aboutsummaryrefslogtreecommitdiff
path: root/src/modules/audio_processing/agc/main/source/digital_agc.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/modules/audio_processing/agc/main/source/digital_agc.c')
-rw-r--r--src/modules/audio_processing/agc/main/source/digital_agc.c780
1 files changed, 780 insertions, 0 deletions
diff --git a/src/modules/audio_processing/agc/main/source/digital_agc.c b/src/modules/audio_processing/agc/main/source/digital_agc.c
new file mode 100644
index 0000000000..2966586e48
--- /dev/null
+++ b/src/modules/audio_processing/agc/main/source/digital_agc.c
@@ -0,0 +1,780 @@
+/*
+ * Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+/* digital_agc.c
+ *
+ */
+
+#include <string.h>
+#ifdef AGC_DEBUG
+#include <stdio.h>
+#endif
+#include "digital_agc.h"
+#include "gain_control.h"
+
+// To generate the gaintable, copy&paste the following lines to a Matlab window:
+// MaxGain = 6; MinGain = 0; CompRatio = 3; Knee = 1;
+// zeros = 0:31; lvl = 2.^(1-zeros);
+// A = -10*log10(lvl) * (CompRatio - 1) / CompRatio;
+// B = MaxGain - MinGain;
+// gains = round(2^16*10.^(0.05 * (MinGain + B * ( log(exp(-Knee*A)+exp(-Knee*B)) - log(1+exp(-Knee*B)) ) / log(1/(1+exp(Knee*B))))));
+// fprintf(1, '\t%i, %i, %i, %i,\n', gains);
+// % Matlab code for plotting the gain and input/output level characteristic (copy/paste the following 3 lines):
+// in = 10*log10(lvl); out = 20*log10(gains/65536);
+// subplot(121); plot(in, out); axis([-30, 0, -5, 20]); grid on; xlabel('Input (dB)'); ylabel('Gain (dB)');
+// subplot(122); plot(in, in+out); axis([-30, 0, -30, 5]); grid on; xlabel('Input (dB)'); ylabel('Output (dB)');
+// zoom on;
+
+// Generator table for y=log2(1+e^x) in Q8.
+static const WebRtc_UWord16 kGenFuncTable[128] = {
+ 256, 485, 786, 1126, 1484, 1849, 2217, 2586,
+ 2955, 3324, 3693, 4063, 4432, 4801, 5171, 5540,
+ 5909, 6279, 6648, 7017, 7387, 7756, 8125, 8495,
+ 8864, 9233, 9603, 9972, 10341, 10711, 11080, 11449,
+ 11819, 12188, 12557, 12927, 13296, 13665, 14035, 14404,
+ 14773, 15143, 15512, 15881, 16251, 16620, 16989, 17359,
+ 17728, 18097, 18466, 18836, 19205, 19574, 19944, 20313,
+ 20682, 21052, 21421, 21790, 22160, 22529, 22898, 23268,
+ 23637, 24006, 24376, 24745, 25114, 25484, 25853, 26222,
+ 26592, 26961, 27330, 27700, 28069, 28438, 28808, 29177,
+ 29546, 29916, 30285, 30654, 31024, 31393, 31762, 32132,
+ 32501, 32870, 33240, 33609, 33978, 34348, 34717, 35086,
+ 35456, 35825, 36194, 36564, 36933, 37302, 37672, 38041,
+ 38410, 38780, 39149, 39518, 39888, 40257, 40626, 40996,
+ 41365, 41734, 42104, 42473, 42842, 43212, 43581, 43950,
+ 44320, 44689, 45058, 45428, 45797, 46166, 46536, 46905
+};
+
+static const WebRtc_Word16 kAvgDecayTime = 250; // frames; < 3000
+
+WebRtc_Word32 WebRtcAgc_CalculateGainTable(WebRtc_Word32 *gainTable, // Q16
+ WebRtc_Word16 digCompGaindB, // Q0
+ WebRtc_Word16 targetLevelDbfs,// Q0
+ WebRtc_UWord8 limiterEnable,
+ WebRtc_Word16 analogTarget) // Q0
+{
+ // This function generates the compressor gain table used in the fixed digital part.
+ WebRtc_UWord32 tmpU32no1, tmpU32no2, absInLevel, logApprox;
+ WebRtc_Word32 inLevel, limiterLvl;
+ WebRtc_Word32 tmp32, tmp32no1, tmp32no2, numFIX, den, y32;
+ const WebRtc_UWord16 kLog10 = 54426; // log2(10) in Q14
+ const WebRtc_UWord16 kLog10_2 = 49321; // 10*log10(2) in Q14
+ const WebRtc_UWord16 kLogE_1 = 23637; // log2(e) in Q14
+ WebRtc_UWord16 constMaxGain;
+ WebRtc_UWord16 tmpU16, intPart, fracPart;
+ const WebRtc_Word16 kCompRatio = 3;
+ const WebRtc_Word16 kSoftLimiterLeft = 1;
+ WebRtc_Word16 limiterOffset = 0; // Limiter offset
+ WebRtc_Word16 limiterIdx, limiterLvlX;
+ WebRtc_Word16 constLinApprox, zeroGainLvl, maxGain, diffGain;
+ WebRtc_Word16 i, tmp16, tmp16no1;
+ int zeros, zerosScale;
+
+ // Constants
+// kLogE_1 = 23637; // log2(e) in Q14
+// kLog10 = 54426; // log2(10) in Q14
+// kLog10_2 = 49321; // 10*log10(2) in Q14
+
+ // Calculate maximum digital gain and zero gain level
+ tmp32no1 = WEBRTC_SPL_MUL_16_16(digCompGaindB - analogTarget, kCompRatio - 1);
+ tmp16no1 = analogTarget - targetLevelDbfs;
+ tmp16no1 += WebRtcSpl_DivW32W16ResW16(tmp32no1 + (kCompRatio >> 1), kCompRatio);
+ maxGain = WEBRTC_SPL_MAX(tmp16no1, (analogTarget - targetLevelDbfs));
+ tmp32no1 = WEBRTC_SPL_MUL_16_16(maxGain, kCompRatio);
+ zeroGainLvl = digCompGaindB;
+ zeroGainLvl -= WebRtcSpl_DivW32W16ResW16(tmp32no1 + ((kCompRatio - 1) >> 1),
+ kCompRatio - 1);
+ if ((digCompGaindB <= analogTarget) && (limiterEnable))
+ {
+ zeroGainLvl += (analogTarget - digCompGaindB + kSoftLimiterLeft);
+ limiterOffset = 0;
+ }
+
+ // Calculate the difference between maximum gain and gain at 0dB0v:
+ // diffGain = maxGain + (compRatio-1)*zeroGainLvl/compRatio
+ // = (compRatio-1)*digCompGaindB/compRatio
+ tmp32no1 = WEBRTC_SPL_MUL_16_16(digCompGaindB, kCompRatio - 1);
+ diffGain = WebRtcSpl_DivW32W16ResW16(tmp32no1 + (kCompRatio >> 1), kCompRatio);
+ if (diffGain < 0)
+ {
+ return -1;
+ }
+
+ // Calculate the limiter level and index:
+ // limiterLvlX = analogTarget - limiterOffset
+ // limiterLvl = targetLevelDbfs + limiterOffset/compRatio
+ limiterLvlX = analogTarget - limiterOffset;
+ limiterIdx = 2
+ + WebRtcSpl_DivW32W16ResW16(WEBRTC_SPL_LSHIFT_W32((WebRtc_Word32)limiterLvlX, 13),
+ WEBRTC_SPL_RSHIFT_U16(kLog10_2, 1));
+ tmp16no1 = WebRtcSpl_DivW32W16ResW16(limiterOffset + (kCompRatio >> 1), kCompRatio);
+ limiterLvl = targetLevelDbfs + tmp16no1;
+
+ // Calculate (through table lookup):
+ // constMaxGain = log2(1+2^(log2(e)*diffGain)); (in Q8)
+ constMaxGain = kGenFuncTable[diffGain]; // in Q8
+
+ // Calculate a parameter used to approximate the fractional part of 2^x with a
+ // piecewise linear function in Q14:
+ // constLinApprox = round(3/2*(4*(3-2*sqrt(2))/(log(2)^2)-0.5)*2^14);
+ constLinApprox = 22817; // in Q14
+
+ // Calculate a denominator used in the exponential part to convert from dB to linear scale:
+ // den = 20*constMaxGain (in Q8)
+ den = WEBRTC_SPL_MUL_16_U16(20, constMaxGain); // in Q8
+
+ for (i = 0; i < 32; i++)
+ {
+ // Calculate scaled input level (compressor):
+ // inLevel = fix((-constLog10_2*(compRatio-1)*(1-i)+fix(compRatio/2))/compRatio)
+ tmp16 = (WebRtc_Word16)WEBRTC_SPL_MUL_16_16(kCompRatio - 1, i - 1); // Q0
+ tmp32 = WEBRTC_SPL_MUL_16_U16(tmp16, kLog10_2) + 1; // Q14
+ inLevel = WebRtcSpl_DivW32W16(tmp32, kCompRatio); // Q14
+
+ // Calculate diffGain-inLevel, to map using the genFuncTable
+ inLevel = WEBRTC_SPL_LSHIFT_W32((WebRtc_Word32)diffGain, 14) - inLevel; // Q14
+
+ // Make calculations on abs(inLevel) and compensate for the sign afterwards.
+ absInLevel = (WebRtc_UWord32)WEBRTC_SPL_ABS_W32(inLevel); // Q14
+
+ // LUT with interpolation
+ intPart = (WebRtc_UWord16)WEBRTC_SPL_RSHIFT_U32(absInLevel, 14);
+ fracPart = (WebRtc_UWord16)(absInLevel & 0x00003FFF); // extract the fractional part
+ tmpU16 = kGenFuncTable[intPart + 1] - kGenFuncTable[intPart]; // Q8
+ tmpU32no1 = WEBRTC_SPL_UMUL_16_16(tmpU16, fracPart); // Q22
+ tmpU32no1 += WEBRTC_SPL_LSHIFT_U32((WebRtc_UWord32)kGenFuncTable[intPart], 14); // Q22
+ logApprox = WEBRTC_SPL_RSHIFT_U32(tmpU32no1, 8); // Q14
+ // Compensate for negative exponent using the relation:
+ // log2(1 + 2^-x) = log2(1 + 2^x) - x
+ if (inLevel < 0)
+ {
+ zeros = WebRtcSpl_NormU32(absInLevel);
+ zerosScale = 0;
+ if (zeros < 15)
+ {
+ // Not enough space for multiplication
+ tmpU32no2 = WEBRTC_SPL_RSHIFT_U32(absInLevel, 15 - zeros); // Q(zeros-1)
+ tmpU32no2 = WEBRTC_SPL_UMUL_32_16(tmpU32no2, kLogE_1); // Q(zeros+13)
+ if (zeros < 9)
+ {
+ tmpU32no1 = WEBRTC_SPL_RSHIFT_U32(tmpU32no1, 9 - zeros); // Q(zeros+13)
+ zerosScale = 9 - zeros;
+ } else
+ {
+ tmpU32no2 = WEBRTC_SPL_RSHIFT_U32(tmpU32no2, zeros - 9); // Q22
+ }
+ } else
+ {
+ tmpU32no2 = WEBRTC_SPL_UMUL_32_16(absInLevel, kLogE_1); // Q28
+ tmpU32no2 = WEBRTC_SPL_RSHIFT_U32(tmpU32no2, 6); // Q22
+ }
+ logApprox = 0;
+ if (tmpU32no2 < tmpU32no1)
+ {
+ logApprox = WEBRTC_SPL_RSHIFT_U32(tmpU32no1 - tmpU32no2, 8 - zerosScale); //Q14
+ }
+ }
+ numFIX = WEBRTC_SPL_LSHIFT_W32(WEBRTC_SPL_MUL_16_U16(maxGain, constMaxGain), 6); // Q14
+ numFIX -= WEBRTC_SPL_MUL_32_16((WebRtc_Word32)logApprox, diffGain); // Q14
+
+ // Calculate ratio
+ // Shift numFIX as much as possible
+ zeros = WebRtcSpl_NormW32(numFIX);
+ numFIX = WEBRTC_SPL_LSHIFT_W32(numFIX, zeros); // Q(14+zeros)
+
+ // Shift den so we end up in Qy1
+ tmp32no1 = WEBRTC_SPL_SHIFT_W32(den, zeros - 8); // Q(zeros)
+ if (numFIX < 0)
+ {
+ numFIX -= WEBRTC_SPL_RSHIFT_W32(tmp32no1, 1);
+ } else
+ {
+ numFIX += WEBRTC_SPL_RSHIFT_W32(tmp32no1, 1);
+ }
+ y32 = WEBRTC_SPL_DIV(numFIX, tmp32no1); // in Q14
+ if (limiterEnable && (i < limiterIdx))
+ {
+ tmp32 = WEBRTC_SPL_MUL_16_U16(i - 1, kLog10_2); // Q14
+ tmp32 -= WEBRTC_SPL_LSHIFT_W32(limiterLvl, 14); // Q14
+ y32 = WebRtcSpl_DivW32W16(tmp32 + 10, 20);
+ }
+ if (y32 > 39000)
+ {
+ tmp32 = WEBRTC_SPL_MUL(y32 >> 1, kLog10) + 4096; // in Q27
+ tmp32 = WEBRTC_SPL_RSHIFT_W32(tmp32, 13); // in Q14
+ } else
+ {
+ tmp32 = WEBRTC_SPL_MUL(y32, kLog10) + 8192; // in Q28
+ tmp32 = WEBRTC_SPL_RSHIFT_W32(tmp32, 14); // in Q14
+ }
+ tmp32 += WEBRTC_SPL_LSHIFT_W32(16, 14); // in Q14 (Make sure final output is in Q16)
+
+ // Calculate power
+ if (tmp32 > 0)
+ {
+ intPart = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(tmp32, 14);
+ fracPart = (WebRtc_UWord16)(tmp32 & 0x00003FFF); // in Q14
+ if (WEBRTC_SPL_RSHIFT_W32(fracPart, 13))
+ {
+ tmp16 = WEBRTC_SPL_LSHIFT_W16(2, 14) - constLinApprox;
+ tmp32no2 = WEBRTC_SPL_LSHIFT_W32(1, 14) - fracPart;
+ tmp32no2 = WEBRTC_SPL_MUL_32_16(tmp32no2, tmp16);
+ tmp32no2 = WEBRTC_SPL_RSHIFT_W32(tmp32no2, 13);
+ tmp32no2 = WEBRTC_SPL_LSHIFT_W32(1, 14) - tmp32no2;
+ } else
+ {
+ tmp16 = constLinApprox - WEBRTC_SPL_LSHIFT_W16(1, 14);
+ tmp32no2 = WEBRTC_SPL_MUL_32_16(fracPart, tmp16);
+ tmp32no2 = WEBRTC_SPL_RSHIFT_W32(tmp32no2, 13);
+ }
+ fracPart = (WebRtc_UWord16)tmp32no2;
+ gainTable[i] = WEBRTC_SPL_LSHIFT_W32(1, intPart)
+ + WEBRTC_SPL_SHIFT_W32(fracPart, intPart - 14);
+ } else
+ {
+ gainTable[i] = 0;
+ }
+ }
+
+ return 0;
+}
+
+WebRtc_Word32 WebRtcAgc_InitDigital(DigitalAgc_t *stt, WebRtc_Word16 agcMode)
+{
+
+ if (agcMode == kAgcModeFixedDigital)
+ {
+ // start at minimum to find correct gain faster
+ stt->capacitorSlow = 0;
+ } else
+ {
+ // start out with 0 dB gain
+ stt->capacitorSlow = 134217728; // (WebRtc_Word32)(0.125f * 32768.0f * 32768.0f);
+ }
+ stt->capacitorFast = 0;
+ stt->gain = 65536;
+ stt->gatePrevious = 0;
+ stt->agcMode = agcMode;
+#ifdef AGC_DEBUG
+ stt->frameCounter = 0;
+#endif
+
+ // initialize VADs
+ WebRtcAgc_InitVad(&stt->vadNearend);
+ WebRtcAgc_InitVad(&stt->vadFarend);
+
+ return 0;
+}
+
+WebRtc_Word32 WebRtcAgc_AddFarendToDigital(DigitalAgc_t *stt, const WebRtc_Word16 *in_far,
+ WebRtc_Word16 nrSamples)
+{
+ // Check for valid pointer
+ if (&stt->vadFarend == NULL)
+ {
+ return -1;
+ }
+
+ // VAD for far end
+ WebRtcAgc_ProcessVad(&stt->vadFarend, in_far, nrSamples);
+
+ return 0;
+}
+
+WebRtc_Word32 WebRtcAgc_ProcessDigital(DigitalAgc_t *stt, const WebRtc_Word16 *in_near,
+ const WebRtc_Word16 *in_near_H, WebRtc_Word16 *out,
+ WebRtc_Word16 *out_H, WebRtc_UWord32 FS,
+ WebRtc_Word16 lowlevelSignal)
+{
+ // array for gains (one value per ms, incl start & end)
+ WebRtc_Word32 gains[11];
+
+ WebRtc_Word32 out_tmp, tmp32;
+ WebRtc_Word32 env[10];
+ WebRtc_Word32 nrg, max_nrg;
+ WebRtc_Word32 cur_level;
+ WebRtc_Word32 gain32, delta;
+ WebRtc_Word16 logratio;
+ WebRtc_Word16 lower_thr, upper_thr;
+ WebRtc_Word16 zeros, zeros_fast, frac;
+ WebRtc_Word16 decay;
+ WebRtc_Word16 gate, gain_adj;
+ WebRtc_Word16 k, n;
+ WebRtc_Word16 L, L2; // samples/subframe
+
+ // determine number of samples per ms
+ if (FS == 8000)
+ {
+ L = 8;
+ L2 = 3;
+ } else if (FS == 16000)
+ {
+ L = 16;
+ L2 = 4;
+ } else if (FS == 32000)
+ {
+ L = 16;
+ L2 = 4;
+ } else
+ {
+ return -1;
+ }
+
+ memcpy(out, in_near, 10 * L * sizeof(WebRtc_Word16));
+ if (FS == 32000)
+ {
+ memcpy(out_H, in_near_H, 10 * L * sizeof(WebRtc_Word16));
+ }
+ // VAD for near end
+ logratio = WebRtcAgc_ProcessVad(&stt->vadNearend, out, L * 10);
+
+ // Account for far end VAD
+ if (stt->vadFarend.counter > 10)
+ {
+ tmp32 = WEBRTC_SPL_MUL_16_16(3, logratio);
+ logratio = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(tmp32 - stt->vadFarend.logRatio, 2);
+ }
+
+ // Determine decay factor depending on VAD
+ // upper_thr = 1.0f;
+ // lower_thr = 0.25f;
+ upper_thr = 1024; // Q10
+ lower_thr = 0; // Q10
+ if (logratio > upper_thr)
+ {
+ // decay = -2^17 / DecayTime; -> -65
+ decay = -65;
+ } else if (logratio < lower_thr)
+ {
+ decay = 0;
+ } else
+ {
+ // decay = (WebRtc_Word16)(((lower_thr - logratio)
+ // * (2^27/(DecayTime*(upper_thr-lower_thr)))) >> 10);
+ // SUBSTITUTED: 2^27/(DecayTime*(upper_thr-lower_thr)) -> 65
+ tmp32 = WEBRTC_SPL_MUL_16_16((lower_thr - logratio), 65);
+ decay = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(tmp32, 10);
+ }
+
+ // adjust decay factor for long silence (detected as low standard deviation)
+ // This is only done in the adaptive modes
+ if (stt->agcMode != kAgcModeFixedDigital)
+ {
+ if (stt->vadNearend.stdLongTerm < 4000)
+ {
+ decay = 0;
+ } else if (stt->vadNearend.stdLongTerm < 8096)
+ {
+ // decay = (WebRtc_Word16)(((stt->vadNearend.stdLongTerm - 4000) * decay) >> 12);
+ tmp32 = WEBRTC_SPL_MUL_16_16((stt->vadNearend.stdLongTerm - 4000), decay);
+ decay = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(tmp32, 12);
+ }
+
+ if (lowlevelSignal != 0)
+ {
+ decay = 0;
+ }
+ }
+#ifdef AGC_DEBUG
+ stt->frameCounter++;
+ fprintf(stt->logFile, "%5.2f\t%d\t%d\t%d\t", (float)(stt->frameCounter) / 100, logratio, decay, stt->vadNearend.stdLongTerm);
+#endif
+ // Find max amplitude per sub frame
+ // iterate over sub frames
+ for (k = 0; k < 10; k++)
+ {
+ // iterate over samples
+ max_nrg = 0;
+ for (n = 0; n < L; n++)
+ {
+ nrg = WEBRTC_SPL_MUL_16_16(out[k * L + n], out[k * L + n]);
+ if (nrg > max_nrg)
+ {
+ max_nrg = nrg;
+ }
+ }
+ env[k] = max_nrg;
+ }
+
+ // Calculate gain per sub frame
+ gains[0] = stt->gain;
+ for (k = 0; k < 10; k++)
+ {
+ // Fast envelope follower
+ // decay time = -131000 / -1000 = 131 (ms)
+ stt->capacitorFast = AGC_SCALEDIFF32(-1000, stt->capacitorFast, stt->capacitorFast);
+ if (env[k] > stt->capacitorFast)
+ {
+ stt->capacitorFast = env[k];
+ }
+ // Slow envelope follower
+ if (env[k] > stt->capacitorSlow)
+ {
+ // increase capacitorSlow
+ stt->capacitorSlow
+ = AGC_SCALEDIFF32(500, (env[k] - stt->capacitorSlow), stt->capacitorSlow);
+ } else
+ {
+ // decrease capacitorSlow
+ stt->capacitorSlow
+ = AGC_SCALEDIFF32(decay, stt->capacitorSlow, stt->capacitorSlow);
+ }
+
+ // use maximum of both capacitors as current level
+ if (stt->capacitorFast > stt->capacitorSlow)
+ {
+ cur_level = stt->capacitorFast;
+ } else
+ {
+ cur_level = stt->capacitorSlow;
+ }
+ // Translate signal level into gain, using a piecewise linear approximation
+ // find number of leading zeros
+ zeros = WebRtcSpl_NormU32((WebRtc_UWord32)cur_level);
+ if (cur_level == 0)
+ {
+ zeros = 31;
+ }
+ tmp32 = (WEBRTC_SPL_LSHIFT_W32(cur_level, zeros) & 0x7FFFFFFF);
+ frac = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(tmp32, 19); // Q12
+ tmp32 = WEBRTC_SPL_MUL((stt->gainTable[zeros-1] - stt->gainTable[zeros]), frac);
+ gains[k + 1] = stt->gainTable[zeros] + WEBRTC_SPL_RSHIFT_W32(tmp32, 12);
+#ifdef AGC_DEBUG
+ if (k == 0)
+ {
+ fprintf(stt->logFile, "%d\t%d\t%d\t%d\t%d\n", env[0], cur_level, stt->capacitorFast, stt->capacitorSlow, zeros);
+ }
+#endif
+ }
+
+ // Gate processing (lower gain during absence of speech)
+ zeros = WEBRTC_SPL_LSHIFT_W16(zeros, 9) - WEBRTC_SPL_RSHIFT_W16(frac, 3);
+ // find number of leading zeros
+ zeros_fast = WebRtcSpl_NormU32((WebRtc_UWord32)stt->capacitorFast);
+ if (stt->capacitorFast == 0)
+ {
+ zeros_fast = 31;
+ }
+ tmp32 = (WEBRTC_SPL_LSHIFT_W32(stt->capacitorFast, zeros_fast) & 0x7FFFFFFF);
+ zeros_fast = WEBRTC_SPL_LSHIFT_W16(zeros_fast, 9);
+ zeros_fast -= (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(tmp32, 22);
+
+ gate = 1000 + zeros_fast - zeros - stt->vadNearend.stdShortTerm;
+
+ if (gate < 0)
+ {
+ stt->gatePrevious = 0;
+ } else
+ {
+ tmp32 = WEBRTC_SPL_MUL_16_16(stt->gatePrevious, 7);
+ gate = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32((WebRtc_Word32)gate + tmp32, 3);
+ stt->gatePrevious = gate;
+ }
+ // gate < 0 -> no gate
+ // gate > 2500 -> max gate
+ if (gate > 0)
+ {
+ if (gate < 2500)
+ {
+ gain_adj = WEBRTC_SPL_RSHIFT_W16(2500 - gate, 5);
+ } else
+ {
+ gain_adj = 0;
+ }
+ for (k = 0; k < 10; k++)
+ {
+ if ((gains[k + 1] - stt->gainTable[0]) > 8388608)
+ {
+ // To prevent wraparound
+ tmp32 = WEBRTC_SPL_RSHIFT_W32((gains[k+1] - stt->gainTable[0]), 8);
+ tmp32 = WEBRTC_SPL_MUL(tmp32, (178 + gain_adj));
+ } else
+ {
+ tmp32 = WEBRTC_SPL_MUL((gains[k+1] - stt->gainTable[0]), (178 + gain_adj));
+ tmp32 = WEBRTC_SPL_RSHIFT_W32(tmp32, 8);
+ }
+ gains[k + 1] = stt->gainTable[0] + tmp32;
+ }
+ }
+
+ // Limit gain to avoid overload distortion
+ for (k = 0; k < 10; k++)
+ {
+ // To prevent wrap around
+ zeros = 10;
+ if (gains[k + 1] > 47453132)
+ {
+ zeros = 16 - WebRtcSpl_NormW32(gains[k + 1]);
+ }
+ gain32 = WEBRTC_SPL_RSHIFT_W32(gains[k+1], zeros) + 1;
+ gain32 = WEBRTC_SPL_MUL(gain32, gain32);
+ // check for overflow
+ while (AGC_MUL32(WEBRTC_SPL_RSHIFT_W32(env[k], 12) + 1, gain32)
+ > WEBRTC_SPL_SHIFT_W32((WebRtc_Word32)32767, 2 * (1 - zeros + 10)))
+ {
+ // multiply by 253/256 ==> -0.1 dB
+ if (gains[k + 1] > 8388607)
+ {
+ // Prevent wrap around
+ gains[k + 1] = WEBRTC_SPL_MUL(WEBRTC_SPL_RSHIFT_W32(gains[k+1], 8), 253);
+ } else
+ {
+ gains[k + 1] = WEBRTC_SPL_RSHIFT_W32(WEBRTC_SPL_MUL(gains[k+1], 253), 8);
+ }
+ gain32 = WEBRTC_SPL_RSHIFT_W32(gains[k+1], zeros) + 1;
+ gain32 = WEBRTC_SPL_MUL(gain32, gain32);
+ }
+ }
+ // gain reductions should be done 1 ms earlier than gain increases
+ for (k = 1; k < 10; k++)
+ {
+ if (gains[k] > gains[k + 1])
+ {
+ gains[k] = gains[k + 1];
+ }
+ }
+ // save start gain for next frame
+ stt->gain = gains[10];
+
+ // Apply gain
+ // handle first sub frame separately
+ delta = WEBRTC_SPL_LSHIFT_W32(gains[1] - gains[0], (4 - L2));
+ gain32 = WEBRTC_SPL_LSHIFT_W32(gains[0], 4);
+ // iterate over samples
+ for (n = 0; n < L; n++)
+ {
+ // For lower band
+ tmp32 = WEBRTC_SPL_MUL((WebRtc_Word32)out[n], WEBRTC_SPL_RSHIFT_W32(gain32 + 127, 7));
+ out_tmp = WEBRTC_SPL_RSHIFT_W32(tmp32 , 16);
+ if (out_tmp > 4095)
+ {
+ out[n] = (WebRtc_Word16)32767;
+ } else if (out_tmp < -4096)
+ {
+ out[n] = (WebRtc_Word16)-32768;
+ } else
+ {
+ tmp32 = WEBRTC_SPL_MUL((WebRtc_Word32)out[n], WEBRTC_SPL_RSHIFT_W32(gain32, 4));
+ out[n] = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(tmp32 , 16);
+ }
+ // For higher band
+ if (FS == 32000)
+ {
+ tmp32 = WEBRTC_SPL_MUL((WebRtc_Word32)out_H[n],
+ WEBRTC_SPL_RSHIFT_W32(gain32 + 127, 7));
+ out_tmp = WEBRTC_SPL_RSHIFT_W32(tmp32 , 16);
+ if (out_tmp > 4095)
+ {
+ out_H[n] = (WebRtc_Word16)32767;
+ } else if (out_tmp < -4096)
+ {
+ out_H[n] = (WebRtc_Word16)-32768;
+ } else
+ {
+ tmp32 = WEBRTC_SPL_MUL((WebRtc_Word32)out_H[n],
+ WEBRTC_SPL_RSHIFT_W32(gain32, 4));
+ out_H[n] = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(tmp32 , 16);
+ }
+ }
+ //
+
+ gain32 += delta;
+ }
+ // iterate over subframes
+ for (k = 1; k < 10; k++)
+ {
+ delta = WEBRTC_SPL_LSHIFT_W32(gains[k+1] - gains[k], (4 - L2));
+ gain32 = WEBRTC_SPL_LSHIFT_W32(gains[k], 4);
+ // iterate over samples
+ for (n = 0; n < L; n++)
+ {
+ // For lower band
+ tmp32 = WEBRTC_SPL_MUL((WebRtc_Word32)out[k * L + n],
+ WEBRTC_SPL_RSHIFT_W32(gain32, 4));
+ out[k * L + n] = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(tmp32 , 16);
+ // For higher band
+ if (FS == 32000)
+ {
+ tmp32 = WEBRTC_SPL_MUL((WebRtc_Word32)out_H[k * L + n],
+ WEBRTC_SPL_RSHIFT_W32(gain32, 4));
+ out_H[k * L + n] = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(tmp32 , 16);
+ }
+ gain32 += delta;
+ }
+ }
+
+ return 0;
+}
+
+void WebRtcAgc_InitVad(AgcVad_t *state)
+{
+ WebRtc_Word16 k;
+
+ state->HPstate = 0; // state of high pass filter
+ state->logRatio = 0; // log( P(active) / P(inactive) )
+ // average input level (Q10)
+ state->meanLongTerm = WEBRTC_SPL_LSHIFT_W16(15, 10);
+
+ // variance of input level (Q8)
+ state->varianceLongTerm = WEBRTC_SPL_LSHIFT_W32(500, 8);
+
+ state->stdLongTerm = 0; // standard deviation of input level in dB
+ // short-term average input level (Q10)
+ state->meanShortTerm = WEBRTC_SPL_LSHIFT_W16(15, 10);
+
+ // short-term variance of input level (Q8)
+ state->varianceShortTerm = WEBRTC_SPL_LSHIFT_W32(500, 8);
+
+ state->stdShortTerm = 0; // short-term standard deviation of input level in dB
+ state->counter = 3; // counts updates
+ for (k = 0; k < 8; k++)
+ {
+ // downsampling filter
+ state->downState[k] = 0;
+ }
+}
+
+WebRtc_Word16 WebRtcAgc_ProcessVad(AgcVad_t *state, // (i) VAD state
+ const WebRtc_Word16 *in, // (i) Speech signal
+ WebRtc_Word16 nrSamples) // (i) number of samples
+{
+ WebRtc_Word32 out, nrg, tmp32, tmp32b;
+ WebRtc_UWord16 tmpU16;
+ WebRtc_Word16 k, subfr, tmp16;
+ WebRtc_Word16 buf1[8];
+ WebRtc_Word16 buf2[4];
+ WebRtc_Word16 HPstate;
+ WebRtc_Word16 zeros, dB;
+ WebRtc_Word16 *buf1_ptr;
+
+ // process in 10 sub frames of 1 ms (to save on memory)
+ nrg = 0;
+ buf1_ptr = &buf1[0];
+ HPstate = state->HPstate;
+ for (subfr = 0; subfr < 10; subfr++)
+ {
+ // downsample to 4 kHz
+ if (nrSamples == 160)
+ {
+ for (k = 0; k < 8; k++)
+ {
+ tmp32 = (WebRtc_Word32)in[2 * k] + (WebRtc_Word32)in[2 * k + 1];
+ tmp32 = WEBRTC_SPL_RSHIFT_W32(tmp32, 1);
+ buf1[k] = (WebRtc_Word16)tmp32;
+ }
+ in += 16;
+
+ WebRtcSpl_DownsampleBy2(buf1, 8, buf2, state->downState);
+ } else
+ {
+ WebRtcSpl_DownsampleBy2(in, 8, buf2, state->downState);
+ in += 8;
+ }
+
+ // high pass filter and compute energy
+ for (k = 0; k < 4; k++)
+ {
+ out = buf2[k] + HPstate;
+ tmp32 = WEBRTC_SPL_MUL(600, out);
+ HPstate = (WebRtc_Word16)(WEBRTC_SPL_RSHIFT_W32(tmp32, 10) - buf2[k]);
+ tmp32 = WEBRTC_SPL_MUL(out, out);
+ nrg += WEBRTC_SPL_RSHIFT_W32(tmp32, 6);
+ }
+ }
+ state->HPstate = HPstate;
+
+ // find number of leading zeros
+ if (!(0xFFFF0000 & nrg))
+ {
+ zeros = 16;
+ } else
+ {
+ zeros = 0;
+ }
+ if (!(0xFF000000 & (nrg << zeros)))
+ {
+ zeros += 8;
+ }
+ if (!(0xF0000000 & (nrg << zeros)))
+ {
+ zeros += 4;
+ }
+ if (!(0xC0000000 & (nrg << zeros)))
+ {
+ zeros += 2;
+ }
+ if (!(0x80000000 & (nrg << zeros)))
+ {
+ zeros += 1;
+ }
+
+ // energy level (range {-32..30}) (Q10)
+ dB = WEBRTC_SPL_LSHIFT_W16(15 - zeros, 11);
+
+ // Update statistics
+
+ if (state->counter < kAvgDecayTime)
+ {
+ // decay time = AvgDecTime * 10 ms
+ state->counter++;
+ }
+
+ // update short-term estimate of mean energy level (Q10)
+ tmp32 = (WEBRTC_SPL_MUL_16_16(state->meanShortTerm, 15) + (WebRtc_Word32)dB);
+ state->meanShortTerm = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(tmp32, 4);
+
+ // update short-term estimate of variance in energy level (Q8)
+ tmp32 = WEBRTC_SPL_RSHIFT_W32(WEBRTC_SPL_MUL_16_16(dB, dB), 12);
+ tmp32 += WEBRTC_SPL_MUL(state->varianceShortTerm, 15);
+ state->varianceShortTerm = WEBRTC_SPL_RSHIFT_W32(tmp32, 4);
+
+ // update short-term estimate of standard deviation in energy level (Q10)
+ tmp32 = WEBRTC_SPL_MUL_16_16(state->meanShortTerm, state->meanShortTerm);
+ tmp32 = WEBRTC_SPL_LSHIFT_W32(state->varianceShortTerm, 12) - tmp32;
+ state->stdShortTerm = (WebRtc_Word16)WebRtcSpl_Sqrt(tmp32);
+
+ // update long-term estimate of mean energy level (Q10)
+ tmp32 = WEBRTC_SPL_MUL_16_16(state->meanLongTerm, state->counter) + (WebRtc_Word32)dB;
+ state->meanLongTerm = WebRtcSpl_DivW32W16ResW16(tmp32,
+ WEBRTC_SPL_ADD_SAT_W16(state->counter, 1));
+
+ // update long-term estimate of variance in energy level (Q8)
+ tmp32 = WEBRTC_SPL_RSHIFT_W32(WEBRTC_SPL_MUL_16_16(dB, dB), 12);
+ tmp32 += WEBRTC_SPL_MUL(state->varianceLongTerm, state->counter);
+ state->varianceLongTerm = WebRtcSpl_DivW32W16(tmp32,
+ WEBRTC_SPL_ADD_SAT_W16(state->counter, 1));
+
+ // update long-term estimate of standard deviation in energy level (Q10)
+ tmp32 = WEBRTC_SPL_MUL_16_16(state->meanLongTerm, state->meanLongTerm);
+ tmp32 = WEBRTC_SPL_LSHIFT_W32(state->varianceLongTerm, 12) - tmp32;
+ state->stdLongTerm = (WebRtc_Word16)WebRtcSpl_Sqrt(tmp32);
+
+ // update voice activity measure (Q10)
+ tmp16 = WEBRTC_SPL_LSHIFT_W16(3, 12);
+ tmp32 = WEBRTC_SPL_MUL_16_16(tmp16, (dB - state->meanLongTerm));
+ tmp32 = WebRtcSpl_DivW32W16(tmp32, state->stdLongTerm);
+ tmpU16 = WEBRTC_SPL_LSHIFT_U16((WebRtc_UWord16)13, 12);
+ tmp32b = WEBRTC_SPL_MUL_16_U16(state->logRatio, tmpU16);
+ tmp32 += WEBRTC_SPL_RSHIFT_W32(tmp32b, 10);
+
+ state->logRatio = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(tmp32, 6);
+
+ // limit
+ if (state->logRatio > 2048)
+ {
+ state->logRatio = 2048;
+ }
+ if (state->logRatio < -2048)
+ {
+ state->logRatio = -2048;
+ }
+
+ return state->logRatio; // Q10
+}