aboutsummaryrefslogtreecommitdiff
path: root/third_party/abseil-cpp/absl/synchronization/mutex_test.cc
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/abseil-cpp/absl/synchronization/mutex_test.cc')
-rw-r--r--third_party/abseil-cpp/absl/synchronization/mutex_test.cc1675
1 files changed, 1675 insertions, 0 deletions
diff --git a/third_party/abseil-cpp/absl/synchronization/mutex_test.cc b/third_party/abseil-cpp/absl/synchronization/mutex_test.cc
new file mode 100644
index 0000000000..afb363af61
--- /dev/null
+++ b/third_party/abseil-cpp/absl/synchronization/mutex_test.cc
@@ -0,0 +1,1675 @@
+// Copyright 2017 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// https://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "absl/synchronization/mutex.h"
+
+#ifdef _WIN32
+#include <windows.h>
+#endif
+
+#include <algorithm>
+#include <atomic>
+#include <cstdlib>
+#include <functional>
+#include <memory>
+#include <random>
+#include <string>
+#include <thread> // NOLINT(build/c++11)
+#include <vector>
+
+#include "gtest/gtest.h"
+#include "absl/base/attributes.h"
+#include "absl/base/internal/raw_logging.h"
+#include "absl/base/internal/sysinfo.h"
+#include "absl/memory/memory.h"
+#include "absl/synchronization/internal/thread_pool.h"
+#include "absl/time/clock.h"
+#include "absl/time/time.h"
+
+namespace {
+
+// TODO(dmauro): Replace with a commandline flag.
+static constexpr bool kExtendedTest = false;
+
+std::unique_ptr<absl::synchronization_internal::ThreadPool> CreatePool(
+ int threads) {
+ return absl::make_unique<absl::synchronization_internal::ThreadPool>(threads);
+}
+
+std::unique_ptr<absl::synchronization_internal::ThreadPool>
+CreateDefaultPool() {
+ return CreatePool(kExtendedTest ? 32 : 10);
+}
+
+// Hack to schedule a function to run on a thread pool thread after a
+// duration has elapsed.
+static void ScheduleAfter(absl::synchronization_internal::ThreadPool *tp,
+ absl::Duration after,
+ const std::function<void()> &func) {
+ tp->Schedule([func, after] {
+ absl::SleepFor(after);
+ func();
+ });
+}
+
+struct TestContext {
+ int iterations;
+ int threads;
+ int g0; // global 0
+ int g1; // global 1
+ absl::Mutex mu;
+ absl::CondVar cv;
+};
+
+// To test whether the invariant check call occurs
+static std::atomic<bool> invariant_checked;
+
+static bool GetInvariantChecked() {
+ return invariant_checked.load(std::memory_order_relaxed);
+}
+
+static void SetInvariantChecked(bool new_value) {
+ invariant_checked.store(new_value, std::memory_order_relaxed);
+}
+
+static void CheckSumG0G1(void *v) {
+ TestContext *cxt = static_cast<TestContext *>(v);
+ ABSL_RAW_CHECK(cxt->g0 == -cxt->g1, "Error in CheckSumG0G1");
+ SetInvariantChecked(true);
+}
+
+static void TestMu(TestContext *cxt, int c) {
+ for (int i = 0; i != cxt->iterations; i++) {
+ absl::MutexLock l(&cxt->mu);
+ int a = cxt->g0 + 1;
+ cxt->g0 = a;
+ cxt->g1--;
+ }
+}
+
+static void TestTry(TestContext *cxt, int c) {
+ for (int i = 0; i != cxt->iterations; i++) {
+ do {
+ std::this_thread::yield();
+ } while (!cxt->mu.TryLock());
+ int a = cxt->g0 + 1;
+ cxt->g0 = a;
+ cxt->g1--;
+ cxt->mu.Unlock();
+ }
+}
+
+static void TestR20ms(TestContext *cxt, int c) {
+ for (int i = 0; i != cxt->iterations; i++) {
+ absl::ReaderMutexLock l(&cxt->mu);
+ absl::SleepFor(absl::Milliseconds(20));
+ cxt->mu.AssertReaderHeld();
+ }
+}
+
+static void TestRW(TestContext *cxt, int c) {
+ if ((c & 1) == 0) {
+ for (int i = 0; i != cxt->iterations; i++) {
+ absl::WriterMutexLock l(&cxt->mu);
+ cxt->g0++;
+ cxt->g1--;
+ cxt->mu.AssertHeld();
+ cxt->mu.AssertReaderHeld();
+ }
+ } else {
+ for (int i = 0; i != cxt->iterations; i++) {
+ absl::ReaderMutexLock l(&cxt->mu);
+ ABSL_RAW_CHECK(cxt->g0 == -cxt->g1, "Error in TestRW");
+ cxt->mu.AssertReaderHeld();
+ }
+ }
+}
+
+struct MyContext {
+ int target;
+ TestContext *cxt;
+ bool MyTurn();
+};
+
+bool MyContext::MyTurn() {
+ TestContext *cxt = this->cxt;
+ return cxt->g0 == this->target || cxt->g0 == cxt->iterations;
+}
+
+static void TestAwait(TestContext *cxt, int c) {
+ MyContext mc;
+ mc.target = c;
+ mc.cxt = cxt;
+ absl::MutexLock l(&cxt->mu);
+ cxt->mu.AssertHeld();
+ while (cxt->g0 < cxt->iterations) {
+ cxt->mu.Await(absl::Condition(&mc, &MyContext::MyTurn));
+ ABSL_RAW_CHECK(mc.MyTurn(), "Error in TestAwait");
+ cxt->mu.AssertHeld();
+ if (cxt->g0 < cxt->iterations) {
+ int a = cxt->g0 + 1;
+ cxt->g0 = a;
+ mc.target += cxt->threads;
+ }
+ }
+}
+
+static void TestSignalAll(TestContext *cxt, int c) {
+ int target = c;
+ absl::MutexLock l(&cxt->mu);
+ cxt->mu.AssertHeld();
+ while (cxt->g0 < cxt->iterations) {
+ while (cxt->g0 != target && cxt->g0 != cxt->iterations) {
+ cxt->cv.Wait(&cxt->mu);
+ }
+ if (cxt->g0 < cxt->iterations) {
+ int a = cxt->g0 + 1;
+ cxt->g0 = a;
+ cxt->cv.SignalAll();
+ target += cxt->threads;
+ }
+ }
+}
+
+static void TestSignal(TestContext *cxt, int c) {
+ ABSL_RAW_CHECK(cxt->threads == 2, "TestSignal should use 2 threads");
+ int target = c;
+ absl::MutexLock l(&cxt->mu);
+ cxt->mu.AssertHeld();
+ while (cxt->g0 < cxt->iterations) {
+ while (cxt->g0 != target && cxt->g0 != cxt->iterations) {
+ cxt->cv.Wait(&cxt->mu);
+ }
+ if (cxt->g0 < cxt->iterations) {
+ int a = cxt->g0 + 1;
+ cxt->g0 = a;
+ cxt->cv.Signal();
+ target += cxt->threads;
+ }
+ }
+}
+
+static void TestCVTimeout(TestContext *cxt, int c) {
+ int target = c;
+ absl::MutexLock l(&cxt->mu);
+ cxt->mu.AssertHeld();
+ while (cxt->g0 < cxt->iterations) {
+ while (cxt->g0 != target && cxt->g0 != cxt->iterations) {
+ cxt->cv.WaitWithTimeout(&cxt->mu, absl::Seconds(100));
+ }
+ if (cxt->g0 < cxt->iterations) {
+ int a = cxt->g0 + 1;
+ cxt->g0 = a;
+ cxt->cv.SignalAll();
+ target += cxt->threads;
+ }
+ }
+}
+
+static bool G0GE2(TestContext *cxt) { return cxt->g0 >= 2; }
+
+static void TestTime(TestContext *cxt, int c, bool use_cv) {
+ ABSL_RAW_CHECK(cxt->iterations == 1, "TestTime should only use 1 iteration");
+ ABSL_RAW_CHECK(cxt->threads > 2, "TestTime should use more than 2 threads");
+ const bool kFalse = false;
+ absl::Condition false_cond(&kFalse);
+ absl::Condition g0ge2(G0GE2, cxt);
+ if (c == 0) {
+ absl::MutexLock l(&cxt->mu);
+
+ absl::Time start = absl::Now();
+ if (use_cv) {
+ cxt->cv.WaitWithTimeout(&cxt->mu, absl::Seconds(1));
+ } else {
+ ABSL_RAW_CHECK(!cxt->mu.AwaitWithTimeout(false_cond, absl::Seconds(1)),
+ "TestTime failed");
+ }
+ absl::Duration elapsed = absl::Now() - start;
+ ABSL_RAW_CHECK(
+ absl::Seconds(0.9) <= elapsed && elapsed <= absl::Seconds(2.0),
+ "TestTime failed");
+ ABSL_RAW_CHECK(cxt->g0 == 1, "TestTime failed");
+
+ start = absl::Now();
+ if (use_cv) {
+ cxt->cv.WaitWithTimeout(&cxt->mu, absl::Seconds(1));
+ } else {
+ ABSL_RAW_CHECK(!cxt->mu.AwaitWithTimeout(false_cond, absl::Seconds(1)),
+ "TestTime failed");
+ }
+ elapsed = absl::Now() - start;
+ ABSL_RAW_CHECK(
+ absl::Seconds(0.9) <= elapsed && elapsed <= absl::Seconds(2.0),
+ "TestTime failed");
+ cxt->g0++;
+ if (use_cv) {
+ cxt->cv.Signal();
+ }
+
+ start = absl::Now();
+ if (use_cv) {
+ cxt->cv.WaitWithTimeout(&cxt->mu, absl::Seconds(4));
+ } else {
+ ABSL_RAW_CHECK(!cxt->mu.AwaitWithTimeout(false_cond, absl::Seconds(4)),
+ "TestTime failed");
+ }
+ elapsed = absl::Now() - start;
+ ABSL_RAW_CHECK(
+ absl::Seconds(3.9) <= elapsed && elapsed <= absl::Seconds(6.0),
+ "TestTime failed");
+ ABSL_RAW_CHECK(cxt->g0 >= 3, "TestTime failed");
+
+ start = absl::Now();
+ if (use_cv) {
+ cxt->cv.WaitWithTimeout(&cxt->mu, absl::Seconds(1));
+ } else {
+ ABSL_RAW_CHECK(!cxt->mu.AwaitWithTimeout(false_cond, absl::Seconds(1)),
+ "TestTime failed");
+ }
+ elapsed = absl::Now() - start;
+ ABSL_RAW_CHECK(
+ absl::Seconds(0.9) <= elapsed && elapsed <= absl::Seconds(2.0),
+ "TestTime failed");
+ if (use_cv) {
+ cxt->cv.SignalAll();
+ }
+
+ start = absl::Now();
+ if (use_cv) {
+ cxt->cv.WaitWithTimeout(&cxt->mu, absl::Seconds(1));
+ } else {
+ ABSL_RAW_CHECK(!cxt->mu.AwaitWithTimeout(false_cond, absl::Seconds(1)),
+ "TestTime failed");
+ }
+ elapsed = absl::Now() - start;
+ ABSL_RAW_CHECK(absl::Seconds(0.9) <= elapsed &&
+ elapsed <= absl::Seconds(2.0), "TestTime failed");
+ ABSL_RAW_CHECK(cxt->g0 == cxt->threads, "TestTime failed");
+
+ } else if (c == 1) {
+ absl::MutexLock l(&cxt->mu);
+ const absl::Time start = absl::Now();
+ if (use_cv) {
+ cxt->cv.WaitWithTimeout(&cxt->mu, absl::Milliseconds(500));
+ } else {
+ ABSL_RAW_CHECK(
+ !cxt->mu.AwaitWithTimeout(false_cond, absl::Milliseconds(500)),
+ "TestTime failed");
+ }
+ const absl::Duration elapsed = absl::Now() - start;
+ ABSL_RAW_CHECK(
+ absl::Seconds(0.4) <= elapsed && elapsed <= absl::Seconds(0.9),
+ "TestTime failed");
+ cxt->g0++;
+ } else if (c == 2) {
+ absl::MutexLock l(&cxt->mu);
+ if (use_cv) {
+ while (cxt->g0 < 2) {
+ cxt->cv.WaitWithTimeout(&cxt->mu, absl::Seconds(100));
+ }
+ } else {
+ ABSL_RAW_CHECK(cxt->mu.AwaitWithTimeout(g0ge2, absl::Seconds(100)),
+ "TestTime failed");
+ }
+ cxt->g0++;
+ } else {
+ absl::MutexLock l(&cxt->mu);
+ if (use_cv) {
+ while (cxt->g0 < 2) {
+ cxt->cv.Wait(&cxt->mu);
+ }
+ } else {
+ cxt->mu.Await(g0ge2);
+ }
+ cxt->g0++;
+ }
+}
+
+static void TestMuTime(TestContext *cxt, int c) { TestTime(cxt, c, false); }
+
+static void TestCVTime(TestContext *cxt, int c) { TestTime(cxt, c, true); }
+
+static void EndTest(int *c0, int *c1, absl::Mutex *mu, absl::CondVar *cv,
+ const std::function<void(int)>& cb) {
+ mu->Lock();
+ int c = (*c0)++;
+ mu->Unlock();
+ cb(c);
+ absl::MutexLock l(mu);
+ (*c1)++;
+ cv->Signal();
+}
+
+// Code common to RunTest() and RunTestWithInvariantDebugging().
+static int RunTestCommon(TestContext *cxt, void (*test)(TestContext *cxt, int),
+ int threads, int iterations, int operations) {
+ absl::Mutex mu2;
+ absl::CondVar cv2;
+ int c0 = 0;
+ int c1 = 0;
+ cxt->g0 = 0;
+ cxt->g1 = 0;
+ cxt->iterations = iterations;
+ cxt->threads = threads;
+ absl::synchronization_internal::ThreadPool tp(threads);
+ for (int i = 0; i != threads; i++) {
+ tp.Schedule(std::bind(&EndTest, &c0, &c1, &mu2, &cv2,
+ std::function<void(int)>(
+ std::bind(test, cxt, std::placeholders::_1))));
+ }
+ mu2.Lock();
+ while (c1 != threads) {
+ cv2.Wait(&mu2);
+ }
+ mu2.Unlock();
+ return cxt->g0;
+}
+
+// Basis for the parameterized tests configured below.
+static int RunTest(void (*test)(TestContext *cxt, int), int threads,
+ int iterations, int operations) {
+ TestContext cxt;
+ return RunTestCommon(&cxt, test, threads, iterations, operations);
+}
+
+// Like RunTest(), but sets an invariant on the tested Mutex and
+// verifies that the invariant check happened. The invariant function
+// will be passed the TestContext* as its arg and must call
+// SetInvariantChecked(true);
+#if !defined(ABSL_MUTEX_ENABLE_INVARIANT_DEBUGGING_NOT_IMPLEMENTED)
+static int RunTestWithInvariantDebugging(void (*test)(TestContext *cxt, int),
+ int threads, int iterations,
+ int operations,
+ void (*invariant)(void *)) {
+ absl::EnableMutexInvariantDebugging(true);
+ SetInvariantChecked(false);
+ TestContext cxt;
+ cxt.mu.EnableInvariantDebugging(invariant, &cxt);
+ int ret = RunTestCommon(&cxt, test, threads, iterations, operations);
+ ABSL_RAW_CHECK(GetInvariantChecked(), "Invariant not checked");
+ absl::EnableMutexInvariantDebugging(false); // Restore.
+ return ret;
+}
+#endif
+
+// --------------------------------------------------------
+// Test for fix of bug in TryRemove()
+struct TimeoutBugStruct {
+ absl::Mutex mu;
+ bool a;
+ int a_waiter_count;
+};
+
+static void WaitForA(TimeoutBugStruct *x) {
+ x->mu.LockWhen(absl::Condition(&x->a));
+ x->a_waiter_count--;
+ x->mu.Unlock();
+}
+
+static bool NoAWaiters(TimeoutBugStruct *x) { return x->a_waiter_count == 0; }
+
+// Test that a CondVar.Wait(&mutex) can un-block a call to mutex.Await() in
+// another thread.
+TEST(Mutex, CondVarWaitSignalsAwait) {
+ // Use a struct so the lock annotations apply.
+ struct {
+ absl::Mutex barrier_mu;
+ bool barrier ABSL_GUARDED_BY(barrier_mu) = false;
+
+ absl::Mutex release_mu;
+ bool release ABSL_GUARDED_BY(release_mu) = false;
+ absl::CondVar released_cv;
+ } state;
+
+ auto pool = CreateDefaultPool();
+
+ // Thread A. Sets barrier, waits for release using Mutex::Await, then
+ // signals released_cv.
+ pool->Schedule([&state] {
+ state.release_mu.Lock();
+
+ state.barrier_mu.Lock();
+ state.barrier = true;
+ state.barrier_mu.Unlock();
+
+ state.release_mu.Await(absl::Condition(&state.release));
+ state.released_cv.Signal();
+ state.release_mu.Unlock();
+ });
+
+ state.barrier_mu.LockWhen(absl::Condition(&state.barrier));
+ state.barrier_mu.Unlock();
+ state.release_mu.Lock();
+ // Thread A is now blocked on release by way of Mutex::Await().
+
+ // Set release. Calling released_cv.Wait() should un-block thread A,
+ // which will signal released_cv. If not, the test will hang.
+ state.release = true;
+ state.released_cv.Wait(&state.release_mu);
+ state.release_mu.Unlock();
+}
+
+// Test that a CondVar.WaitWithTimeout(&mutex) can un-block a call to
+// mutex.Await() in another thread.
+TEST(Mutex, CondVarWaitWithTimeoutSignalsAwait) {
+ // Use a struct so the lock annotations apply.
+ struct {
+ absl::Mutex barrier_mu;
+ bool barrier ABSL_GUARDED_BY(barrier_mu) = false;
+
+ absl::Mutex release_mu;
+ bool release ABSL_GUARDED_BY(release_mu) = false;
+ absl::CondVar released_cv;
+ } state;
+
+ auto pool = CreateDefaultPool();
+
+ // Thread A. Sets barrier, waits for release using Mutex::Await, then
+ // signals released_cv.
+ pool->Schedule([&state] {
+ state.release_mu.Lock();
+
+ state.barrier_mu.Lock();
+ state.barrier = true;
+ state.barrier_mu.Unlock();
+
+ state.release_mu.Await(absl::Condition(&state.release));
+ state.released_cv.Signal();
+ state.release_mu.Unlock();
+ });
+
+ state.barrier_mu.LockWhen(absl::Condition(&state.barrier));
+ state.barrier_mu.Unlock();
+ state.release_mu.Lock();
+ // Thread A is now blocked on release by way of Mutex::Await().
+
+ // Set release. Calling released_cv.Wait() should un-block thread A,
+ // which will signal released_cv. If not, the test will hang.
+ state.release = true;
+ EXPECT_TRUE(
+ !state.released_cv.WaitWithTimeout(&state.release_mu, absl::Seconds(10)))
+ << "; Unrecoverable test failure: CondVar::WaitWithTimeout did not "
+ "unblock the absl::Mutex::Await call in another thread.";
+
+ state.release_mu.Unlock();
+}
+
+// Test for regression of a bug in loop of TryRemove()
+TEST(Mutex, MutexTimeoutBug) {
+ auto tp = CreateDefaultPool();
+
+ TimeoutBugStruct x;
+ x.a = false;
+ x.a_waiter_count = 2;
+ tp->Schedule(std::bind(&WaitForA, &x));
+ tp->Schedule(std::bind(&WaitForA, &x));
+ absl::SleepFor(absl::Seconds(1)); // Allow first two threads to hang.
+ // The skip field of the second will point to the first because there are
+ // only two.
+
+ // Now cause a thread waiting on an always-false to time out
+ // This would deadlock when the bug was present.
+ bool always_false = false;
+ x.mu.LockWhenWithTimeout(absl::Condition(&always_false),
+ absl::Milliseconds(500));
+
+ // if we get here, the bug is not present. Cleanup the state.
+
+ x.a = true; // wakeup the two waiters on A
+ x.mu.Await(absl::Condition(&NoAWaiters, &x)); // wait for them to exit
+ x.mu.Unlock();
+}
+
+struct CondVarWaitDeadlock : testing::TestWithParam<int> {
+ absl::Mutex mu;
+ absl::CondVar cv;
+ bool cond1 = false;
+ bool cond2 = false;
+ bool read_lock1;
+ bool read_lock2;
+ bool signal_unlocked;
+
+ CondVarWaitDeadlock() {
+ read_lock1 = GetParam() & (1 << 0);
+ read_lock2 = GetParam() & (1 << 1);
+ signal_unlocked = GetParam() & (1 << 2);
+ }
+
+ void Waiter1() {
+ if (read_lock1) {
+ mu.ReaderLock();
+ while (!cond1) {
+ cv.Wait(&mu);
+ }
+ mu.ReaderUnlock();
+ } else {
+ mu.Lock();
+ while (!cond1) {
+ cv.Wait(&mu);
+ }
+ mu.Unlock();
+ }
+ }
+
+ void Waiter2() {
+ if (read_lock2) {
+ mu.ReaderLockWhen(absl::Condition(&cond2));
+ mu.ReaderUnlock();
+ } else {
+ mu.LockWhen(absl::Condition(&cond2));
+ mu.Unlock();
+ }
+ }
+};
+
+// Test for a deadlock bug in Mutex::Fer().
+// The sequence of events that lead to the deadlock is:
+// 1. waiter1 blocks on cv in read mode (mu bits = 0).
+// 2. waiter2 blocks on mu in either mode (mu bits = kMuWait).
+// 3. main thread locks mu, sets cond1, unlocks mu (mu bits = kMuWait).
+// 4. main thread signals on cv and this eventually calls Mutex::Fer().
+// Currently Fer wakes waiter1 since mu bits = kMuWait (mutex is unlocked).
+// Before the bug fix Fer neither woke waiter1 nor queued it on mutex,
+// which resulted in deadlock.
+TEST_P(CondVarWaitDeadlock, Test) {
+ auto waiter1 = CreatePool(1);
+ auto waiter2 = CreatePool(1);
+ waiter1->Schedule([this] { this->Waiter1(); });
+ waiter2->Schedule([this] { this->Waiter2(); });
+
+ // Wait while threads block (best-effort is fine).
+ absl::SleepFor(absl::Milliseconds(100));
+
+ // Wake condwaiter.
+ mu.Lock();
+ cond1 = true;
+ if (signal_unlocked) {
+ mu.Unlock();
+ cv.Signal();
+ } else {
+ cv.Signal();
+ mu.Unlock();
+ }
+ waiter1.reset(); // "join" waiter1
+
+ // Wake waiter.
+ mu.Lock();
+ cond2 = true;
+ mu.Unlock();
+ waiter2.reset(); // "join" waiter2
+}
+
+INSTANTIATE_TEST_SUITE_P(CondVarWaitDeadlockTest, CondVarWaitDeadlock,
+ ::testing::Range(0, 8),
+ ::testing::PrintToStringParamName());
+
+// --------------------------------------------------------
+// Test for fix of bug in DequeueAllWakeable()
+// Bug was that if there was more than one waiting reader
+// and all should be woken, the most recently blocked one
+// would not be.
+
+struct DequeueAllWakeableBugStruct {
+ absl::Mutex mu;
+ absl::Mutex mu2; // protects all fields below
+ int unfinished_count; // count of unfinished readers; under mu2
+ bool done1; // unfinished_count == 0; under mu2
+ int finished_count; // count of finished readers, under mu2
+ bool done2; // finished_count == 0; under mu2
+};
+
+// Test for regression of a bug in loop of DequeueAllWakeable()
+static void AcquireAsReader(DequeueAllWakeableBugStruct *x) {
+ x->mu.ReaderLock();
+ x->mu2.Lock();
+ x->unfinished_count--;
+ x->done1 = (x->unfinished_count == 0);
+ x->mu2.Unlock();
+ // make sure that both readers acquired mu before we release it.
+ absl::SleepFor(absl::Seconds(2));
+ x->mu.ReaderUnlock();
+
+ x->mu2.Lock();
+ x->finished_count--;
+ x->done2 = (x->finished_count == 0);
+ x->mu2.Unlock();
+}
+
+// Test for regression of a bug in loop of DequeueAllWakeable()
+TEST(Mutex, MutexReaderWakeupBug) {
+ auto tp = CreateDefaultPool();
+
+ DequeueAllWakeableBugStruct x;
+ x.unfinished_count = 2;
+ x.done1 = false;
+ x.finished_count = 2;
+ x.done2 = false;
+ x.mu.Lock(); // acquire mu exclusively
+ // queue two thread that will block on reader locks on x.mu
+ tp->Schedule(std::bind(&AcquireAsReader, &x));
+ tp->Schedule(std::bind(&AcquireAsReader, &x));
+ absl::SleepFor(absl::Seconds(1)); // give time for reader threads to block
+ x.mu.Unlock(); // wake them up
+
+ // both readers should finish promptly
+ EXPECT_TRUE(
+ x.mu2.LockWhenWithTimeout(absl::Condition(&x.done1), absl::Seconds(10)));
+ x.mu2.Unlock();
+
+ EXPECT_TRUE(
+ x.mu2.LockWhenWithTimeout(absl::Condition(&x.done2), absl::Seconds(10)));
+ x.mu2.Unlock();
+}
+
+struct LockWhenTestStruct {
+ absl::Mutex mu1;
+ bool cond = false;
+
+ absl::Mutex mu2;
+ bool waiting = false;
+};
+
+static bool LockWhenTestIsCond(LockWhenTestStruct* s) {
+ s->mu2.Lock();
+ s->waiting = true;
+ s->mu2.Unlock();
+ return s->cond;
+}
+
+static void LockWhenTestWaitForIsCond(LockWhenTestStruct* s) {
+ s->mu1.LockWhen(absl::Condition(&LockWhenTestIsCond, s));
+ s->mu1.Unlock();
+}
+
+TEST(Mutex, LockWhen) {
+ LockWhenTestStruct s;
+
+ std::thread t(LockWhenTestWaitForIsCond, &s);
+ s.mu2.LockWhen(absl::Condition(&s.waiting));
+ s.mu2.Unlock();
+
+ s.mu1.Lock();
+ s.cond = true;
+ s.mu1.Unlock();
+
+ t.join();
+}
+
+// --------------------------------------------------------
+// The following test requires Mutex::ReaderLock to be a real shared
+// lock, which is not the case in all builds.
+#if !defined(ABSL_MUTEX_READER_LOCK_IS_EXCLUSIVE)
+
+// Test for fix of bug in UnlockSlow() that incorrectly decremented the reader
+// count when putting a thread to sleep waiting for a false condition when the
+// lock was not held.
+
+// For this bug to strike, we make a thread wait on a free mutex with no
+// waiters by causing its wakeup condition to be false. Then the
+// next two acquirers must be readers. The bug causes the lock
+// to be released when one reader unlocks, rather than both.
+
+struct ReaderDecrementBugStruct {
+ bool cond; // to delay first thread (under mu)
+ int done; // reference count (under mu)
+ absl::Mutex mu;
+
+ bool waiting_on_cond; // under mu2
+ bool have_reader_lock; // under mu2
+ bool complete; // under mu2
+ absl::Mutex mu2; // > mu
+};
+
+// L >= mu, L < mu_waiting_on_cond
+static bool IsCond(void *v) {
+ ReaderDecrementBugStruct *x = reinterpret_cast<ReaderDecrementBugStruct *>(v);
+ x->mu2.Lock();
+ x->waiting_on_cond = true;
+ x->mu2.Unlock();
+ return x->cond;
+}
+
+// L >= mu
+static bool AllDone(void *v) {
+ ReaderDecrementBugStruct *x = reinterpret_cast<ReaderDecrementBugStruct *>(v);
+ return x->done == 0;
+}
+
+// L={}
+static void WaitForCond(ReaderDecrementBugStruct *x) {
+ absl::Mutex dummy;
+ absl::MutexLock l(&dummy);
+ x->mu.LockWhen(absl::Condition(&IsCond, x));
+ x->done--;
+ x->mu.Unlock();
+}
+
+// L={}
+static void GetReadLock(ReaderDecrementBugStruct *x) {
+ x->mu.ReaderLock();
+ x->mu2.Lock();
+ x->have_reader_lock = true;
+ x->mu2.Await(absl::Condition(&x->complete));
+ x->mu2.Unlock();
+ x->mu.ReaderUnlock();
+ x->mu.Lock();
+ x->done--;
+ x->mu.Unlock();
+}
+
+// Test for reader counter being decremented incorrectly by waiter
+// with false condition.
+TEST(Mutex, MutexReaderDecrementBug) ABSL_NO_THREAD_SAFETY_ANALYSIS {
+ ReaderDecrementBugStruct x;
+ x.cond = false;
+ x.waiting_on_cond = false;
+ x.have_reader_lock = false;
+ x.complete = false;
+ x.done = 2; // initial ref count
+
+ // Run WaitForCond() and wait for it to sleep
+ std::thread thread1(WaitForCond, &x);
+ x.mu2.LockWhen(absl::Condition(&x.waiting_on_cond));
+ x.mu2.Unlock();
+
+ // Run GetReadLock(), and wait for it to get the read lock
+ std::thread thread2(GetReadLock, &x);
+ x.mu2.LockWhen(absl::Condition(&x.have_reader_lock));
+ x.mu2.Unlock();
+
+ // Get the reader lock ourselves, and release it.
+ x.mu.ReaderLock();
+ x.mu.ReaderUnlock();
+
+ // The lock should be held in read mode by GetReadLock().
+ // If we have the bug, the lock will be free.
+ x.mu.AssertReaderHeld();
+
+ // Wake up all the threads.
+ x.mu2.Lock();
+ x.complete = true;
+ x.mu2.Unlock();
+
+ // TODO(delesley): turn on analysis once lock upgrading is supported.
+ // (This call upgrades the lock from shared to exclusive.)
+ x.mu.Lock();
+ x.cond = true;
+ x.mu.Await(absl::Condition(&AllDone, &x));
+ x.mu.Unlock();
+
+ thread1.join();
+ thread2.join();
+}
+#endif // !ABSL_MUTEX_READER_LOCK_IS_EXCLUSIVE
+
+// Test that we correctly handle the situation when a lock is
+// held and then destroyed (w/o unlocking).
+#ifdef THREAD_SANITIZER
+// TSAN reports errors when locked Mutexes are destroyed.
+TEST(Mutex, DISABLED_LockedMutexDestructionBug) NO_THREAD_SAFETY_ANALYSIS {
+#else
+TEST(Mutex, LockedMutexDestructionBug) ABSL_NO_THREAD_SAFETY_ANALYSIS {
+#endif
+ for (int i = 0; i != 10; i++) {
+ // Create, lock and destroy 10 locks.
+ const int kNumLocks = 10;
+ auto mu = absl::make_unique<absl::Mutex[]>(kNumLocks);
+ for (int j = 0; j != kNumLocks; j++) {
+ if ((j % 2) == 0) {
+ mu[j].WriterLock();
+ } else {
+ mu[j].ReaderLock();
+ }
+ }
+ }
+}
+
+// --------------------------------------------------------
+// Test for bug with pattern of readers using a condvar. The bug was that if a
+// reader went to sleep on a condition variable while one or more other readers
+// held the lock, but there were no waiters, the reader count (held in the
+// mutex word) would be lost. (This is because Enqueue() had at one time
+// always placed the thread on the Mutex queue. Later (CL 4075610), to
+// tolerate re-entry into Mutex from a Condition predicate, Enqueue() was
+// changed so that it could also place a thread on a condition-variable. This
+// introduced the case where Enqueue() returned with an empty queue, and this
+// case was handled incorrectly in one place.)
+
+static void ReaderForReaderOnCondVar(absl::Mutex *mu, absl::CondVar *cv,
+ int *running) {
+ std::random_device dev;
+ std::mt19937 gen(dev());
+ std::uniform_int_distribution<int> random_millis(0, 15);
+ mu->ReaderLock();
+ while (*running == 3) {
+ absl::SleepFor(absl::Milliseconds(random_millis(gen)));
+ cv->WaitWithTimeout(mu, absl::Milliseconds(random_millis(gen)));
+ }
+ mu->ReaderUnlock();
+ mu->Lock();
+ (*running)--;
+ mu->Unlock();
+}
+
+struct True {
+ template <class... Args>
+ bool operator()(Args...) const {
+ return true;
+ }
+};
+
+struct DerivedTrue : True {};
+
+TEST(Mutex, FunctorCondition) {
+ { // Variadic
+ True f;
+ EXPECT_TRUE(absl::Condition(&f).Eval());
+ }
+
+ { // Inherited
+ DerivedTrue g;
+ EXPECT_TRUE(absl::Condition(&g).Eval());
+ }
+
+ { // lambda
+ int value = 3;
+ auto is_zero = [&value] { return value == 0; };
+ absl::Condition c(&is_zero);
+ EXPECT_FALSE(c.Eval());
+ value = 0;
+ EXPECT_TRUE(c.Eval());
+ }
+
+ { // bind
+ int value = 0;
+ auto is_positive = std::bind(std::less<int>(), 0, std::cref(value));
+ absl::Condition c(&is_positive);
+ EXPECT_FALSE(c.Eval());
+ value = 1;
+ EXPECT_TRUE(c.Eval());
+ }
+
+ { // std::function
+ int value = 3;
+ std::function<bool()> is_zero = [&value] { return value == 0; };
+ absl::Condition c(&is_zero);
+ EXPECT_FALSE(c.Eval());
+ value = 0;
+ EXPECT_TRUE(c.Eval());
+ }
+}
+
+static bool IntIsZero(int *x) { return *x == 0; }
+
+// Test for reader waiting condition variable when there are other readers
+// but no waiters.
+TEST(Mutex, TestReaderOnCondVar) {
+ auto tp = CreateDefaultPool();
+ absl::Mutex mu;
+ absl::CondVar cv;
+ int running = 3;
+ tp->Schedule(std::bind(&ReaderForReaderOnCondVar, &mu, &cv, &running));
+ tp->Schedule(std::bind(&ReaderForReaderOnCondVar, &mu, &cv, &running));
+ absl::SleepFor(absl::Seconds(2));
+ mu.Lock();
+ running--;
+ mu.Await(absl::Condition(&IntIsZero, &running));
+ mu.Unlock();
+}
+
+// --------------------------------------------------------
+struct AcquireFromConditionStruct {
+ absl::Mutex mu0; // protects value, done
+ int value; // times condition function is called; under mu0,
+ bool done; // done with test? under mu0
+ absl::Mutex mu1; // used to attempt to mess up state of mu0
+ absl::CondVar cv; // so the condition function can be invoked from
+ // CondVar::Wait().
+};
+
+static bool ConditionWithAcquire(AcquireFromConditionStruct *x) {
+ x->value++; // count times this function is called
+
+ if (x->value == 2 || x->value == 3) {
+ // On the second and third invocation of this function, sleep for 100ms,
+ // but with the side-effect of altering the state of a Mutex other than
+ // than one for which this is a condition. The spec now explicitly allows
+ // this side effect; previously it did not. it was illegal.
+ bool always_false = false;
+ x->mu1.LockWhenWithTimeout(absl::Condition(&always_false),
+ absl::Milliseconds(100));
+ x->mu1.Unlock();
+ }
+ ABSL_RAW_CHECK(x->value < 4, "should not be invoked a fourth time");
+
+ // We arrange for the condition to return true on only the 2nd and 3rd calls.
+ return x->value == 2 || x->value == 3;
+}
+
+static void WaitForCond2(AcquireFromConditionStruct *x) {
+ // wait for cond0 to become true
+ x->mu0.LockWhen(absl::Condition(&ConditionWithAcquire, x));
+ x->done = true;
+ x->mu0.Unlock();
+}
+
+// Test for Condition whose function acquires other Mutexes
+TEST(Mutex, AcquireFromCondition) {
+ auto tp = CreateDefaultPool();
+
+ AcquireFromConditionStruct x;
+ x.value = 0;
+ x.done = false;
+ tp->Schedule(
+ std::bind(&WaitForCond2, &x)); // run WaitForCond2() in a thread T
+ // T will hang because the first invocation of ConditionWithAcquire() will
+ // return false.
+ absl::SleepFor(absl::Milliseconds(500)); // allow T time to hang
+
+ x.mu0.Lock();
+ x.cv.WaitWithTimeout(&x.mu0, absl::Milliseconds(500)); // wake T
+ // T will be woken because the Wait() will call ConditionWithAcquire()
+ // for the second time, and it will return true.
+
+ x.mu0.Unlock();
+
+ // T will then acquire the lock and recheck its own condition.
+ // It will find the condition true, as this is the third invocation,
+ // but the use of another Mutex by the calling function will
+ // cause the old mutex implementation to think that the outer
+ // LockWhen() has timed out because the inner LockWhenWithTimeout() did.
+ // T will then check the condition a fourth time because it finds a
+ // timeout occurred. This should not happen in the new
+ // implementation that allows the Condition function to use Mutexes.
+
+ // It should also succeed, even though the Condition function
+ // is being invoked from CondVar::Wait, and thus this thread
+ // is conceptually waiting both on the condition variable, and on mu2.
+
+ x.mu0.LockWhen(absl::Condition(&x.done));
+ x.mu0.Unlock();
+}
+
+// The deadlock detector is not part of non-prod builds, so do not test it.
+#if !defined(ABSL_INTERNAL_USE_NONPROD_MUTEX)
+
+TEST(Mutex, DeadlockDetector) {
+ absl::SetMutexDeadlockDetectionMode(absl::OnDeadlockCycle::kAbort);
+
+ // check that we can call ForgetDeadlockInfo() on a lock with the lock held
+ absl::Mutex m1;
+ absl::Mutex m2;
+ absl::Mutex m3;
+ absl::Mutex m4;
+
+ m1.Lock(); // m1 gets ID1
+ m2.Lock(); // m2 gets ID2
+ m3.Lock(); // m3 gets ID3
+ m3.Unlock();
+ m2.Unlock();
+ // m1 still held
+ m1.ForgetDeadlockInfo(); // m1 loses ID
+ m2.Lock(); // m2 gets ID2
+ m3.Lock(); // m3 gets ID3
+ m4.Lock(); // m4 gets ID4
+ m3.Unlock();
+ m2.Unlock();
+ m4.Unlock();
+ m1.Unlock();
+}
+
+// Bazel has a test "warning" file that programs can write to if the
+// test should pass with a warning. This class disables the warning
+// file until it goes out of scope.
+class ScopedDisableBazelTestWarnings {
+ public:
+ ScopedDisableBazelTestWarnings() {
+#ifdef _WIN32
+ char file[MAX_PATH];
+ if (GetEnvironmentVariableA(kVarName, file, sizeof(file)) < sizeof(file)) {
+ warnings_output_file_ = file;
+ SetEnvironmentVariableA(kVarName, nullptr);
+ }
+#else
+ const char *file = getenv(kVarName);
+ if (file != nullptr) {
+ warnings_output_file_ = file;
+ unsetenv(kVarName);
+ }
+#endif
+ }
+
+ ~ScopedDisableBazelTestWarnings() {
+ if (!warnings_output_file_.empty()) {
+#ifdef _WIN32
+ SetEnvironmentVariableA(kVarName, warnings_output_file_.c_str());
+#else
+ setenv(kVarName, warnings_output_file_.c_str(), 0);
+#endif
+ }
+ }
+
+ private:
+ static const char kVarName[];
+ std::string warnings_output_file_;
+};
+const char ScopedDisableBazelTestWarnings::kVarName[] =
+ "TEST_WARNINGS_OUTPUT_FILE";
+
+#ifdef THREAD_SANITIZER
+// This test intentionally creates deadlocks to test the deadlock detector.
+TEST(Mutex, DISABLED_DeadlockDetectorBazelWarning) {
+#else
+TEST(Mutex, DeadlockDetectorBazelWarning) {
+#endif
+ absl::SetMutexDeadlockDetectionMode(absl::OnDeadlockCycle::kReport);
+
+ // Cause deadlock detection to detect something, if it's
+ // compiled in and enabled. But turn off the bazel warning.
+ ScopedDisableBazelTestWarnings disable_bazel_test_warnings;
+
+ absl::Mutex mu0;
+ absl::Mutex mu1;
+ bool got_mu0 = mu0.TryLock();
+ mu1.Lock(); // acquire mu1 while holding mu0
+ if (got_mu0) {
+ mu0.Unlock();
+ }
+ if (mu0.TryLock()) { // try lock shouldn't cause deadlock detector to fire
+ mu0.Unlock();
+ }
+ mu0.Lock(); // acquire mu0 while holding mu1; should get one deadlock
+ // report here
+ mu0.Unlock();
+ mu1.Unlock();
+
+ absl::SetMutexDeadlockDetectionMode(absl::OnDeadlockCycle::kAbort);
+}
+
+// This test is tagged with NO_THREAD_SAFETY_ANALYSIS because the
+// annotation-based static thread-safety analysis is not currently
+// predicate-aware and cannot tell if the two for-loops that acquire and
+// release the locks have the same predicates.
+TEST(Mutex, DeadlockDetectorStessTest) ABSL_NO_THREAD_SAFETY_ANALYSIS {
+ // Stress test: Here we create a large number of locks and use all of them.
+ // If a deadlock detector keeps a full graph of lock acquisition order,
+ // it will likely be too slow for this test to pass.
+ const int n_locks = 1 << 17;
+ auto array_of_locks = absl::make_unique<absl::Mutex[]>(n_locks);
+ for (int i = 0; i < n_locks; i++) {
+ int end = std::min(n_locks, i + 5);
+ // acquire and then release locks i, i+1, ..., i+4
+ for (int j = i; j < end; j++) {
+ array_of_locks[j].Lock();
+ }
+ for (int j = i; j < end; j++) {
+ array_of_locks[j].Unlock();
+ }
+ }
+}
+
+#ifdef THREAD_SANITIZER
+// TSAN reports errors when locked Mutexes are destroyed.
+TEST(Mutex, DISABLED_DeadlockIdBug) NO_THREAD_SAFETY_ANALYSIS {
+#else
+TEST(Mutex, DeadlockIdBug) ABSL_NO_THREAD_SAFETY_ANALYSIS {
+#endif
+ // Test a scenario where a cached deadlock graph node id in the
+ // list of held locks is not invalidated when the corresponding
+ // mutex is deleted.
+ absl::SetMutexDeadlockDetectionMode(absl::OnDeadlockCycle::kAbort);
+ // Mutex that will be destroyed while being held
+ absl::Mutex *a = new absl::Mutex;
+ // Other mutexes needed by test
+ absl::Mutex b, c;
+
+ // Hold mutex.
+ a->Lock();
+
+ // Force deadlock id assignment by acquiring another lock.
+ b.Lock();
+ b.Unlock();
+
+ // Delete the mutex. The Mutex destructor tries to remove held locks,
+ // but the attempt isn't foolproof. It can fail if:
+ // (a) Deadlock detection is currently disabled.
+ // (b) The destruction is from another thread.
+ // We exploit (a) by temporarily disabling deadlock detection.
+ absl::SetMutexDeadlockDetectionMode(absl::OnDeadlockCycle::kIgnore);
+ delete a;
+ absl::SetMutexDeadlockDetectionMode(absl::OnDeadlockCycle::kAbort);
+
+ // Now acquire another lock which will force a deadlock id assignment.
+ // We should end up getting assigned the same deadlock id that was
+ // freed up when "a" was deleted, which will cause a spurious deadlock
+ // report if the held lock entry for "a" was not invalidated.
+ c.Lock();
+ c.Unlock();
+}
+#endif // !defined(ABSL_INTERNAL_USE_NONPROD_MUTEX)
+
+// --------------------------------------------------------
+// Test for timeouts/deadlines on condition waits that are specified using
+// absl::Duration and absl::Time. For each waiting function we test with
+// a timeout/deadline that has already expired/passed, one that is infinite
+// and so never expires/passes, and one that will expire/pass in the near
+// future.
+
+static absl::Duration TimeoutTestAllowedSchedulingDelay() {
+ // Note: we use a function here because Microsoft Visual Studio fails to
+ // properly initialize constexpr static absl::Duration variables.
+ return absl::Milliseconds(150);
+}
+
+// Returns true if `actual_delay` is close enough to `expected_delay` to pass
+// the timeouts/deadlines test. Otherwise, logs warnings and returns false.
+ABSL_MUST_USE_RESULT
+static bool DelayIsWithinBounds(absl::Duration expected_delay,
+ absl::Duration actual_delay) {
+ bool pass = true;
+ // Do not allow the observed delay to be less than expected. This may occur
+ // in practice due to clock skew or when the synchronization primitives use a
+ // different clock than absl::Now(), but these cases should be handled by the
+ // the retry mechanism in each TimeoutTest.
+ if (actual_delay < expected_delay) {
+ ABSL_RAW_LOG(WARNING,
+ "Actual delay %s was too short, expected %s (difference %s)",
+ absl::FormatDuration(actual_delay).c_str(),
+ absl::FormatDuration(expected_delay).c_str(),
+ absl::FormatDuration(actual_delay - expected_delay).c_str());
+ pass = false;
+ }
+ // If the expected delay is <= zero then allow a small error tolerance, since
+ // we do not expect context switches to occur during test execution.
+ // Otherwise, thread scheduling delays may be substantial in rare cases, so
+ // tolerate up to kTimeoutTestAllowedSchedulingDelay of error.
+ absl::Duration tolerance = expected_delay <= absl::ZeroDuration()
+ ? absl::Milliseconds(10)
+ : TimeoutTestAllowedSchedulingDelay();
+ if (actual_delay > expected_delay + tolerance) {
+ ABSL_RAW_LOG(WARNING,
+ "Actual delay %s was too long, expected %s (difference %s)",
+ absl::FormatDuration(actual_delay).c_str(),
+ absl::FormatDuration(expected_delay).c_str(),
+ absl::FormatDuration(actual_delay - expected_delay).c_str());
+ pass = false;
+ }
+ return pass;
+}
+
+// Parameters for TimeoutTest, below.
+struct TimeoutTestParam {
+ // The file and line number (used for logging purposes only).
+ const char *from_file;
+ int from_line;
+
+ // Should the absolute deadline API based on absl::Time be tested? If false,
+ // the relative deadline API based on absl::Duration is tested.
+ bool use_absolute_deadline;
+
+ // The deadline/timeout used when calling the API being tested
+ // (e.g. Mutex::LockWhenWithDeadline).
+ absl::Duration wait_timeout;
+
+ // The delay before the condition will be set true by the test code. If zero
+ // or negative, the condition is set true immediately (before calling the API
+ // being tested). Otherwise, if infinite, the condition is never set true.
+ // Otherwise a closure is scheduled for the future that sets the condition
+ // true.
+ absl::Duration satisfy_condition_delay;
+
+ // The expected result of the condition after the call to the API being
+ // tested. Generally `true` means the condition was true when the API returns,
+ // `false` indicates an expected timeout.
+ bool expected_result;
+
+ // The expected delay before the API under test returns. This is inherently
+ // flaky, so some slop is allowed (see `DelayIsWithinBounds` above), and the
+ // test keeps trying indefinitely until this constraint passes.
+ absl::Duration expected_delay;
+};
+
+// Print a `TimeoutTestParam` to a debug log.
+std::ostream &operator<<(std::ostream &os, const TimeoutTestParam &param) {
+ return os << "from: " << param.from_file << ":" << param.from_line
+ << " use_absolute_deadline: "
+ << (param.use_absolute_deadline ? "true" : "false")
+ << " wait_timeout: " << param.wait_timeout
+ << " satisfy_condition_delay: " << param.satisfy_condition_delay
+ << " expected_result: "
+ << (param.expected_result ? "true" : "false")
+ << " expected_delay: " << param.expected_delay;
+}
+
+std::string FormatString(const TimeoutTestParam &param) {
+ std::ostringstream os;
+ os << param;
+ return os.str();
+}
+
+// Like `thread::Executor::ScheduleAt` except:
+// a) Delays zero or negative are executed immediately in the current thread.
+// b) Infinite delays are never scheduled.
+// c) Calls this test's `ScheduleAt` helper instead of using `pool` directly.
+static void RunAfterDelay(absl::Duration delay,
+ absl::synchronization_internal::ThreadPool *pool,
+ const std::function<void()> &callback) {
+ if (delay <= absl::ZeroDuration()) {
+ callback(); // immediate
+ } else if (delay != absl::InfiniteDuration()) {
+ ScheduleAfter(pool, delay, callback);
+ }
+}
+
+class TimeoutTest : public ::testing::Test,
+ public ::testing::WithParamInterface<TimeoutTestParam> {};
+
+std::vector<TimeoutTestParam> MakeTimeoutTestParamValues() {
+ // The `finite` delay is a finite, relatively short, delay. We make it larger
+ // than our allowed scheduling delay (slop factor) to avoid confusion when
+ // diagnosing test failures. The other constants here have clear meanings.
+ const absl::Duration finite = 3 * TimeoutTestAllowedSchedulingDelay();
+ const absl::Duration never = absl::InfiniteDuration();
+ const absl::Duration negative = -absl::InfiniteDuration();
+ const absl::Duration immediate = absl::ZeroDuration();
+
+ // Every test case is run twice; once using the absolute deadline API and once
+ // using the relative timeout API.
+ std::vector<TimeoutTestParam> values;
+ for (bool use_absolute_deadline : {false, true}) {
+ // Tests with a negative timeout (deadline in the past), which should
+ // immediately return current state of the condition.
+
+ // The condition is already true:
+ values.push_back(TimeoutTestParam{
+ __FILE__, __LINE__, use_absolute_deadline,
+ negative, // wait_timeout
+ immediate, // satisfy_condition_delay
+ true, // expected_result
+ immediate, // expected_delay
+ });
+
+ // The condition becomes true, but the timeout has already expired:
+ values.push_back(TimeoutTestParam{
+ __FILE__, __LINE__, use_absolute_deadline,
+ negative, // wait_timeout
+ finite, // satisfy_condition_delay
+ false, // expected_result
+ immediate // expected_delay
+ });
+
+ // The condition never becomes true:
+ values.push_back(TimeoutTestParam{
+ __FILE__, __LINE__, use_absolute_deadline,
+ negative, // wait_timeout
+ never, // satisfy_condition_delay
+ false, // expected_result
+ immediate // expected_delay
+ });
+
+ // Tests with an infinite timeout (deadline in the infinite future), which
+ // should only return when the condition becomes true.
+
+ // The condition is already true:
+ values.push_back(TimeoutTestParam{
+ __FILE__, __LINE__, use_absolute_deadline,
+ never, // wait_timeout
+ immediate, // satisfy_condition_delay
+ true, // expected_result
+ immediate // expected_delay
+ });
+
+ // The condition becomes true before the (infinite) expiry:
+ values.push_back(TimeoutTestParam{
+ __FILE__, __LINE__, use_absolute_deadline,
+ never, // wait_timeout
+ finite, // satisfy_condition_delay
+ true, // expected_result
+ finite, // expected_delay
+ });
+
+ // Tests with a (small) finite timeout (deadline soon), with the condition
+ // becoming true both before and after its expiry.
+
+ // The condition is already true:
+ values.push_back(TimeoutTestParam{
+ __FILE__, __LINE__, use_absolute_deadline,
+ never, // wait_timeout
+ immediate, // satisfy_condition_delay
+ true, // expected_result
+ immediate // expected_delay
+ });
+
+ // The condition becomes true before the expiry:
+ values.push_back(TimeoutTestParam{
+ __FILE__, __LINE__, use_absolute_deadline,
+ finite * 2, // wait_timeout
+ finite, // satisfy_condition_delay
+ true, // expected_result
+ finite // expected_delay
+ });
+
+ // The condition becomes true, but the timeout has already expired:
+ values.push_back(TimeoutTestParam{
+ __FILE__, __LINE__, use_absolute_deadline,
+ finite, // wait_timeout
+ finite * 2, // satisfy_condition_delay
+ false, // expected_result
+ finite // expected_delay
+ });
+
+ // The condition never becomes true:
+ values.push_back(TimeoutTestParam{
+ __FILE__, __LINE__, use_absolute_deadline,
+ finite, // wait_timeout
+ never, // satisfy_condition_delay
+ false, // expected_result
+ finite // expected_delay
+ });
+ }
+ return values;
+}
+
+// Instantiate `TimeoutTest` with `MakeTimeoutTestParamValues()`.
+INSTANTIATE_TEST_SUITE_P(All, TimeoutTest,
+ testing::ValuesIn(MakeTimeoutTestParamValues()));
+
+TEST_P(TimeoutTest, Await) {
+ const TimeoutTestParam params = GetParam();
+ ABSL_RAW_LOG(INFO, "Params: %s", FormatString(params).c_str());
+
+ // Because this test asserts bounds on scheduling delays it is flaky. To
+ // compensate it loops forever until it passes. Failures express as test
+ // timeouts, in which case the test log can be used to diagnose the issue.
+ for (int attempt = 1;; ++attempt) {
+ ABSL_RAW_LOG(INFO, "Attempt %d", attempt);
+
+ absl::Mutex mu;
+ bool value = false; // condition value (under mu)
+
+ std::unique_ptr<absl::synchronization_internal::ThreadPool> pool =
+ CreateDefaultPool();
+ RunAfterDelay(params.satisfy_condition_delay, pool.get(), [&] {
+ absl::MutexLock l(&mu);
+ value = true;
+ });
+
+ absl::MutexLock lock(&mu);
+ absl::Time start_time = absl::Now();
+ absl::Condition cond(&value);
+ bool result =
+ params.use_absolute_deadline
+ ? mu.AwaitWithDeadline(cond, start_time + params.wait_timeout)
+ : mu.AwaitWithTimeout(cond, params.wait_timeout);
+ if (DelayIsWithinBounds(params.expected_delay, absl::Now() - start_time)) {
+ EXPECT_EQ(params.expected_result, result);
+ break;
+ }
+ }
+}
+
+TEST_P(TimeoutTest, LockWhen) {
+ const TimeoutTestParam params = GetParam();
+ ABSL_RAW_LOG(INFO, "Params: %s", FormatString(params).c_str());
+
+ // Because this test asserts bounds on scheduling delays it is flaky. To
+ // compensate it loops forever until it passes. Failures express as test
+ // timeouts, in which case the test log can be used to diagnose the issue.
+ for (int attempt = 1;; ++attempt) {
+ ABSL_RAW_LOG(INFO, "Attempt %d", attempt);
+
+ absl::Mutex mu;
+ bool value = false; // condition value (under mu)
+
+ std::unique_ptr<absl::synchronization_internal::ThreadPool> pool =
+ CreateDefaultPool();
+ RunAfterDelay(params.satisfy_condition_delay, pool.get(), [&] {
+ absl::MutexLock l(&mu);
+ value = true;
+ });
+
+ absl::Time start_time = absl::Now();
+ absl::Condition cond(&value);
+ bool result =
+ params.use_absolute_deadline
+ ? mu.LockWhenWithDeadline(cond, start_time + params.wait_timeout)
+ : mu.LockWhenWithTimeout(cond, params.wait_timeout);
+ mu.Unlock();
+
+ if (DelayIsWithinBounds(params.expected_delay, absl::Now() - start_time)) {
+ EXPECT_EQ(params.expected_result, result);
+ break;
+ }
+ }
+}
+
+TEST_P(TimeoutTest, ReaderLockWhen) {
+ const TimeoutTestParam params = GetParam();
+ ABSL_RAW_LOG(INFO, "Params: %s", FormatString(params).c_str());
+
+ // Because this test asserts bounds on scheduling delays it is flaky. To
+ // compensate it loops forever until it passes. Failures express as test
+ // timeouts, in which case the test log can be used to diagnose the issue.
+ for (int attempt = 0;; ++attempt) {
+ ABSL_RAW_LOG(INFO, "Attempt %d", attempt);
+
+ absl::Mutex mu;
+ bool value = false; // condition value (under mu)
+
+ std::unique_ptr<absl::synchronization_internal::ThreadPool> pool =
+ CreateDefaultPool();
+ RunAfterDelay(params.satisfy_condition_delay, pool.get(), [&] {
+ absl::MutexLock l(&mu);
+ value = true;
+ });
+
+ absl::Time start_time = absl::Now();
+ bool result =
+ params.use_absolute_deadline
+ ? mu.ReaderLockWhenWithDeadline(absl::Condition(&value),
+ start_time + params.wait_timeout)
+ : mu.ReaderLockWhenWithTimeout(absl::Condition(&value),
+ params.wait_timeout);
+ mu.ReaderUnlock();
+
+ if (DelayIsWithinBounds(params.expected_delay, absl::Now() - start_time)) {
+ EXPECT_EQ(params.expected_result, result);
+ break;
+ }
+ }
+}
+
+TEST_P(TimeoutTest, Wait) {
+ const TimeoutTestParam params = GetParam();
+ ABSL_RAW_LOG(INFO, "Params: %s", FormatString(params).c_str());
+
+ // Because this test asserts bounds on scheduling delays it is flaky. To
+ // compensate it loops forever until it passes. Failures express as test
+ // timeouts, in which case the test log can be used to diagnose the issue.
+ for (int attempt = 0;; ++attempt) {
+ ABSL_RAW_LOG(INFO, "Attempt %d", attempt);
+
+ absl::Mutex mu;
+ bool value = false; // condition value (under mu)
+ absl::CondVar cv; // signals a change of `value`
+
+ std::unique_ptr<absl::synchronization_internal::ThreadPool> pool =
+ CreateDefaultPool();
+ RunAfterDelay(params.satisfy_condition_delay, pool.get(), [&] {
+ absl::MutexLock l(&mu);
+ value = true;
+ cv.Signal();
+ });
+
+ absl::MutexLock lock(&mu);
+ absl::Time start_time = absl::Now();
+ absl::Duration timeout = params.wait_timeout;
+ absl::Time deadline = start_time + timeout;
+ while (!value) {
+ if (params.use_absolute_deadline ? cv.WaitWithDeadline(&mu, deadline)
+ : cv.WaitWithTimeout(&mu, timeout)) {
+ break; // deadline/timeout exceeded
+ }
+ timeout = deadline - absl::Now(); // recompute
+ }
+ bool result = value; // note: `mu` is still held
+
+ if (DelayIsWithinBounds(params.expected_delay, absl::Now() - start_time)) {
+ EXPECT_EQ(params.expected_result, result);
+ break;
+ }
+ }
+}
+
+TEST(Mutex, Logging) {
+ // Allow user to look at logging output
+ absl::Mutex logged_mutex;
+ logged_mutex.EnableDebugLog("fido_mutex");
+ absl::CondVar logged_cv;
+ logged_cv.EnableDebugLog("rover_cv");
+ logged_mutex.Lock();
+ logged_cv.WaitWithTimeout(&logged_mutex, absl::Milliseconds(20));
+ logged_mutex.Unlock();
+ logged_mutex.ReaderLock();
+ logged_mutex.ReaderUnlock();
+ logged_mutex.Lock();
+ logged_mutex.Unlock();
+ logged_cv.Signal();
+ logged_cv.SignalAll();
+}
+
+// --------------------------------------------------------
+
+// Generate the vector of thread counts for tests parameterized on thread count.
+static std::vector<int> AllThreadCountValues() {
+ if (kExtendedTest) {
+ return {2, 4, 8, 10, 16, 20, 24, 30, 32};
+ }
+ return {2, 4, 10};
+}
+
+// A test fixture parameterized by thread count.
+class MutexVariableThreadCountTest : public ::testing::TestWithParam<int> {};
+
+// Instantiate the above with AllThreadCountOptions().
+INSTANTIATE_TEST_SUITE_P(ThreadCounts, MutexVariableThreadCountTest,
+ ::testing::ValuesIn(AllThreadCountValues()),
+ ::testing::PrintToStringParamName());
+
+// Reduces iterations by some factor for slow platforms
+// (determined empirically).
+static int ScaleIterations(int x) {
+ // ABSL_MUTEX_READER_LOCK_IS_EXCLUSIVE is set in the implementation
+ // of Mutex that uses either std::mutex or pthread_mutex_t. Use
+ // these as keys to determine the slow implementation.
+#if defined(ABSL_MUTEX_READER_LOCK_IS_EXCLUSIVE)
+ return x / 10;
+#else
+ return x;
+#endif
+}
+
+TEST_P(MutexVariableThreadCountTest, Mutex) {
+ int threads = GetParam();
+ int iterations = ScaleIterations(10000000) / threads;
+ int operations = threads * iterations;
+ EXPECT_EQ(RunTest(&TestMu, threads, iterations, operations), operations);
+#if !defined(ABSL_MUTEX_ENABLE_INVARIANT_DEBUGGING_NOT_IMPLEMENTED)
+ iterations = std::min(iterations, 10);
+ operations = threads * iterations;
+ EXPECT_EQ(RunTestWithInvariantDebugging(&TestMu, threads, iterations,
+ operations, CheckSumG0G1),
+ operations);
+#endif
+}
+
+TEST_P(MutexVariableThreadCountTest, Try) {
+ int threads = GetParam();
+ int iterations = 1000000 / threads;
+ int operations = iterations * threads;
+ EXPECT_EQ(RunTest(&TestTry, threads, iterations, operations), operations);
+#if !defined(ABSL_MUTEX_ENABLE_INVARIANT_DEBUGGING_NOT_IMPLEMENTED)
+ iterations = std::min(iterations, 10);
+ operations = threads * iterations;
+ EXPECT_EQ(RunTestWithInvariantDebugging(&TestTry, threads, iterations,
+ operations, CheckSumG0G1),
+ operations);
+#endif
+}
+
+TEST_P(MutexVariableThreadCountTest, R20ms) {
+ int threads = GetParam();
+ int iterations = 100;
+ int operations = iterations * threads;
+ EXPECT_EQ(RunTest(&TestR20ms, threads, iterations, operations), 0);
+}
+
+TEST_P(MutexVariableThreadCountTest, RW) {
+ int threads = GetParam();
+ int iterations = ScaleIterations(20000000) / threads;
+ int operations = iterations * threads;
+ EXPECT_EQ(RunTest(&TestRW, threads, iterations, operations), operations / 2);
+#if !defined(ABSL_MUTEX_ENABLE_INVARIANT_DEBUGGING_NOT_IMPLEMENTED)
+ iterations = std::min(iterations, 10);
+ operations = threads * iterations;
+ EXPECT_EQ(RunTestWithInvariantDebugging(&TestRW, threads, iterations,
+ operations, CheckSumG0G1),
+ operations / 2);
+#endif
+}
+
+TEST_P(MutexVariableThreadCountTest, Await) {
+ int threads = GetParam();
+ int iterations = ScaleIterations(500000);
+ int operations = iterations;
+ EXPECT_EQ(RunTest(&TestAwait, threads, iterations, operations), operations);
+}
+
+TEST_P(MutexVariableThreadCountTest, SignalAll) {
+ int threads = GetParam();
+ int iterations = 200000 / threads;
+ int operations = iterations;
+ EXPECT_EQ(RunTest(&TestSignalAll, threads, iterations, operations),
+ operations);
+}
+
+TEST(Mutex, Signal) {
+ int threads = 2; // TestSignal must use two threads
+ int iterations = 200000;
+ int operations = iterations;
+ EXPECT_EQ(RunTest(&TestSignal, threads, iterations, operations), operations);
+}
+
+TEST(Mutex, Timed) {
+ int threads = 10; // Use a fixed thread count of 10
+ int iterations = 1000;
+ int operations = iterations;
+ EXPECT_EQ(RunTest(&TestCVTimeout, threads, iterations, operations),
+ operations);
+}
+
+TEST(Mutex, CVTime) {
+ int threads = 10; // Use a fixed thread count of 10
+ int iterations = 1;
+ EXPECT_EQ(RunTest(&TestCVTime, threads, iterations, 1),
+ threads * iterations);
+}
+
+TEST(Mutex, MuTime) {
+ int threads = 10; // Use a fixed thread count of 10
+ int iterations = 1;
+ EXPECT_EQ(RunTest(&TestMuTime, threads, iterations, 1), threads * iterations);
+}
+
+} // namespace