(i)=(delay(i)-1)*support/(samplingfreq*oversampling);
+
+ % compensate
+
+ idel = max(i - delay(i) + 1,1);
+
+
+ % echo suppression
+
+ noisyspec = afmicrophone(:,i);
+
+ % Estimate G using covariance matrices
+
+ % Cumulative estimates
+ xx = afTheFarEnd(:,idel);
+ yy = afmicrophone(:,i);
+
+ % Means
+ mmxs_a = mmxs_a + xx;
+ mmys_a = mmys_a + yy;
+ if (G_ol)
+ mmxs_b = mmxs_b + xx;
+ mmys_b = mmys_b + yy;
+ mmy = mean([mmys_a/count_a mmys_b/count_b],2);
+ mmx = mean([mmxs_a/count_a mmxs_b/count_b],2);
+ else
+ mmx = mmxs_a/count_a;
+ mmy = mmys_a/count_a;
+ end
+ count_a = count_a + 1;
+ count_b = count_b + 1;
+
+ % Mean removal
+ xxm = xx - mmx;
+ yym = yy - mmy;
+
+ % Variances
+ s2xs_a = s2xs_a + xxm .* xxm;
+ s2ys_a = s2ys_a + yym .* yym;
+ s2xs_b = s2xs_b + xxm .* xxm;
+ s2ys_b = s2ys_b + yym .* yym;
+
+ % Correlation matrices
+ Rxxs_a = Rxxs_a + xxm * xxm';
+ Ryxs_a = Ryxs_a + yym * xxm';
+ Rxxs_b = Rxxs_b + xxm * xxm';
+ Ryxs_b = Ryxs_b + yym * xxm';
+
+
+ % Gain matrix A
+
+ if mod(i, estLen) == 0
+
+
+ % Cumulative based estimates
+ Rxxf = Rxxs_a / (estLen - 1);
+ Ryxf = Ryxs_a / (estLen - 1);
+
+ % Variance normalization
+ s2x2 = s2xs_a / (estLen - 1);
+ s2x2 = sqrt(s2x2);
+ % Sx = diag(max(s2x2,dynrange*max(s2x2)));
+ Sx = diag(s2x2);
+ if (sum(s2x2) > 0)
+ iSx = inv(Sx);
+ else
+ iSx= Sx + 0.01;
+ end
+
+ s2y2 = s2ys_a / (estLen - 1);
+ s2y2 = sqrt(s2y2);
+ % Sy = diag(max(s2y2,dynrange*max(s2y2)));
+ Sy = diag(s2y2);
+ iSy = inv(Sy);
+ rx = iSx * Rxxf * iSx;
+ ryx = iSy * Ryxf * iSx;
+
+
+
+ dbd= 7; % Us less than the full matrix
+
+ % k x m
+ % Bandlimited structure on G
+ LSEon = 0; % Default is using MMSE
+ if (LSEon)
+ ryx = ryx*rx;
+ rx = rx*rx;
+ end
+ p = dbd-1;
+ gaj = min(min(hsupport1,2*p+1),min([p+(1:hsupport1); hsupport1+p+1-(1:hsupport1)]));
+ cgaj = [0 cumsum(gaj)];
+
+ G3 = zeros(hsupport1);
+ for kk=1:hsupport1
+ ki = max(0,kk-p-1);
+ if (sum(sum(rx(ki+1:ki+gaj(kk),ki+1:ki+gaj(kk))))>0)
+ G3(kk,ki+1:ki+gaj(kk)) = ryx(kk,ki+1:ki+gaj(kk))/rx(ki+1:ki+gaj(kk),ki+1:ki+gaj(kk));
+ else
+ G3(kk,ki+1:ki+gaj(kk)) = ryx(kk,ki+1:ki+gaj(kk));
+ end
+ end
+ % End Bandlimited structure
+
+ G = G3;
+ G(abs(G)<0.01)=0;
+ G = suppress_overdrive * Sy * G * iSx;
+
+ if 1
+ figure(32); mi=2;
+ surf(max(min(G,mi),-mi)); view(2)
+ title('Unscaled Masked Limited-bandwidth G');
+ end
+ pause(0.05);
+
+ % Reset sums
+ mmxs_a = zerovec;
+ mmys_a = zerovec;
+ s2xs_a = zerovec;
+ s2ys_a = zerovec;
+ Rxxs_a = zeromat;
+ Ryxs_a = zeromat;
+ count_a = 1;
+
+ end
+
+ if (G_ol)
+ % Gain matrix B
+
+ if ((mod((i-estLen/2), estLen) == 0) & i>estLen)
+
+
+ % Cumulative based estimates
+ Rxxf = Rxxs_b / (estLen - 1);
+ Ryxf = Ryxs_b / (estLen - 1);
+
+ % Variance normalization
+ s2x2 = s2xs_b / (estLen - 1);
+ s2x2 = sqrt(s2x2);
+ Sx = diag(max(s2x2,dynrange*max(s2x2)));
+ iSx = inv(Sx);
+ s2y2 = s2ys_b / (estLen - 1);
+ s2y2 = sqrt(s2y2);
+ Sy = diag(max(s2y2,dynrange*max(s2y2)));
+ iSy = inv(Sy);
+ rx = iSx * Rxxf * iSx;
+ ryx = iSy * Ryxf * iSx;
+
+
+ % Bandlimited structure on G
+ LSEon = 0; % Default is using MMSE
+ if (LSEon)
+ ryx = ryx*rx;
+ rx = rx*rx;
+ end
+ p = dbd-1;
+ gaj = min(min(hsupport1,2*p+1),min([p+(1:hsupport1); hsupport1+p+1-(1:hsupport1)]));
+ cgaj = [0 cumsum(gaj)];
+
+ G3 = zeros(hsupport1);
+ for kk=1:hsupport1
+ ki = max(0,kk-p-1);
+ G3(kk,ki+1:ki+gaj(kk)) = ryx(kk,ki+1:ki+gaj(kk))/rx(ki+1:ki+gaj(kk),ki+1:ki+gaj(kk));
+ end
+ % End Bandlimited structure
+
+ G = G3;
+ G(abs(G)<0.01)=0;
+ G = suppress_overdrive * Sy * G * iSx;
+
+ if 1
+ figure(32); mi=2;
+ surf(max(min(G,mi),-mi)); view(2)
+ title('Unscaled Masked Limited-bandwidth G');
+ end
+ pause(0.05);
+
+
+ % Reset sums
+ mmxs_b = zerovec;
+ mmys_b = zerovec;
+ s2xs_b = zerovec;
+ s2ys_b = zerovec;
+ Rxxs_b = zeromat;
+ Ryxs_b = zeromat;
+ count_b = 1;
+
+ end
+
+ end
+
+ FECestimate2 = G*afTheFarEnd(:,idel);
+
+ % compute Wiener filter and suppressor function
+ thefilter(:,i) = (noisyspec - gamma_echo*FECestimate2) ./ noisyspec;
+ ix0 = find(thefilter(:,i)<de_echo_bound); % bounding trick 1
+ thefilter(ix0,i) = de_echo_bound; % bounding trick 2
+ ix0 = find(thefilter(:,i)>1); % bounding in reasonable range
+ thefilter(ix0,i) = 1;
+
+ % NONLINEARITY
+ nl_alpha=0.8; % memory; seems not very critical
+ nlSeverity=0.3; % nonlinearity severity: 0 does nothing; 1 suppresses all
+ thefmean=mean(thefilter(8:16,i));
+ if (thefmean<1)
+ disp('');
+ end
+ runningfmean = nl_alpha*runningfmean + (1-nl_alpha)*thefmean;
+ aaa(sb+20+1:sb+20+updatel)=10000*runningfmean* ones(updatel,1); % debug
+ slope0=1.0/(1.0-nlSeverity); %
+ thegain = max(0.0,min(1.0,slope0*(runningfmean-nlSeverity)));
+ % END NONLINEARITY
+ thefilter(:,i) = thegain*thefilter(:,i);
+
+
+ % Wiener filtering
+ femicrophone(:,i) = fmicrophone(:,i) .* thefilter(:,i);
+ thelimiter(:,i) = (noisyspec - A_GAIN*FECestimate2) ./ noisyspec;
+ index = find(thelimiter(:,i)>1.0);
+ thelimiter(index,i) = 1.0;
+ index = find(thelimiter(:,i)<0.0);
+ thelimiter(index,i) = 0.0;
+
+ if (rem(i,floor(updateno/20))==0)
+ fprintf(1,'.');
+ end
+ if mod(i,50)==0
+ waitbar_j(i/updateno,hh);
+ end
+
+
+ % reconstruction; first make spectrum odd
+ temp=[femicrophone(:,i);flipud(conj(femicrophone(2:hsupport,i)))];
+ emicrophone(sb:se) = emicrophone(sb:se) + factor * win .* real(ifft(temp));
+
+end
+fprintf(1,'\n');
+
+close(hh); \ No newline at end of file