aboutsummaryrefslogtreecommitdiff
path: root/src/system_wrappers/source/spreadsortlib/spreadsort.hpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/system_wrappers/source/spreadsortlib/spreadsort.hpp')
-rw-r--r--src/system_wrappers/source/spreadsortlib/spreadsort.hpp1688
1 files changed, 1688 insertions, 0 deletions
diff --git a/src/system_wrappers/source/spreadsortlib/spreadsort.hpp b/src/system_wrappers/source/spreadsortlib/spreadsort.hpp
new file mode 100644
index 0000000000..2d1529aacd
--- /dev/null
+++ b/src/system_wrappers/source/spreadsortlib/spreadsort.hpp
@@ -0,0 +1,1688 @@
+//Templated spread_sort library
+
+// Copyright Steven J. Ross 2001 - 2009.
+// Distributed under the Boost Software License, Version 1.0.
+// (See accompanying file LICENSE_1_0.txt or copy at
+// http://www.boost.org/LICENSE_1_0.txt)
+
+// See http://www.boost.org/ for updates, documentation, and revision history.
+
+/*
+Some improvements suggested by:
+Phil Endecott and Frank Gennari
+Cygwin fix provided by:
+Scott McMurray
+*/
+
+#ifndef BOOST_SPREAD_SORT_H
+#define BOOST_SPREAD_SORT_H
+#include <algorithm>
+#include <vector>
+#include "constants.hpp"
+#include <cstring>
+
+namespace boost {
+ namespace detail {
+ //This only works on unsigned data types
+ template <typename T>
+ inline unsigned
+ rough_log_2_size(const T& input)
+ {
+ unsigned result = 0;
+ //The && is necessary on some compilers to avoid infinite loops; it doesn't significantly impair performance
+ while((input >> result) && (result < (8*sizeof(T)))) ++result;
+ return result;
+ }
+
+ //Gets the maximum size which we'll call spread_sort on to control worst-case performance
+ //Maintains both a minimum size to recurse and a check of distribution size versus count
+ //This is called for a set of bins, instead of bin-by-bin, to avoid performance overhead
+ inline size_t
+ get_max_count(unsigned log_range, size_t count)
+ {
+ unsigned divisor = rough_log_2_size(count);
+ //Making sure the divisor is positive
+ if(divisor > LOG_MEAN_BIN_SIZE)
+ divisor -= LOG_MEAN_BIN_SIZE;
+ else
+ divisor = 1;
+ unsigned relative_width = (LOG_CONST * log_range)/((divisor > MAX_SPLITS) ? MAX_SPLITS : divisor);
+ //Don't try to bitshift more than the size of an element
+ if((8*sizeof(size_t)) <= relative_width)
+ relative_width = (8*sizeof(size_t)) - 1;
+ return (size_t)1 << ((relative_width < (LOG_MEAN_BIN_SIZE + LOG_MIN_SPLIT_COUNT)) ?
+ (LOG_MEAN_BIN_SIZE + LOG_MIN_SPLIT_COUNT) : relative_width);
+ }
+
+ //Find the minimum and maximum using <
+ template <class RandomAccessIter>
+ inline void
+ find_extremes(RandomAccessIter current, RandomAccessIter last, RandomAccessIter & max, RandomAccessIter & min)
+ {
+ min = max = current;
+ //Start from the second item, as max and min are initialized to the first
+ while(++current < last) {
+ if(*max < *current)
+ max = current;
+ else if(*current < *min)
+ min = current;
+ }
+ }
+
+ //Uses a user-defined comparison operator to find minimum and maximum
+ template <class RandomAccessIter, class compare>
+ inline void
+ find_extremes(RandomAccessIter current, RandomAccessIter last, RandomAccessIter & max, RandomAccessIter & min, compare comp)
+ {
+ min = max = current;
+ while(++current < last) {
+ if(comp(*max, *current))
+ max = current;
+ else if(comp(*current, *min))
+ min = current;
+ }
+ }
+
+ //Gets a non-negative right bit shift to operate as a logarithmic divisor
+ inline int
+ get_log_divisor(size_t count, unsigned log_range)
+ {
+ int log_divisor;
+ //If we can finish in one iteration without exceeding either (2 to the MAX_SPLITS) or n bins, do so
+ if((log_divisor = log_range - rough_log_2_size(count)) <= 0 && log_range < MAX_SPLITS)
+ log_divisor = 0;
+ else {
+ //otherwise divide the data into an optimized number of pieces
+ log_divisor += LOG_MEAN_BIN_SIZE;
+ if(log_divisor < 0)
+ log_divisor = 0;
+ //Cannot exceed MAX_SPLITS or cache misses slow down bin lookups dramatically
+ if((log_range - log_divisor) > MAX_SPLITS)
+ log_divisor = log_range - MAX_SPLITS;
+ }
+ return log_divisor;
+ }
+
+ template <class RandomAccessIter>
+ inline RandomAccessIter *
+ size_bins(std::vector<size_t> &bin_sizes, std::vector<RandomAccessIter> &bin_cache, unsigned cache_offset, unsigned &cache_end, unsigned bin_count)
+ {
+ //Assure space for the size of each bin, followed by initializing sizes
+ if(bin_count > bin_sizes.size())
+ bin_sizes.resize(bin_count);
+ for(size_t u = 0; u < bin_count; u++)
+ bin_sizes[u] = 0;
+ //Make sure there is space for the bins
+ cache_end = cache_offset + bin_count;
+ if(cache_end > bin_cache.size())
+ bin_cache.resize(cache_end);
+ return &(bin_cache[cache_offset]);
+ }
+
+ //Implementation for recursive integer sorting
+ template <class RandomAccessIter, class div_type, class data_type>
+ inline void
+ spread_sort_rec(RandomAccessIter first, RandomAccessIter last, std::vector<RandomAccessIter> &bin_cache, unsigned cache_offset
+ , std::vector<size_t> &bin_sizes)
+ {
+ //This step is roughly 10% of runtime, but it helps avoid worst-case behavior and improve behavior with real data
+ //If you know the maximum and minimum ahead of time, you can pass those values in and skip this step for the first iteration
+ RandomAccessIter max, min;
+ find_extremes(first, last, max, min);
+ //max and min will be the same (the first item) iff all values are equivalent
+ if(max == min)
+ return;
+ RandomAccessIter * target_bin;
+ unsigned log_divisor = get_log_divisor(last - first, rough_log_2_size((size_t)(*max >> 0) - (*min >> 0)));
+ div_type div_min = *min >> log_divisor;
+ div_type div_max = *max >> log_divisor;
+ unsigned bin_count = div_max - div_min + 1;
+ unsigned cache_end;
+ RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset, cache_end, bin_count);
+
+ //Calculating the size of each bin; this takes roughly 10% of runtime
+ for (RandomAccessIter current = first; current != last;)
+ bin_sizes[(*(current++) >> log_divisor) - div_min]++;
+ //Assign the bin positions
+ bins[0] = first;
+ for(unsigned u = 0; u < bin_count - 1; u++)
+ bins[u + 1] = bins[u] + bin_sizes[u];
+
+ //Swap into place
+ //This dominates runtime, mostly in the swap and bin lookups
+ RandomAccessIter nextbinstart = first;
+ for(unsigned u = 0; u < bin_count - 1; ++u) {
+ RandomAccessIter * local_bin = bins + u;
+ nextbinstart += bin_sizes[u];
+ //Iterating over each element in this bin
+ for(RandomAccessIter current = *local_bin; current < nextbinstart; ++current) {
+ //Swapping elements in current into place until the correct element has been swapped in
+ for(target_bin = (bins + ((*current >> log_divisor) - div_min)); target_bin != local_bin;
+ target_bin = bins + ((*current >> log_divisor) - div_min)) {
+ //3-way swap; this is about 1% faster than a 2-way swap with integers
+ //The main advantage is less copies are involved per item put in the correct place
+ data_type tmp;
+ RandomAccessIter b = (*target_bin)++;
+ RandomAccessIter * b_bin = bins + ((*b >> log_divisor) - div_min);
+ if (b_bin != local_bin) {
+ RandomAccessIter c = (*b_bin)++;
+ tmp = *c;
+ *c = *b;
+ }
+ else
+ tmp = *b;
+ *b = *current;
+ *current = tmp;
+ }
+ }
+ *local_bin = nextbinstart;
+ }
+ bins[bin_count - 1] = last;
+
+ //If we've bucketsorted, the array is sorted and we should skip recursion
+ if(!log_divisor)
+ return;
+
+ //Recursing; log_divisor is the remaining range
+ size_t max_count = get_max_count(log_divisor, last - first);
+ RandomAccessIter lastPos = first;
+ for(unsigned u = cache_offset; u < cache_end; lastPos = bin_cache[u], ++u) {
+ size_t count = bin_cache[u] - lastPos;
+ //don't sort unless there are at least two items to compare
+ if(count < 2)
+ continue;
+ //using std::sort if its worst-case is better
+ if(count < max_count)
+ std::sort(lastPos, bin_cache[u]);
+ else
+ spread_sort_rec<RandomAccessIter, div_type, data_type>(lastPos, bin_cache[u], bin_cache, cache_end, bin_sizes);
+ }
+ }
+
+ //Generic bitshift-based 3-way swapping code
+ template <class RandomAccessIter, class div_type, class data_type, class right_shift>
+ inline void inner_swap_loop(RandomAccessIter * bins, const RandomAccessIter & nextbinstart, unsigned ii, right_shift &shift
+ , const unsigned log_divisor, const div_type div_min)
+ {
+ RandomAccessIter * local_bin = bins + ii;
+ for(RandomAccessIter current = *local_bin; current < nextbinstart; ++current) {
+ for(RandomAccessIter * target_bin = (bins + (shift(*current, log_divisor) - div_min)); target_bin != local_bin;
+ target_bin = bins + (shift(*current, log_divisor) - div_min)) {
+ data_type tmp;
+ RandomAccessIter b = (*target_bin)++;
+ RandomAccessIter * b_bin = bins + (shift(*b, log_divisor) - div_min);
+ //Three-way swap; if the item to be swapped doesn't belong in the current bin, swap it to where it belongs
+ if (b_bin != local_bin) {
+ RandomAccessIter c = (*b_bin)++;
+ tmp = *c;
+ *c = *b;
+ }
+ //Note: we could increment current once the swap is done in this case, but that seems to impair performance
+ else
+ tmp = *b;
+ *b = *current;
+ *current = tmp;
+ }
+ }
+ *local_bin = nextbinstart;
+ }
+
+ //Standard swapping wrapper for ascending values
+ template <class RandomAccessIter, class div_type, class data_type, class right_shift>
+ inline void swap_loop(RandomAccessIter * bins, RandomAccessIter & nextbinstart, unsigned ii, right_shift &shift
+ , const std::vector<size_t> &bin_sizes, const unsigned log_divisor, const div_type div_min)
+ {
+ nextbinstart += bin_sizes[ii];
+ inner_swap_loop<RandomAccessIter, div_type, data_type, right_shift>(bins, nextbinstart, ii, shift, log_divisor, div_min);
+ }
+
+ //Functor implementation for recursive sorting
+ template <class RandomAccessIter, class div_type, class data_type, class right_shift, class compare>
+ inline void
+ spread_sort_rec(RandomAccessIter first, RandomAccessIter last, std::vector<RandomAccessIter> &bin_cache, unsigned cache_offset
+ , std::vector<size_t> &bin_sizes, right_shift shift, compare comp)
+ {
+ RandomAccessIter max, min;
+ find_extremes(first, last, max, min, comp);
+ if(max == min)
+ return;
+ unsigned log_divisor = get_log_divisor(last - first, rough_log_2_size((size_t)(shift(*max, 0)) - (shift(*min, 0))));
+ div_type div_min = shift(*min, log_divisor);
+ div_type div_max = shift(*max, log_divisor);
+ unsigned bin_count = div_max - div_min + 1;
+ unsigned cache_end;
+ RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset, cache_end, bin_count);
+
+ //Calculating the size of each bin
+ for (RandomAccessIter current = first; current != last;)
+ bin_sizes[shift(*(current++), log_divisor) - div_min]++;
+ bins[0] = first;
+ for(unsigned u = 0; u < bin_count - 1; u++)
+ bins[u + 1] = bins[u] + bin_sizes[u];
+
+ //Swap into place
+ RandomAccessIter nextbinstart = first;
+ for(unsigned u = 0; u < bin_count - 1; ++u)
+ swap_loop<RandomAccessIter, div_type, data_type, right_shift>(bins, nextbinstart, u, shift, bin_sizes, log_divisor, div_min);
+ bins[bin_count - 1] = last;
+
+ //If we've bucketsorted, the array is sorted and we should skip recursion
+ if(!log_divisor)
+ return;
+
+ //Recursing
+ size_t max_count = get_max_count(log_divisor, last - first);
+ RandomAccessIter lastPos = first;
+ for(unsigned u = cache_offset; u < cache_end; lastPos = bin_cache[u], ++u) {
+ size_t count = bin_cache[u] - lastPos;
+ if(count < 2)
+ continue;
+ if(count < max_count)
+ std::sort(lastPos, bin_cache[u], comp);
+ else
+ spread_sort_rec<RandomAccessIter, div_type, data_type, right_shift, compare>(lastPos, bin_cache[u], bin_cache, cache_end, bin_sizes, shift, comp);
+ }
+ }
+
+ //Functor implementation for recursive sorting with only Shift overridden
+ template <class RandomAccessIter, class div_type, class data_type, class right_shift>
+ inline void
+ spread_sort_rec(RandomAccessIter first, RandomAccessIter last, std::vector<RandomAccessIter> &bin_cache, unsigned cache_offset
+ , std::vector<size_t> &bin_sizes, right_shift shift)
+ {
+ RandomAccessIter max, min;
+ find_extremes(first, last, max, min);
+ if(max == min)
+ return;
+ unsigned log_divisor = get_log_divisor(last - first, rough_log_2_size((size_t)(shift(*max, 0)) - (shift(*min, 0))));
+ div_type div_min = shift(*min, log_divisor);
+ div_type div_max = shift(*max, log_divisor);
+ unsigned bin_count = div_max - div_min + 1;
+ unsigned cache_end;
+ RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset, cache_end, bin_count);
+
+ //Calculating the size of each bin
+ for (RandomAccessIter current = first; current != last;)
+ bin_sizes[shift(*(current++), log_divisor) - div_min]++;
+ bins[0] = first;
+ for(unsigned u = 0; u < bin_count - 1; u++)
+ bins[u + 1] = bins[u] + bin_sizes[u];
+
+ //Swap into place
+ RandomAccessIter nextbinstart = first;
+ for(unsigned ii = 0; ii < bin_count - 1; ++ii)
+ swap_loop<RandomAccessIter, div_type, data_type, right_shift>(bins, nextbinstart, ii, shift, bin_sizes, log_divisor, div_min);
+ bins[bin_count - 1] = last;
+
+ //If we've bucketsorted, the array is sorted and we should skip recursion
+ if(!log_divisor)
+ return;
+
+ //Recursing
+ size_t max_count = get_max_count(log_divisor, last - first);
+ RandomAccessIter lastPos = first;
+ for(unsigned u = cache_offset; u < cache_end; lastPos = bin_cache[u], ++u) {
+ size_t count = bin_cache[u] - lastPos;
+ if(count < 2)
+ continue;
+ if(count < max_count)
+ std::sort(lastPos, bin_cache[u]);
+ else
+ spread_sort_rec<RandomAccessIter, div_type, data_type, right_shift>(lastPos, bin_cache[u], bin_cache, cache_end, bin_sizes, shift);
+ }
+ }
+
+ //Holds the bin vector and makes the initial recursive call
+ template <class RandomAccessIter, class div_type, class data_type>
+ inline void
+ spread_sort(RandomAccessIter first, RandomAccessIter last, div_type, data_type)
+ {
+ std::vector<size_t> bin_sizes;
+ std::vector<RandomAccessIter> bin_cache;
+ spread_sort_rec<RandomAccessIter, div_type, data_type>(first, last, bin_cache, 0, bin_sizes);
+ }
+
+ template <class RandomAccessIter, class div_type, class data_type, class right_shift, class compare>
+ inline void
+ spread_sort(RandomAccessIter first, RandomAccessIter last, div_type, data_type, right_shift shift, compare comp)
+ {
+ std::vector<size_t> bin_sizes;
+ std::vector<RandomAccessIter> bin_cache;
+ spread_sort_rec<RandomAccessIter, div_type, data_type, right_shift, compare>(first, last, bin_cache, 0, bin_sizes, shift, comp);
+ }
+
+ template <class RandomAccessIter, class div_type, class data_type, class right_shift>
+ inline void
+ spread_sort(RandomAccessIter first, RandomAccessIter last, div_type, data_type, right_shift shift)
+ {
+ std::vector<size_t> bin_sizes;
+ std::vector<RandomAccessIter> bin_cache;
+ spread_sort_rec<RandomAccessIter, div_type, data_type, right_shift>(first, last, bin_cache, 0, bin_sizes, shift);
+ }
+ }
+
+ //Top-level sorting call for integers
+ template <class RandomAccessIter>
+ inline void integer_sort(RandomAccessIter first, RandomAccessIter last)
+ {
+ //Don't sort if it's too small to optimize
+ if(last - first < detail::MIN_SORT_SIZE)
+ std::sort(first, last);
+ else
+ detail::spread_sort(first, last, *first >> 0, *first);
+ }
+
+ //integer_sort with functors
+ template <class RandomAccessIter, class right_shift, class compare>
+ inline void integer_sort(RandomAccessIter first, RandomAccessIter last,
+ right_shift shift, compare comp) {
+ if(last - first < detail::MIN_SORT_SIZE)
+ std::sort(first, last, comp);
+ else
+ detail::spread_sort(first, last, shift(*first, 0), *first, shift, comp);
+ }
+
+ //integer_sort with right_shift functor
+ template <class RandomAccessIter, class right_shift>
+ inline void integer_sort(RandomAccessIter first, RandomAccessIter last,
+ right_shift shift) {
+ if(last - first < detail::MIN_SORT_SIZE)
+ std::sort(first, last);
+ else
+ detail::spread_sort(first, last, shift(*first, 0), *first, shift);
+ }
+
+ //------------------------------------------------------ float_sort source --------------------------------------
+ //Casts a RandomAccessIter to the specified data type
+ template<class cast_type, class RandomAccessIter>
+ inline cast_type
+ cast_float_iter(const RandomAccessIter & floatiter)
+ {
+ cast_type result;
+ std::memcpy(&result, &(*floatiter), sizeof(cast_type));
+ return result;
+ }
+
+ //Casts a data element to the specified datinner_float_a type
+ template<class data_type, class cast_type>
+ inline cast_type
+ mem_cast(const data_type & data)
+ {
+ cast_type result;
+ std::memcpy(&result, &data, sizeof(cast_type));
+ return result;
+ }
+
+ namespace detail {
+ template <class RandomAccessIter, class div_type, class right_shift>
+ inline void
+ find_extremes(RandomAccessIter current, RandomAccessIter last, div_type & max, div_type & min, right_shift shift)
+ {
+ min = max = shift(*current, 0);
+ while(++current < last) {
+ div_type value = shift(*current, 0);
+ if(max < value)
+ max = value;
+ else if(value < min)
+ min = value;
+ }
+ }
+
+ //Specialized swap loops for floating-point casting
+ template <class RandomAccessIter, class div_type, class data_type>
+ inline void inner_float_swap_loop(RandomAccessIter * bins, const RandomAccessIter & nextbinstart, unsigned ii
+ , const unsigned log_divisor, const div_type div_min)
+ {
+ RandomAccessIter * local_bin = bins + ii;
+ for(RandomAccessIter current = *local_bin; current < nextbinstart; ++current) {
+ for(RandomAccessIter * target_bin = (bins + ((cast_float_iter<div_type, RandomAccessIter>(current) >> log_divisor) - div_min)); target_bin != local_bin;
+ target_bin = bins + ((cast_float_iter<div_type, RandomAccessIter>(current) >> log_divisor) - div_min)) {
+ data_type tmp;
+ RandomAccessIter b = (*target_bin)++;
+ RandomAccessIter * b_bin = bins + ((cast_float_iter<div_type, RandomAccessIter>(b) >> log_divisor) - div_min);
+ //Three-way swap; if the item to be swapped doesn't belong in the current bin, swap it to where it belongs
+ if (b_bin != local_bin) {
+ RandomAccessIter c = (*b_bin)++;
+ tmp = *c;
+ *c = *b;
+ }
+ else
+ tmp = *b;
+ *b = *current;
+ *current = tmp;
+ }
+ }
+ *local_bin = nextbinstart;
+ }
+
+ template <class RandomAccessIter, class div_type, class data_type>
+ inline void float_swap_loop(RandomAccessIter * bins, RandomAccessIter & nextbinstart, unsigned ii
+ , const std::vector<size_t> &bin_sizes, const unsigned log_divisor, const div_type div_min)
+ {
+ nextbinstart += bin_sizes[ii];
+ inner_float_swap_loop<RandomAccessIter, div_type, data_type>(bins, nextbinstart, ii, log_divisor, div_min);
+ }
+
+ template <class RandomAccessIter, class cast_type>
+ inline void
+ find_extremes(RandomAccessIter current, RandomAccessIter last, cast_type & max, cast_type & min)
+ {
+ min = max = cast_float_iter<cast_type, RandomAccessIter>(current);
+ while(++current < last) {
+ cast_type value = cast_float_iter<cast_type, RandomAccessIter>(current);
+ if(max < value)
+ max = value;
+ else if(value < min)
+ min = value;
+ }
+ }
+
+ //Special-case sorting of positive floats with casting instead of a right_shift
+ template <class RandomAccessIter, class div_type, class data_type>
+ inline void
+ positive_float_sort_rec(RandomAccessIter first, RandomAccessIter last, std::vector<RandomAccessIter> &bin_cache, unsigned cache_offset
+ , std::vector<size_t> &bin_sizes)
+ {
+ div_type max, min;
+ find_extremes(first, last, max, min);
+ if(max == min)
+ return;
+ unsigned log_divisor = get_log_divisor(last - first, rough_log_2_size((size_t)(max) - min));
+ div_type div_min = min >> log_divisor;
+ div_type div_max = max >> log_divisor;
+ unsigned bin_count = div_max - div_min + 1;
+ unsigned cache_end;
+ RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset, cache_end, bin_count);
+
+ //Calculating the size of each bin
+ for (RandomAccessIter current = first; current != last;)
+ bin_sizes[(cast_float_iter<div_type, RandomAccessIter>(current++) >> log_divisor) - div_min]++;
+ bins[0] = first;
+ for(unsigned u = 0; u < bin_count - 1; u++)
+ bins[u + 1] = bins[u] + bin_sizes[u];
+
+ //Swap into place
+ RandomAccessIter nextbinstart = first;
+ for(unsigned u = 0; u < bin_count - 1; ++u)
+ float_swap_loop<RandomAccessIter, div_type, data_type>(bins, nextbinstart, u, bin_sizes, log_divisor, div_min);
+ bins[bin_count - 1] = last;
+
+ //Return if we've completed bucketsorting
+ if(!log_divisor)
+ return;
+
+ //Recursing
+ size_t max_count = get_max_count(log_divisor, last - first);
+ RandomAccessIter lastPos = first;
+ for(unsigned u = cache_offset; u < cache_end; lastPos = bin_cache[u], ++u) {
+ size_t count = bin_cache[u] - lastPos;
+ if(count < 2)
+ continue;
+ if(count < max_count)
+ std::sort(lastPos, bin_cache[u]);
+ else
+ positive_float_sort_rec<RandomAccessIter, div_type, data_type>(lastPos, bin_cache[u], bin_cache, cache_end, bin_sizes);
+ }
+ }
+
+ //Sorting negative_ float_s
+ //Note that bins are iterated in reverse order because max_neg_float = min_neg_int
+ template <class RandomAccessIter, class div_type, class data_type>
+ inline void
+ negative_float_sort_rec(RandomAccessIter first, RandomAccessIter last, std::vector<RandomAccessIter> &bin_cache, unsigned cache_offset
+ , std::vector<size_t> &bin_sizes)
+ {
+ div_type max, min;
+ find_extremes(first, last, max, min);
+ if(max == min)
+ return;
+ unsigned log_divisor = get_log_divisor(last - first, rough_log_2_size((size_t)(max) - min));
+ div_type div_min = min >> log_divisor;
+ div_type div_max = max >> log_divisor;
+ unsigned bin_count = div_max - div_min + 1;
+ unsigned cache_end;
+ RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset, cache_end, bin_count);
+
+ //Calculating the size of each bin
+ for (RandomAccessIter current = first; current != last;)
+ bin_sizes[(cast_float_iter<div_type, RandomAccessIter>(current++) >> log_divisor) - div_min]++;
+ bins[bin_count - 1] = first;
+ for(int ii = bin_count - 2; ii >= 0; --ii)
+ bins[ii] = bins[ii + 1] + bin_sizes[ii + 1];
+
+ //Swap into place
+ RandomAccessIter nextbinstart = first;
+ //The last bin will always have the correct elements in it
+ for(int ii = bin_count - 1; ii > 0; --ii)
+ float_swap_loop<RandomAccessIter, div_type, data_type>(bins, nextbinstart, ii, bin_sizes, log_divisor, div_min);
+ //Since we don't process the last bin, we need to update its end position
+ bin_cache[cache_offset] = last;
+
+ //Return if we've completed bucketsorting
+ if(!log_divisor)
+ return;
+
+ //Recursing
+ size_t max_count = get_max_count(log_divisor, last - first);
+ RandomAccessIter lastPos = first;
+ for(int ii = cache_end - 1; ii >= (int)cache_offset; lastPos = bin_cache[ii], --ii) {
+ size_t count = bin_cache[ii] - lastPos;
+ if(count < 2)
+ continue;
+ if(count < max_count)
+ std::sort(lastPos, bin_cache[ii]);
+ else
+ negative_float_sort_rec<RandomAccessIter, div_type, data_type>(lastPos, bin_cache[ii], bin_cache, cache_end, bin_sizes);
+ }
+ }
+
+ //Sorting negative_ float_s
+ //Note that bins are iterated in reverse order because max_neg_float = min_neg_int
+ template <class RandomAccessIter, class div_type, class data_type, class right_shift>
+ inline void
+ negative_float_sort_rec(RandomAccessIter first, RandomAccessIter last, std::vector<RandomAccessIter> &bin_cache, unsigned cache_offset
+ , std::vector<size_t> &bin_sizes, right_shift shift)
+ {
+ div_type max, min;
+ find_extremes(first, last, max, min, shift);
+ if(max == min)
+ return;
+ unsigned log_divisor = get_log_divisor(last - first, rough_log_2_size((size_t)(max) - min));
+ div_type div_min = min >> log_divisor;
+ div_type div_max = max >> log_divisor;
+ unsigned bin_count = div_max - div_min + 1;
+ unsigned cache_end;
+ RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset, cache_end, bin_count);
+
+ //Calculating the size of each bin
+ for (RandomAccessIter current = first; current != last;)
+ bin_sizes[shift(*(current++), log_divisor) - div_min]++;
+ bins[bin_count - 1] = first;
+ for(int ii = bin_count - 2; ii >= 0; --ii)
+ bins[ii] = bins[ii + 1] + bin_sizes[ii + 1];
+
+ //Swap into place
+ RandomAccessIter nextbinstart = first;
+ //The last bin will always have the correct elements in it
+ for(int ii = bin_count - 1; ii > 0; --ii)
+ swap_loop<RandomAccessIter, div_type, data_type, right_shift>(bins, nextbinstart, ii, shift, bin_sizes, log_divisor, div_min);
+ //Since we don't process the last bin, we need to update its end position
+ bin_cache[cache_offset] = last;
+
+ //Return if we've completed bucketsorting
+ if(!log_divisor)
+ return;
+
+ //Recursing
+ size_t max_count = get_max_count(log_divisor, last - first);
+ RandomAccessIter lastPos = first;
+ for(int ii = cache_end - 1; ii >= (int)cache_offset; lastPos = bin_cache[ii], --ii) {
+ size_t count = bin_cache[ii] - lastPos;
+ if(count < 2)
+ continue;
+ if(count < max_count)
+ std::sort(lastPos, bin_cache[ii]);
+ else
+ negative_float_sort_rec<RandomAccessIter, div_type, data_type, right_shift>(lastPos, bin_cache[ii], bin_cache, cache_end, bin_sizes, shift);
+ }
+ }
+
+ template <class RandomAccessIter, class div_type, class data_type, class right_shift, class compare>
+ inline void
+ negative_float_sort_rec(RandomAccessIter first, RandomAccessIter last, std::vector<RandomAccessIter> &bin_cache, unsigned cache_offset
+ , std::vector<size_t> &bin_sizes, right_shift shift, compare comp)
+ {
+ div_type max, min;
+ find_extremes(first, last, max, min, shift);
+ if(max == min)
+ return;
+ unsigned log_divisor = get_log_divisor(last - first, rough_log_2_size((size_t)(max) - min));
+ div_type div_min = min >> log_divisor;
+ div_type div_max = max >> log_divisor;
+ unsigned bin_count = div_max - div_min + 1;
+ unsigned cache_end;
+ RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset, cache_end, bin_count);
+
+ //Calculating the size of each bin
+ for (RandomAccessIter current = first; current != last;)
+ bin_sizes[shift(*(current++), log_divisor) - div_min]++;
+ bins[bin_count - 1] = first;
+ for(int ii = bin_count - 2; ii >= 0; --ii)
+ bins[ii] = bins[ii + 1] + bin_sizes[ii + 1];
+
+ //Swap into place
+ RandomAccessIter nextbinstart = first;
+ //The last bin will always have the correct elements in it
+ for(int ii = bin_count - 1; ii > 0; --ii)
+ swap_loop<RandomAccessIter, div_type, data_type, right_shift>(bins, nextbinstart, ii, shift, bin_sizes, log_divisor, div_min);
+ //Since we don't process the last bin, we need to update its end position
+ bin_cache[cache_offset] = last;
+
+ //Return if we've completed bucketsorting
+ if(!log_divisor)
+ return;
+
+ //Recursing
+ size_t max_count = get_max_count(log_divisor, last - first);
+ RandomAccessIter lastPos = first;
+ for(int ii = cache_end - 1; ii >= (int)cache_offset; lastPos = bin_cache[ii], --ii) {
+ size_t count = bin_cache[ii] - lastPos;
+ if(count < 2)
+ continue;
+ if(count < max_count)
+ std::sort(lastPos, bin_cache[ii], comp);
+ else
+ negative_float_sort_rec<RandomAccessIter, div_type, data_type, right_shift, compare>(lastPos, bin_cache[ii], bin_cache, cache_end, bin_sizes, shift, comp);
+ }
+ }
+
+ //Casting special-case for floating-point sorting
+ template <class RandomAccessIter, class div_type, class data_type>
+ inline void
+ float_sort_rec(RandomAccessIter first, RandomAccessIter last, std::vector<RandomAccessIter> &bin_cache, unsigned cache_offset
+ , std::vector<size_t> &bin_sizes)
+ {
+ div_type max, min;
+ find_extremes(first, last, max, min);
+ if(max == min)
+ return;
+ unsigned log_divisor = get_log_divisor(last - first, rough_log_2_size((size_t)(max) - min));
+ div_type div_min = min >> log_divisor;
+ div_type div_max = max >> log_divisor;
+ unsigned bin_count = div_max - div_min + 1;
+ unsigned cache_end;
+ RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset, cache_end, bin_count);
+
+ //Calculating the size of each bin
+ for (RandomAccessIter current = first; current != last;)
+ bin_sizes[(cast_float_iter<div_type, RandomAccessIter>(current++) >> log_divisor) - div_min]++;
+ //The index of the first positive bin
+ div_type first_positive = (div_min < 0) ? -div_min : 0;
+ //Resetting if all bins are negative
+ if(cache_offset + first_positive > cache_end)
+ first_positive = cache_end - cache_offset;
+ //Reversing the order of the negative bins
+ //Note that because of the negative/positive ordering direction flip
+ //We can not depend upon bin order and positions matching up
+ //so bin_sizes must be reused to contain the end of the bin
+ if(first_positive > 0) {
+ bins[first_positive - 1] = first;
+ for(int ii = first_positive - 2; ii >= 0; --ii) {
+ bins[ii] = first + bin_sizes[ii + 1];
+ bin_sizes[ii] += bin_sizes[ii + 1];
+ }
+ //Handling positives following negatives
+ if((unsigned)first_positive < bin_count) {
+ bins[first_positive] = first + bin_sizes[0];
+ bin_sizes[first_positive] += bin_sizes[0];
+ }
+ }
+ else
+ bins[0] = first;
+ for(unsigned u = first_positive; u < bin_count - 1; u++) {
+ bins[u + 1] = first + bin_sizes[u];
+ bin_sizes[u + 1] += bin_sizes[u];
+ }
+
+ //Swap into place
+ RandomAccessIter nextbinstart = first;
+ for(unsigned u = 0; u < bin_count; ++u) {
+ nextbinstart = first + bin_sizes[u];
+ inner_float_swap_loop<RandomAccessIter, div_type, data_type>(bins, nextbinstart, u, log_divisor, div_min);
+ }
+
+ if(!log_divisor)
+ return;
+
+ //Handling negative values first
+ size_t max_count = get_max_count(log_divisor, last - first);
+ RandomAccessIter lastPos = first;
+ for(int ii = cache_offset + first_positive - 1; ii >= (int)cache_offset ; lastPos = bin_cache[ii--]) {
+ size_t count = bin_cache[ii] - lastPos;
+ if(count < 2)
+ continue;
+ if(count < max_count)
+ std::sort(lastPos, bin_cache[ii]);
+ //sort negative values using reversed-bin spread_sort
+ else
+ negative_float_sort_rec<RandomAccessIter, div_type, data_type>(lastPos, bin_cache[ii], bin_cache, cache_end, bin_sizes);
+ }
+
+ for(unsigned u = cache_offset + first_positive; u < cache_end; lastPos = bin_cache[u], ++u) {
+ size_t count = bin_cache[u] - lastPos;
+ if(count < 2)
+ continue;
+ if(count < max_count)
+ std::sort(lastPos, bin_cache[u]);
+ //sort positive values using normal spread_sort
+ else
+ positive_float_sort_rec<RandomAccessIter, div_type, data_type>(lastPos, bin_cache[u], bin_cache, cache_end, bin_sizes);
+ }
+ }
+
+ //Functor implementation for recursive sorting
+ template <class RandomAccessIter, class div_type, class data_type, class right_shift>
+ inline void
+ float_sort_rec(RandomAccessIter first, RandomAccessIter last, std::vector<RandomAccessIter> &bin_cache, unsigned cache_offset
+ , std::vector<size_t> &bin_sizes, right_shift shift)
+ {
+ div_type max, min;
+ find_extremes(first, last, max, min, shift);
+ if(max == min)
+ return;
+ unsigned log_divisor = get_log_divisor(last - first, rough_log_2_size((size_t)(max) - min));
+ div_type div_min = min >> log_divisor;
+ div_type div_max = max >> log_divisor;
+ unsigned bin_count = div_max - div_min + 1;
+ unsigned cache_end;
+ RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset, cache_end, bin_count);
+
+ //Calculating the size of each bin
+ for (RandomAccessIter current = first; current != last;)
+ bin_sizes[shift(*(current++), log_divisor) - div_min]++;
+ //The index of the first positive bin
+ div_type first_positive = (div_min < 0) ? -div_min : 0;
+ //Resetting if all bins are negative
+ if(cache_offset + first_positive > cache_end)
+ first_positive = cache_end - cache_offset;
+ //Reversing the order of the negative bins
+ //Note that because of the negative/positive ordering direction flip
+ //We can not depend upon bin order and positions matching up
+ //so bin_sizes must be reused to contain the end of the bin
+ if(first_positive > 0) {
+ bins[first_positive - 1] = first;
+ for(int ii = first_positive - 2; ii >= 0; --ii) {
+ bins[ii] = first + bin_sizes[ii + 1];
+ bin_sizes[ii] += bin_sizes[ii + 1];
+ }
+ //Handling positives following negatives
+ if((unsigned)first_positive < bin_count) {
+ bins[first_positive] = first + bin_sizes[0];
+ bin_sizes[first_positive] += bin_sizes[0];
+ }
+ }
+ else
+ bins[0] = first;
+ for(unsigned u = first_positive; u < bin_count - 1; u++) {
+ bins[u + 1] = first + bin_sizes[u];
+ bin_sizes[u + 1] += bin_sizes[u];
+ }
+
+ //Swap into place
+ RandomAccessIter nextbinstart = first;
+ for(unsigned u = 0; u < bin_count; ++u) {
+ nextbinstart = first + bin_sizes[u];
+ inner_swap_loop<RandomAccessIter, div_type, data_type, right_shift>(bins, nextbinstart, u, shift, log_divisor, div_min);
+ }
+
+ //Return if we've completed bucketsorting
+ if(!log_divisor)
+ return;
+
+ //Handling negative values first
+ size_t max_count = get_max_count(log_divisor, last - first);
+ RandomAccessIter lastPos = first;
+ for(int ii = cache_offset + first_positive - 1; ii >= (int)cache_offset ; lastPos = bin_cache[ii--]) {
+ size_t count = bin_cache[ii] - lastPos;
+ if(count < 2)
+ continue;
+ if(count < max_count)
+ std::sort(lastPos, bin_cache[ii]);
+ //sort negative values using reversed-bin spread_sort
+ else
+ negative_float_sort_rec<RandomAccessIter, div_type, data_type, right_shift>(lastPos, bin_cache[ii], bin_cache, cache_end, bin_sizes, shift);
+ }
+
+ for(unsigned u = cache_offset + first_positive; u < cache_end; lastPos = bin_cache[u], ++u) {
+ size_t count = bin_cache[u] - lastPos;
+ if(count < 2)
+ continue;
+ if(count < max_count)
+ std::sort(lastPos, bin_cache[u]);
+ //sort positive values using normal spread_sort
+ else
+ spread_sort_rec<RandomAccessIter, div_type, data_type, right_shift>(lastPos, bin_cache[u], bin_cache, cache_end, bin_sizes, shift);
+ }
+ }
+
+ template <class RandomAccessIter, class div_type, class data_type, class right_shift, class compare>
+ inline void
+ float_sort_rec(RandomAccessIter first, RandomAccessIter last, std::vector<RandomAccessIter> &bin_cache, unsigned cache_offset
+ , std::vector<size_t> &bin_sizes, right_shift shift, compare comp)
+ {
+ div_type max, min;
+ find_extremes(first, last, max, min, shift);
+ if(max == min)
+ return;
+ unsigned log_divisor = get_log_divisor(last - first, rough_log_2_size((size_t)(max) - min));
+ div_type div_min = min >> log_divisor;
+ div_type div_max = max >> log_divisor;
+ unsigned bin_count = div_max - div_min + 1;
+ unsigned cache_end;
+ RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset, cache_end, bin_count);
+
+ //Calculating the size of each bin
+ for (RandomAccessIter current = first; current != last;)
+ bin_sizes[shift(*(current++), log_divisor) - div_min]++;
+ //The index of the first positive bin
+ div_type first_positive = (div_min < 0) ? -div_min : 0;
+ //Resetting if all bins are negative
+ if(cache_offset + first_positive > cache_end)
+ first_positive = cache_end - cache_offset;
+ //Reversing the order of the negative bins
+ //Note that because of the negative/positive ordering direction flip
+ //We can not depend upon bin order and positions matching up
+ //so bin_sizes must be reused to contain the end of the bin
+ if(first_positive > 0) {
+ bins[first_positive - 1] = first;
+ for(int ii = first_positive - 2; ii >= 0; --ii) {
+ bins[ii] = first + bin_sizes[ii + 1];
+ bin_sizes[ii] += bin_sizes[ii + 1];
+ }
+ //Handling positives following negatives
+ if((unsigned)first_positive < bin_count) {
+ bins[first_positive] = first + bin_sizes[0];
+ bin_sizes[first_positive] += bin_sizes[0];
+ }
+ }
+ else
+ bins[0] = first;
+ for(unsigned u = first_positive; u < bin_count - 1; u++) {
+ bins[u + 1] = first + bin_sizes[u];
+ bin_sizes[u + 1] += bin_sizes[u];
+ }
+
+ //Swap into place
+ RandomAccessIter nextbinstart = first;
+ for(unsigned u = 0; u < bin_count; ++u) {
+ nextbinstart = first + bin_sizes[u];
+ inner_swap_loop<RandomAccessIter, div_type, data_type, right_shift>(bins, nextbinstart, u, shift, log_divisor, div_min);
+ }
+
+ //Return if we've completed bucketsorting
+ if(!log_divisor)
+ return;
+
+ //Handling negative values first
+ size_t max_count = get_max_count(log_divisor, last - first);
+ RandomAccessIter lastPos = first;
+ for(int ii = cache_offset + first_positive - 1; ii >= (int)cache_offset ; lastPos = bin_cache[ii--]) {
+ size_t count = bin_cache[ii] - lastPos;
+ if(count < 2)
+ continue;
+ if(count < max_count)
+ std::sort(lastPos, bin_cache[ii]);
+ //sort negative values using reversed-bin spread_sort
+ else
+ negative_float_sort_rec<RandomAccessIter, div_type, data_type, right_shift>(lastPos, bin_cache[ii], bin_cache, cache_end, bin_sizes, shift, comp);
+ }
+
+ for(unsigned u = cache_offset + first_positive; u < cache_end; lastPos = bin_cache[u], ++u) {
+ size_t count = bin_cache[u] - lastPos;
+ if(count < 2)
+ continue;
+ if(count < max_count)
+ std::sort(lastPos, bin_cache[u]);
+ //sort positive values using normal spread_sort
+ else
+ spread_sort_rec<RandomAccessIter, div_type, data_type, right_shift>(lastPos, bin_cache[u], bin_cache, cache_end, bin_sizes, shift, comp);
+ }
+ }
+
+ template <class RandomAccessIter, class cast_type, class data_type>
+ inline void
+ float_Sort(RandomAccessIter first, RandomAccessIter last, cast_type, data_type)
+ {
+ std::vector<size_t> bin_sizes;
+ std::vector<RandomAccessIter> bin_cache;
+ float_sort_rec<RandomAccessIter, cast_type, data_type>(first, last, bin_cache, 0, bin_sizes);
+ }
+
+ template <class RandomAccessIter, class div_type, class data_type, class right_shift>
+ inline void
+ float_Sort(RandomAccessIter first, RandomAccessIter last, div_type, data_type, right_shift shift)
+ {
+ std::vector<size_t> bin_sizes;
+ std::vector<RandomAccessIter> bin_cache;
+ float_sort_rec<RandomAccessIter, div_type, data_type, right_shift>(first, last, bin_cache, 0, bin_sizes, shift);
+ }
+
+ template <class RandomAccessIter, class div_type, class data_type, class right_shift, class compare>
+ inline void
+ float_Sort(RandomAccessIter first, RandomAccessIter last, div_type, data_type, right_shift shift, compare comp)
+ {
+ std::vector<size_t> bin_sizes;
+ std::vector<RandomAccessIter> bin_cache;
+ float_sort_rec<RandomAccessIter, div_type, data_type, right_shift>(first, last, bin_cache, 0, bin_sizes, shift, comp);
+ }
+ }
+
+ //float_sort with casting
+ //The cast_type must be equal in size to the data type, and must be a signed integer
+ template <class RandomAccessIter, class cast_type>
+ inline void float_sort_cast(RandomAccessIter first, RandomAccessIter last, cast_type cVal)
+ {
+ if(last - first < detail::MIN_SORT_SIZE)
+ std::sort(first, last);
+ else
+ detail::float_Sort(first, last, cVal, *first);
+ }
+
+ //float_sort with casting to an int
+ //Only use this with IEEE floating-point numbers
+ template <class RandomAccessIter>
+ inline void float_sort_cast_to_int(RandomAccessIter first, RandomAccessIter last)
+ {
+ int cVal = 0;
+ float_sort_cast(first, last, cVal);
+ }
+
+ //float_sort with functors
+ template <class RandomAccessIter, class right_shift>
+ inline void float_sort(RandomAccessIter first, RandomAccessIter last, right_shift shift)
+ {
+ if(last - first < detail::MIN_SORT_SIZE)
+ std::sort(first, last);
+ else
+ detail::float_Sort(first, last, shift(*first, 0), *first, shift);
+ }
+
+ template <class RandomAccessIter, class right_shift, class compare>
+ inline void float_sort(RandomAccessIter first, RandomAccessIter last, right_shift shift, compare comp)
+ {
+ if(last - first < detail::MIN_SORT_SIZE)
+ std::sort(first, last, comp);
+ else
+ detail::float_Sort(first, last, shift(*first, 0), *first, shift, comp);
+ }
+
+ //------------------------------------------------- string_sort source ---------------------------------------------
+ namespace detail {
+ //Offsetting on identical characters. This function works a character at a time for optimal worst-case performance.
+ template<class RandomAccessIter>
+ inline void
+ update_offset(RandomAccessIter first, RandomAccessIter finish, unsigned &char_offset)
+ {
+ unsigned nextOffset = char_offset;
+ bool done = false;
+ while(!done) {
+ RandomAccessIter curr = first;
+ do {
+ //ignore empties, but if the nextOffset would exceed the length or not match, exit; we've found the last matching character
+ if((*curr).size() > char_offset && ((*curr).size() <= (nextOffset + 1) || (*curr)[nextOffset] != (*first)[nextOffset])) {
+ done = true;
+ break;
+ }
+ } while(++curr != finish);
+ if(!done)
+ ++nextOffset;
+ }
+ char_offset = nextOffset;
+ }
+
+ //Offsetting on identical characters. This function works a character at a time for optimal worst-case performance.
+ template<class RandomAccessIter, class get_char, class get_length>
+ inline void
+ update_offset(RandomAccessIter first, RandomAccessIter finish, unsigned &char_offset, get_char getchar, get_length length)
+ {
+ unsigned nextOffset = char_offset;
+ bool done = false;
+ while(!done) {
+ RandomAccessIter curr = first;
+ do {
+ //ignore empties, but if the nextOffset would exceed the length or not match, exit; we've found the last matching character
+ if(length(*curr) > char_offset && (length(*curr) <= (nextOffset + 1) || getchar((*curr), nextOffset) != getchar((*first), nextOffset))) {
+ done = true;
+ break;
+ }
+ } while(++curr != finish);
+ if(!done)
+ ++nextOffset;
+ }
+ char_offset = nextOffset;
+ }
+
+ //A comparison functor for strings that assumes they are identical up to char_offset
+ template<class data_type, class unsignedchar_type>
+ struct offset_lessthan {
+ offset_lessthan(unsigned char_offset) : fchar_offset(char_offset){}
+ inline bool operator()(const data_type &x, const data_type &y) const
+ {
+ unsigned minSize = std::min(x.size(), y.size());
+ for(unsigned u = fchar_offset; u < minSize; ++u) {
+ if(static_cast<unsignedchar_type>(x[u]) < static_cast<unsignedchar_type>(y[u]))
+ return true;
+ else if(static_cast<unsignedchar_type>(y[u]) < static_cast<unsignedchar_type>(x[u]))
+ return false;
+ }
+ return x.size() < y.size();
+ }
+ unsigned fchar_offset;
+ };
+
+ //A comparison functor for strings that assumes they are identical up to char_offset
+ template<class data_type, class unsignedchar_type>
+ struct offset_greaterthan {
+ offset_greaterthan(unsigned char_offset) : fchar_offset(char_offset){}
+ inline bool operator()(const data_type &x, const data_type &y) const
+ {
+ unsigned minSize = std::min(x.size(), y.size());
+ for(unsigned u = fchar_offset; u < minSize; ++u) {
+ if(static_cast<unsignedchar_type>(x[u]) > static_cast<unsignedchar_type>(y[u]))
+ return true;
+ else if(static_cast<unsignedchar_type>(y[u]) > static_cast<unsignedchar_type>(x[u]))
+ return false;
+ }
+ return x.size() > y.size();
+ }
+ unsigned fchar_offset;
+ };
+
+ //A comparison functor for strings that assumes they are identical up to char_offset
+ template<class data_type, class get_char, class get_length>
+ struct offset_char_lessthan {
+ offset_char_lessthan(unsigned char_offset) : fchar_offset(char_offset){}
+ inline bool operator()(const data_type &x, const data_type &y) const
+ {
+ unsigned minSize = std::min(length(x), length(y));
+ for(unsigned u = fchar_offset; u < minSize; ++u) {
+ if(getchar(x, u) < getchar(y, u))
+ return true;
+ else if(getchar(y, u) < getchar(x, u))
+ return false;
+ }
+ return length(x) < length(y);
+ }
+ unsigned fchar_offset;
+ get_char getchar;
+ get_length length;
+ };
+
+ //String sorting recursive implementation
+ template <class RandomAccessIter, class data_type, class unsignedchar_type>
+ inline void
+ string_sort_rec(RandomAccessIter first, RandomAccessIter last, unsigned char_offset, std::vector<RandomAccessIter> &bin_cache
+ , unsigned cache_offset, std::vector<size_t> &bin_sizes)
+ {
+ //This section is not strictly necessary, but makes handling of long identical substrings much faster, with a mild average performance impact.
+ //Iterate to the end of the empties. If all empty, return
+ while((*first).size() <= char_offset) {
+ if(++first == last)
+ return;
+ }
+ RandomAccessIter finish = last - 1;
+ //Getting the last non-empty
+ for(;(*finish).size() <= char_offset; --finish) { }
+ ++finish;
+ //Offsetting on identical characters. This section works a character at a time for optimal worst-case performance.
+ update_offset(first, finish, char_offset);
+
+ const unsigned bin_count = (1 << (sizeof(unsignedchar_type)*8));
+ //Equal worst-case between radix and comparison-based is when bin_count = n*log(n).
+ const unsigned max_size = bin_count;
+ const unsigned membin_count = bin_count + 1;
+ unsigned cache_end;
+ RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset, cache_end, membin_count) + 1;
+
+ //Calculating the size of each bin; this takes roughly 10% of runtime
+ for (RandomAccessIter current = first; current != last; ++current) {
+ if((*current).size() <= char_offset) {
+ bin_sizes[0]++;
+ }
+ else
+ bin_sizes[static_cast<unsignedchar_type>((*current)[char_offset]) + 1]++;
+ }
+ //Assign the bin positions
+ bin_cache[cache_offset] = first;
+ for(unsigned u = 0; u < membin_count - 1; u++)
+ bin_cache[cache_offset + u + 1] = bin_cache[cache_offset + u] + bin_sizes[u];
+
+ //Swap into place
+ RandomAccessIter nextbinstart = first;
+ //handling empty bins
+ RandomAccessIter * local_bin = &(bin_cache[cache_offset]);
+ nextbinstart += bin_sizes[0];
+ RandomAccessIter * target_bin;
+ //Iterating over each element in the bin of empties
+ for(RandomAccessIter current = *local_bin; current < nextbinstart; ++current) {
+ //empties belong in this bin
+ while((*current).size() > char_offset) {
+ target_bin = bins + static_cast<unsignedchar_type>((*current)[char_offset]);
+ iter_swap(current, (*target_bin)++);
+ }
+ }
+ *local_bin = nextbinstart;
+ //iterate backwards to find the last bin with elements in it; this saves iterations in multiple loops
+ unsigned last_bin = bin_count - 1;
+ for(; last_bin && !bin_sizes[last_bin + 1]; --last_bin) { }
+ //This dominates runtime, mostly in the swap and bin lookups
+ for(unsigned u = 0; u < last_bin; ++u) {
+ local_bin = bins + u;
+ nextbinstart += bin_sizes[u + 1];
+ //Iterating over each element in this bin
+ for(RandomAccessIter current = *local_bin; current < nextbinstart; ++current) {
+ //Swapping elements in current into place until the correct element has been swapped in
+ for(target_bin = bins + static_cast<unsignedchar_type>((*current)[char_offset]); target_bin != local_bin;
+ target_bin = bins + static_cast<unsignedchar_type>((*current)[char_offset]))
+ iter_swap(current, (*target_bin)++);
+ }
+ *local_bin = nextbinstart;
+ }
+ bins[last_bin] = last;
+ //Recursing
+ RandomAccessIter lastPos = bin_cache[cache_offset];
+ //Skip this loop for empties
+ for(unsigned u = cache_offset + 1; u < cache_offset + last_bin + 2; lastPos = bin_cache[u], ++u) {
+ size_t count = bin_cache[u] - lastPos;
+ //don't sort unless there are at least two items to compare
+ if(count < 2)
+ continue;
+ //using std::sort if its worst-case is better
+ if(count < max_size)
+ std::sort(lastPos, bin_cache[u], offset_lessthan<data_type, unsignedchar_type>(char_offset + 1));
+ else
+ string_sort_rec<RandomAccessIter, data_type, unsignedchar_type>(lastPos, bin_cache[u], char_offset + 1, bin_cache, cache_end, bin_sizes);
+ }
+ }
+
+ //Sorts strings in reverse order, with empties at the end
+ template <class RandomAccessIter, class data_type, class unsignedchar_type>
+ inline void
+ reverse_string_sort_rec(RandomAccessIter first, RandomAccessIter last, unsigned char_offset, std::vector<RandomAccessIter> &bin_cache
+ , unsigned cache_offset, std::vector<size_t> &bin_sizes)
+ {
+ //This section is not strictly necessary, but makes handling of long identical substrings much faster, with a mild average performance impact.
+ RandomAccessIter curr = first;
+ //Iterate to the end of the empties. If all empty, return
+ while((*curr).size() <= char_offset) {
+ if(++curr == last)
+ return;
+ }
+ //Getting the last non-empty
+ while((*(--last)).size() <= char_offset) { }
+ ++last;
+ //Offsetting on identical characters. This section works a character at a time for optimal worst-case performance.
+ update_offset(curr, last, char_offset);
+ RandomAccessIter * target_bin;
+
+ const unsigned bin_count = (1 << (sizeof(unsignedchar_type)*8));
+ //Equal worst-case between radix and comparison-based is when bin_count = n*log(n).
+ const unsigned max_size = bin_count;
+ const unsigned membin_count = bin_count + 1;
+ const unsigned max_bin = bin_count - 1;
+ unsigned cache_end;
+ RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset, cache_end, membin_count);
+ RandomAccessIter * end_bin = &(bin_cache[cache_offset + max_bin]);
+
+ //Calculating the size of each bin; this takes roughly 10% of runtime
+ for (RandomAccessIter current = first; current != last; ++current) {
+ if((*current).size() <= char_offset) {
+ bin_sizes[bin_count]++;
+ }
+ else
+ bin_sizes[max_bin - static_cast<unsignedchar_type>((*current)[char_offset])]++;
+ }
+ //Assign the bin positions
+ bin_cache[cache_offset] = first;
+ for(unsigned u = 0; u < membin_count - 1; u++)
+ bin_cache[cache_offset + u + 1] = bin_cache[cache_offset + u] + bin_sizes[u];
+
+ //Swap into place
+ RandomAccessIter nextbinstart = last;
+ //handling empty bins
+ RandomAccessIter * local_bin = &(bin_cache[cache_offset + bin_count]);
+ RandomAccessIter lastFull = *local_bin;
+ //Iterating over each element in the bin of empties
+ for(RandomAccessIter current = *local_bin; current < nextbinstart; ++current) {
+ //empties belong in this bin
+ while((*current).size() > char_offset) {
+ target_bin = end_bin - static_cast<unsignedchar_type>((*current)[char_offset]);
+ iter_swap(current, (*target_bin)++);
+ }
+ }
+ *local_bin = nextbinstart;
+ nextbinstart = first;
+ //iterate backwards to find the last bin with elements in it; this saves iterations in multiple loops
+ unsigned last_bin = max_bin;
+ for(; last_bin && !bin_sizes[last_bin]; --last_bin) { }
+ //This dominates runtime, mostly in the swap and bin lookups
+ for(unsigned u = 0; u < last_bin; ++u) {
+ local_bin = bins + u;
+ nextbinstart += bin_sizes[u];
+ //Iterating over each element in this bin
+ for(RandomAccessIter current = *local_bin; current < nextbinstart; ++current) {
+ //Swapping elements in current into place until the correct element has been swapped in
+ for(target_bin = end_bin - static_cast<unsignedchar_type>((*current)[char_offset]); target_bin != local_bin;
+ target_bin = end_bin - static_cast<unsignedchar_type>((*current)[char_offset]))
+ iter_swap(current, (*target_bin)++);
+ }
+ *local_bin = nextbinstart;
+ }
+ bins[last_bin] = lastFull;
+ //Recursing
+ RandomAccessIter lastPos = first;
+ //Skip this loop for empties
+ for(unsigned u = cache_offset; u <= cache_offset + last_bin; lastPos = bin_cache[u], ++u) {
+ size_t count = bin_cache[u] - lastPos;
+ //don't sort unless there are at least two items to compare
+ if(count < 2)
+ continue;
+ //using std::sort if its worst-case is better
+ if(count < max_size)
+ std::sort(lastPos, bin_cache[u], offset_greaterthan<data_type, unsignedchar_type>(char_offset + 1));
+ else
+ reverse_string_sort_rec<RandomAccessIter, data_type, unsignedchar_type>(lastPos, bin_cache[u], char_offset + 1, bin_cache, cache_end, bin_sizes);
+ }
+ }
+
+ //String sorting recursive implementation
+ template <class RandomAccessIter, class data_type, class unsignedchar_type, class get_char, class get_length>
+ inline void
+ string_sort_rec(RandomAccessIter first, RandomAccessIter last, unsigned char_offset, std::vector<RandomAccessIter> &bin_cache
+ , unsigned cache_offset, std::vector<size_t> &bin_sizes, get_char getchar, get_length length)
+ {
+ //This section is not strictly necessary, but makes handling of long identical substrings much faster, with a mild average performance impact.
+ //Iterate to the end of the empties. If all empty, return
+ while(length(*first) <= char_offset) {
+ if(++first == last)
+ return;
+ }
+ RandomAccessIter finish = last - 1;
+ //Getting the last non-empty
+ for(;length(*finish) <= char_offset; --finish) { }
+ ++finish;
+ update_offset(first, finish, char_offset, getchar, length);
+
+ const unsigned bin_count = (1 << (sizeof(unsignedchar_type)*8));
+ //Equal worst-case between radix and comparison-based is when bin_count = n*log(n).
+ const unsigned max_size = bin_count;
+ const unsigned membin_count = bin_count + 1;
+ unsigned cache_end;
+ RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset, cache_end, membin_count) + 1;
+
+ //Calculating the size of each bin; this takes roughly 10% of runtime
+ for (RandomAccessIter current = first; current != last; ++current) {
+ if(length(*current) <= char_offset) {
+ bin_sizes[0]++;
+ }
+ else
+ bin_sizes[getchar((*current), char_offset) + 1]++;
+ }
+ //Assign the bin positions
+ bin_cache[cache_offset] = first;
+ for(unsigned u = 0; u < membin_count - 1; u++)
+ bin_cache[cache_offset + u + 1] = bin_cache[cache_offset + u] + bin_sizes[u];
+
+ //Swap into place
+ RandomAccessIter nextbinstart = first;
+ //handling empty bins
+ RandomAccessIter * local_bin = &(bin_cache[cache_offset]);
+ nextbinstart += bin_sizes[0];
+ RandomAccessIter * target_bin;
+ //Iterating over each element in the bin of empties
+ for(RandomAccessIter current = *local_bin; current < nextbinstart; ++current) {
+ //empties belong in this bin
+ while(length(*current) > char_offset) {
+ target_bin = bins + getchar((*current), char_offset);
+ iter_swap(current, (*target_bin)++);
+ }
+ }
+ *local_bin = nextbinstart;
+ //iterate backwards to find the last bin with elements in it; this saves iterations in multiple loops
+ unsigned last_bin = bin_count - 1;
+ for(; last_bin && !bin_sizes[last_bin + 1]; --last_bin) { }
+ //This dominates runtime, mostly in the swap and bin lookups
+ for(unsigned ii = 0; ii < last_bin; ++ii) {
+ local_bin = bins + ii;
+ nextbinstart += bin_sizes[ii + 1];
+ //Iterating over each element in this bin
+ for(RandomAccessIter current = *local_bin; current < nextbinstart; ++current) {
+ //Swapping elements in current into place until the correct element has been swapped in
+ for(target_bin = bins + getchar((*current), char_offset); target_bin != local_bin;
+ target_bin = bins + getchar((*current), char_offset))
+ iter_swap(current, (*target_bin)++);
+ }
+ *local_bin = nextbinstart;
+ }
+ bins[last_bin] = last;
+
+ //Recursing
+ RandomAccessIter lastPos = bin_cache[cache_offset];
+ //Skip this loop for empties
+ for(unsigned u = cache_offset + 1; u < cache_offset + last_bin + 2; lastPos = bin_cache[u], ++u) {
+ size_t count = bin_cache[u] - lastPos;
+ //don't sort unless there are at least two items to compare
+ if(count < 2)
+ continue;
+ //using std::sort if its worst-case is better
+ if(count < max_size)
+ std::sort(lastPos, bin_cache[u], offset_char_lessthan<data_type, get_char, get_length>(char_offset + 1));
+ else
+ string_sort_rec<RandomAccessIter, data_type, unsignedchar_type, get_char, get_length>(lastPos, bin_cache[u], char_offset + 1, bin_cache, cache_end, bin_sizes, getchar, length);
+ }
+ }
+
+ //String sorting recursive implementation
+ template <class RandomAccessIter, class data_type, class unsignedchar_type, class get_char, class get_length, class compare>
+ inline void
+ string_sort_rec(RandomAccessIter first, RandomAccessIter last, unsigned char_offset, std::vector<RandomAccessIter> &bin_cache
+ , unsigned cache_offset, std::vector<size_t> &bin_sizes, get_char getchar, get_length length, compare comp)
+ {
+ //This section is not strictly necessary, but makes handling of long identical substrings much faster, with a mild average performance impact.
+ //Iterate to the end of the empties. If all empty, return
+ while(length(*first) <= char_offset) {
+ if(++first == last)
+ return;
+ }
+ RandomAccessIter finish = last - 1;
+ //Getting the last non-empty
+ for(;length(*finish) <= char_offset; --finish) { }
+ ++finish;
+ update_offset(first, finish, char_offset, getchar, length);
+
+ const unsigned bin_count = (1 << (sizeof(unsignedchar_type)*8));
+ //Equal worst-case between radix and comparison-based is when bin_count = n*log(n).
+ const unsigned max_size = bin_count;
+ const unsigned membin_count = bin_count + 1;
+ unsigned cache_end;
+ RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset, cache_end, membin_count) + 1;
+
+ //Calculating the size of each bin; this takes roughly 10% of runtime
+ for (RandomAccessIter current = first; current != last; ++current) {
+ if(length(*current) <= char_offset) {
+ bin_sizes[0]++;
+ }
+ else
+ bin_sizes[getchar((*current), char_offset) + 1]++;
+ }
+ //Assign the bin positions
+ bin_cache[cache_offset] = first;
+ for(unsigned u = 0; u < membin_count - 1; u++)
+ bin_cache[cache_offset + u + 1] = bin_cache[cache_offset + u] + bin_sizes[u];
+
+ //Swap into place
+ RandomAccessIter nextbinstart = first;
+ //handling empty bins
+ RandomAccessIter * local_bin = &(bin_cache[cache_offset]);
+ nextbinstart += bin_sizes[0];
+ RandomAccessIter * target_bin;
+ //Iterating over each element in the bin of empties
+ for(RandomAccessIter current = *local_bin; current < nextbinstart; ++current) {
+ //empties belong in this bin
+ while(length(*current) > char_offset) {
+ target_bin = bins + getchar((*current), char_offset);
+ iter_swap(current, (*target_bin)++);
+ }
+ }
+ *local_bin = nextbinstart;
+ //iterate backwards to find the last bin with elements in it; this saves iterations in multiple loops
+ unsigned last_bin = bin_count - 1;
+ for(; last_bin && !bin_sizes[last_bin + 1]; --last_bin) { }
+ //This dominates runtime, mostly in the swap and bin lookups
+ for(unsigned u = 0; u < last_bin; ++u) {
+ local_bin = bins + u;
+ nextbinstart += bin_sizes[u + 1];
+ //Iterating over each element in this bin
+ for(RandomAccessIter current = *local_bin; current < nextbinstart; ++current) {
+ //Swapping elements in current into place until the correct element has been swapped in
+ for(target_bin = bins + getchar((*current), char_offset); target_bin != local_bin;
+ target_bin = bins + getchar((*current), char_offset))
+ iter_swap(current, (*target_bin)++);
+ }
+ *local_bin = nextbinstart;
+ }
+ bins[last_bin] = last;
+
+ //Recursing
+ RandomAccessIter lastPos = bin_cache[cache_offset];
+ //Skip this loop for empties
+ for(unsigned u = cache_offset + 1; u < cache_offset + last_bin + 2; lastPos = bin_cache[u], ++u) {
+ size_t count = bin_cache[u] - lastPos;
+ //don't sort unless there are at least two items to compare
+ if(count < 2)
+ continue;
+ //using std::sort if its worst-case is better
+ if(count < max_size)
+ std::sort(lastPos, bin_cache[u], comp);
+ else
+ string_sort_rec<RandomAccessIter, data_type, unsignedchar_type, get_char, get_length, compare>(lastPos
+ , bin_cache[u], char_offset + 1, bin_cache, cache_end, bin_sizes, getchar, length, comp);
+ }
+ }
+
+ //Sorts strings in reverse order, with empties at the end
+ template <class RandomAccessIter, class data_type, class unsignedchar_type, class get_char, class get_length, class compare>
+ inline void
+ reverse_string_sort_rec(RandomAccessIter first, RandomAccessIter last, unsigned char_offset, std::vector<RandomAccessIter> &bin_cache
+ , unsigned cache_offset, std::vector<size_t> &bin_sizes, get_char getchar, get_length length, compare comp)
+ {
+ //This section is not strictly necessary, but makes handling of long identical substrings much faster, with a mild average performance impact.
+ RandomAccessIter curr = first;
+ //Iterate to the end of the empties. If all empty, return
+ while(length(*curr) <= char_offset) {
+ if(++curr == last)
+ return;
+ }
+ //Getting the last non-empty
+ while(length(*(--last)) <= char_offset) { }
+ ++last;
+ //Offsetting on identical characters. This section works a character at a time for optimal worst-case performance.
+ update_offset(first, last, char_offset, getchar, length);
+
+ const unsigned bin_count = (1 << (sizeof(unsignedchar_type)*8));
+ //Equal worst-case between radix and comparison-based is when bin_count = n*log(n).
+ const unsigned max_size = bin_count;
+ const unsigned membin_count = bin_count + 1;
+ const unsigned max_bin = bin_count - 1;
+ unsigned cache_end;
+ RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset, cache_end, membin_count);
+ RandomAccessIter *end_bin = &(bin_cache[cache_offset + max_bin]);
+
+ //Calculating the size of each bin; this takes roughly 10% of runtime
+ for (RandomAccessIter current = first; current != last; ++current) {
+ if(length(*current) <= char_offset) {
+ bin_sizes[bin_count]++;
+ }
+ else
+ bin_sizes[max_bin - getchar((*current), char_offset)]++;
+ }
+ //Assign the bin positions
+ bin_cache[cache_offset] = first;
+ for(unsigned u = 0; u < membin_count - 1; u++)
+ bin_cache[cache_offset + u + 1] = bin_cache[cache_offset + u] + bin_sizes[u];
+
+ //Swap into place
+ RandomAccessIter nextbinstart = last;
+ //handling empty bins
+ RandomAccessIter * local_bin = &(bin_cache[cache_offset + bin_count]);
+ RandomAccessIter lastFull = *local_bin;
+ RandomAccessIter * target_bin;
+ //Iterating over each element in the bin of empties
+ for(RandomAccessIter current = *local_bin; current < nextbinstart; ++current) {
+ //empties belong in this bin
+ while(length(*current) > char_offset) {
+ target_bin = end_bin - getchar((*current), char_offset);
+ iter_swap(current, (*target_bin)++);
+ }
+ }
+ *local_bin = nextbinstart;
+ nextbinstart = first;
+ //iterate backwards to find the last bin with elements in it; this saves iterations in multiple loops
+ unsigned last_bin = max_bin;
+ for(; last_bin && !bin_sizes[last_bin]; --last_bin) { }
+ //This dominates runtime, mostly in the swap and bin lookups
+ for(unsigned u = 0; u < last_bin; ++u) {
+ local_bin = bins + u;
+ nextbinstart += bin_sizes[u];
+ //Iterating over each element in this bin
+ for(RandomAccessIter current = *local_bin; current < nextbinstart; ++current) {
+ //Swapping elements in current into place until the correct element has been swapped in
+ for(target_bin = end_bin - getchar((*current), char_offset); target_bin != local_bin;
+ target_bin = end_bin - getchar((*current), char_offset))
+ iter_swap(current, (*target_bin)++);
+ }
+ *local_bin = nextbinstart;
+ }
+ bins[last_bin] = lastFull;
+ //Recursing
+ RandomAccessIter lastPos = first;
+ //Skip this loop for empties
+ for(unsigned u = cache_offset; u <= cache_offset + last_bin; lastPos = bin_cache[u], ++u) {
+ size_t count = bin_cache[u] - lastPos;
+ //don't sort unless there are at least two items to compare
+ if(count < 2)
+ continue;
+ //using std::sort if its worst-case is better
+ if(count < max_size)
+ std::sort(lastPos, bin_cache[u], comp);
+ else
+ reverse_string_sort_rec<RandomAccessIter, data_type, unsignedchar_type, get_char, get_length, compare>(lastPos
+ , bin_cache[u], char_offset + 1, bin_cache, cache_end, bin_sizes, getchar, length, comp);
+ }
+ }
+
+ //Holds the bin vector and makes the initial recursive call
+ template <class RandomAccessIter, class data_type, class unsignedchar_type>
+ inline void
+ string_sort(RandomAccessIter first, RandomAccessIter last, data_type, unsignedchar_type)
+ {
+ std::vector<size_t> bin_sizes;
+ std::vector<RandomAccessIter> bin_cache;
+ string_sort_rec<RandomAccessIter, data_type, unsignedchar_type>(first, last, 0, bin_cache, 0, bin_sizes);
+ }
+
+ //Holds the bin vector and makes the initial recursive call
+ template <class RandomAccessIter, class data_type, class unsignedchar_type>
+ inline void
+ reverse_string_sort(RandomAccessIter first, RandomAccessIter last, data_type, unsignedchar_type)
+ {
+ std::vector<size_t> bin_sizes;
+ std::vector<RandomAccessIter> bin_cache;
+ reverse_string_sort_rec<RandomAccessIter, data_type, unsignedchar_type>(first, last, 0, bin_cache, 0, bin_sizes);
+ }
+
+ //Holds the bin vector and makes the initial recursive call
+ template <class RandomAccessIter, class get_char, class get_length, class data_type, class unsignedchar_type>
+ inline void
+ string_sort(RandomAccessIter first, RandomAccessIter last, get_char getchar, get_length length, data_type, unsignedchar_type)
+ {
+ std::vector<size_t> bin_sizes;
+ std::vector<RandomAccessIter> bin_cache;
+ string_sort_rec<RandomAccessIter, data_type, unsignedchar_type, get_char, get_length>(first, last, 0, bin_cache, 0, bin_sizes, getchar, length);
+ }
+
+ //Holds the bin vector and makes the initial recursive call
+ template <class RandomAccessIter, class get_char, class get_length, class compare, class data_type, class unsignedchar_type>
+ inline void
+ string_sort(RandomAccessIter first, RandomAccessIter last, get_char getchar, get_length length, compare comp, data_type, unsignedchar_type)
+ {
+ std::vector<size_t> bin_sizes;
+ std::vector<RandomAccessIter> bin_cache;
+ string_sort_rec<RandomAccessIter, data_type, unsignedchar_type, get_char, get_length, compare>(first, last, 0, bin_cache, 0, bin_sizes, getchar, length, comp);
+ }
+
+ //Holds the bin vector and makes the initial recursive call
+ template <class RandomAccessIter, class get_char, class get_length, class compare, class data_type, class unsignedchar_type>
+ inline void
+ reverse_string_sort(RandomAccessIter first, RandomAccessIter last, get_char getchar, get_length length, compare comp, data_type, unsignedchar_type)
+ {
+ std::vector<size_t> bin_sizes;
+ std::vector<RandomAccessIter> bin_cache;
+ reverse_string_sort_rec<RandomAccessIter, data_type, unsignedchar_type, get_char, get_length, compare>(first, last, 0, bin_cache, 0, bin_sizes, getchar, length, comp);
+ }
+ }
+
+ //Allows character-type overloads
+ template <class RandomAccessIter, class unsignedchar_type>
+ inline void string_sort(RandomAccessIter first, RandomAccessIter last, unsignedchar_type unused)
+ {
+ //Don't sort if it's too small to optimize
+ if(last - first < detail::MIN_SORT_SIZE)
+ std::sort(first, last);
+ else
+ detail::string_sort(first, last, *first, unused);
+ }
+
+ //Top-level sorting call; wraps using default of unsigned char
+ template <class RandomAccessIter>
+ inline void string_sort(RandomAccessIter first, RandomAccessIter last)
+ {
+ unsigned char unused = '\0';
+ string_sort(first, last, unused);
+ }
+
+ //Allows character-type overloads
+ template <class RandomAccessIter, class compare, class unsignedchar_type>
+ inline void reverse_string_sort(RandomAccessIter first, RandomAccessIter last, compare comp, unsignedchar_type unused)
+ {
+ //Don't sort if it's too small to optimize
+ if(last - first < detail::MIN_SORT_SIZE)
+ std::sort(first, last, comp);
+ else
+ detail::reverse_string_sort(first, last, *first, unused);
+ }
+
+ //Top-level sorting call; wraps using default of unsigned char
+ template <class RandomAccessIter, class compare>
+ inline void reverse_string_sort(RandomAccessIter first, RandomAccessIter last, compare comp)
+ {
+ unsigned char unused = '\0';
+ reverse_string_sort(first, last, comp, unused);
+ }
+
+ template <class RandomAccessIter, class get_char, class get_length>
+ inline void string_sort(RandomAccessIter first, RandomAccessIter last, get_char getchar, get_length length)
+ {
+ //Don't sort if it's too small to optimize
+ if(last - first < detail::MIN_SORT_SIZE)
+ std::sort(first, last);
+ else {
+ //skipping past empties at the beginning, which allows us to get the character type
+ //.empty() is not used so as not to require a user declaration of it
+ while(!length(*first)) {
+ if(++first == last)
+ return;
+ }
+ detail::string_sort(first, last, getchar, length, *first, getchar((*first), 0));
+ }
+ }
+
+ template <class RandomAccessIter, class get_char, class get_length, class compare>
+ inline void string_sort(RandomAccessIter first, RandomAccessIter last, get_char getchar, get_length length, compare comp)
+ {
+ //Don't sort if it's too small to optimize
+ if(last - first < detail::MIN_SORT_SIZE)
+ std::sort(first, last, comp);
+ else {
+ //skipping past empties at the beginning, which allows us to get the character type
+ //.empty() is not used so as not to require a user declaration of it
+ while(!length(*first)) {
+ if(++first == last)
+ return;
+ }
+ detail::string_sort(first, last, getchar, length, comp, *first, getchar((*first), 0));
+ }
+ }
+
+ template <class RandomAccessIter, class get_char, class get_length, class compare>
+ inline void reverse_string_sort(RandomAccessIter first, RandomAccessIter last, get_char getchar, get_length length, compare comp)
+ {
+ //Don't sort if it's too small to optimize
+ if(last - first < detail::MIN_SORT_SIZE)
+ std::sort(first, last, comp);
+ else {
+ //skipping past empties at the beginning, which allows us to get the character type
+ //.empty() is not used so as not to require a user declaration of it
+ while(!length(*(--last))) {
+ //Note: if there is just one non-empty, and it's at the beginning, then it's already in sorted order
+ if(first == last)
+ return;
+ }
+ //making last just after the end of the non-empty part of the array
+ ++last;
+ detail::reverse_string_sort(first, last, getchar, length, comp, *first, getchar((*first), 0));
+ }
+ }
+}
+
+#endif