aboutsummaryrefslogtreecommitdiff
path: root/webrtc/modules/audio_processing/agc/pitch_internal.cc
diff options
context:
space:
mode:
Diffstat (limited to 'webrtc/modules/audio_processing/agc/pitch_internal.cc')
-rw-r--r--webrtc/modules/audio_processing/agc/pitch_internal.cc52
1 files changed, 52 insertions, 0 deletions
diff --git a/webrtc/modules/audio_processing/agc/pitch_internal.cc b/webrtc/modules/audio_processing/agc/pitch_internal.cc
new file mode 100644
index 0000000000..b394074bd3
--- /dev/null
+++ b/webrtc/modules/audio_processing/agc/pitch_internal.cc
@@ -0,0 +1,52 @@
+/*
+ * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include "webrtc/modules/audio_processing/agc/pitch_internal.h"
+
+#include <cmath>
+
+// A 4-to-3 linear interpolation.
+// The interpolation constants are derived as following:
+// Input pitch parameters are updated every 7.5 ms. Within a 30-ms interval
+// we are interested in pitch parameters of 0-5 ms, 10-15ms and 20-25ms. This is
+// like interpolating 4-to-6 and keep the odd samples.
+// The reason behind this is that LPC coefficients are computed for the first
+// half of each 10ms interval.
+static void PitchInterpolation(double old_val, const double* in, double* out) {
+ out[0] = 1. / 6. * old_val + 5. / 6. * in[0];
+ out[1] = 5. / 6. * in[1] + 1. / 6. * in[2];
+ out[2] = 0.5 * in[2] + 0.5 * in[3];
+}
+
+
+void GetSubframesPitchParameters(int sampling_rate_hz,
+ double* gains,
+ double* lags,
+ int num_in_frames,
+ int num_out_frames,
+ double* log_old_gain,
+ double* old_lag,
+ double* log_pitch_gain,
+ double* pitch_lag_hz) {
+ // Gain interpolation is in log-domain, also returned in log-domain.
+ for (int n = 0; n < num_in_frames; n++)
+ gains[n] = log(gains[n] + 1e-12);
+
+ // Interpolate lags and gains.
+ PitchInterpolation(*log_old_gain, gains, log_pitch_gain);
+ *log_old_gain = gains[num_in_frames - 1];
+ PitchInterpolation(*old_lag, lags, pitch_lag_hz);
+ *old_lag = lags[num_in_frames - 1];
+
+ // Convert pitch-lags to Hertz.
+ for (int n = 0; n < num_out_frames; n++) {
+ pitch_lag_hz[n] = (sampling_rate_hz) / (pitch_lag_hz[n]);
+ }
+}