aboutsummaryrefslogtreecommitdiff
path: root/webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer.cc
diff options
context:
space:
mode:
Diffstat (limited to 'webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer.cc')
-rw-r--r--webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer.cc381
1 files changed, 381 insertions, 0 deletions
diff --git a/webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer.cc b/webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer.cc
new file mode 100644
index 0000000000..d014ce060c
--- /dev/null
+++ b/webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer.cc
@@ -0,0 +1,381 @@
+/*
+ * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+//
+// Implements core class for intelligibility enhancer.
+//
+// Details of the model and algorithm can be found in the original paper:
+// http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6882788
+//
+
+#include "webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer.h"
+
+#include <math.h>
+#include <stdlib.h>
+#include <algorithm>
+#include <numeric>
+
+#include "webrtc/base/checks.h"
+#include "webrtc/common_audio/include/audio_util.h"
+#include "webrtc/common_audio/window_generator.h"
+
+namespace webrtc {
+
+namespace {
+
+const size_t kErbResolution = 2;
+const int kWindowSizeMs = 2;
+const int kChunkSizeMs = 10; // Size provided by APM.
+const float kClipFreq = 200.0f;
+const float kConfigRho = 0.02f; // Default production and interpretation SNR.
+const float kKbdAlpha = 1.5f;
+const float kLambdaBot = -1.0f; // Extreme values in bisection
+const float kLambdaTop = -10e-18f; // search for lamda.
+
+} // namespace
+
+using std::complex;
+using std::max;
+using std::min;
+using VarianceType = intelligibility::VarianceArray::StepType;
+
+IntelligibilityEnhancer::TransformCallback::TransformCallback(
+ IntelligibilityEnhancer* parent,
+ IntelligibilityEnhancer::AudioSource source)
+ : parent_(parent), source_(source) {
+}
+
+void IntelligibilityEnhancer::TransformCallback::ProcessAudioBlock(
+ const complex<float>* const* in_block,
+ int in_channels,
+ size_t frames,
+ int /* out_channels */,
+ complex<float>* const* out_block) {
+ RTC_DCHECK_EQ(parent_->freqs_, frames);
+ for (int i = 0; i < in_channels; ++i) {
+ parent_->DispatchAudio(source_, in_block[i], out_block[i]);
+ }
+}
+
+IntelligibilityEnhancer::IntelligibilityEnhancer()
+ : IntelligibilityEnhancer(IntelligibilityEnhancer::Config()) {
+}
+
+IntelligibilityEnhancer::IntelligibilityEnhancer(const Config& config)
+ : freqs_(RealFourier::ComplexLength(
+ RealFourier::FftOrder(config.sample_rate_hz * kWindowSizeMs / 1000))),
+ window_size_(static_cast<size_t>(1 << RealFourier::FftOrder(freqs_))),
+ chunk_length_(
+ static_cast<size_t>(config.sample_rate_hz * kChunkSizeMs / 1000)),
+ bank_size_(GetBankSize(config.sample_rate_hz, kErbResolution)),
+ sample_rate_hz_(config.sample_rate_hz),
+ erb_resolution_(kErbResolution),
+ num_capture_channels_(config.num_capture_channels),
+ num_render_channels_(config.num_render_channels),
+ analysis_rate_(config.analysis_rate),
+ active_(true),
+ clear_variance_(freqs_,
+ config.var_type,
+ config.var_window_size,
+ config.var_decay_rate),
+ noise_variance_(freqs_,
+ config.var_type,
+ config.var_window_size,
+ config.var_decay_rate),
+ filtered_clear_var_(new float[bank_size_]),
+ filtered_noise_var_(new float[bank_size_]),
+ filter_bank_(bank_size_),
+ center_freqs_(new float[bank_size_]),
+ rho_(new float[bank_size_]),
+ gains_eq_(new float[bank_size_]),
+ gain_applier_(freqs_, config.gain_change_limit),
+ temp_render_out_buffer_(chunk_length_, num_render_channels_),
+ temp_capture_out_buffer_(chunk_length_, num_capture_channels_),
+ kbd_window_(new float[window_size_]),
+ render_callback_(this, AudioSource::kRenderStream),
+ capture_callback_(this, AudioSource::kCaptureStream),
+ block_count_(0),
+ analysis_step_(0) {
+ RTC_DCHECK_LE(config.rho, 1.0f);
+
+ CreateErbBank();
+
+ // Assumes all rho equal.
+ for (size_t i = 0; i < bank_size_; ++i) {
+ rho_[i] = config.rho * config.rho;
+ }
+
+ float freqs_khz = kClipFreq / 1000.0f;
+ size_t erb_index = static_cast<size_t>(ceilf(
+ 11.17f * logf((freqs_khz + 0.312f) / (freqs_khz + 14.6575f)) + 43.0f));
+ start_freq_ = std::max(static_cast<size_t>(1), erb_index * erb_resolution_);
+
+ WindowGenerator::KaiserBesselDerived(kKbdAlpha, window_size_,
+ kbd_window_.get());
+ render_mangler_.reset(new LappedTransform(
+ num_render_channels_, num_render_channels_, chunk_length_,
+ kbd_window_.get(), window_size_, window_size_ / 2, &render_callback_));
+ capture_mangler_.reset(new LappedTransform(
+ num_capture_channels_, num_capture_channels_, chunk_length_,
+ kbd_window_.get(), window_size_, window_size_ / 2, &capture_callback_));
+}
+
+void IntelligibilityEnhancer::ProcessRenderAudio(float* const* audio,
+ int sample_rate_hz,
+ int num_channels) {
+ RTC_CHECK_EQ(sample_rate_hz_, sample_rate_hz);
+ RTC_CHECK_EQ(num_render_channels_, num_channels);
+
+ if (active_) {
+ render_mangler_->ProcessChunk(audio, temp_render_out_buffer_.channels());
+ }
+
+ if (active_) {
+ for (int i = 0; i < num_render_channels_; ++i) {
+ memcpy(audio[i], temp_render_out_buffer_.channels()[i],
+ chunk_length_ * sizeof(**audio));
+ }
+ }
+}
+
+void IntelligibilityEnhancer::AnalyzeCaptureAudio(float* const* audio,
+ int sample_rate_hz,
+ int num_channels) {
+ RTC_CHECK_EQ(sample_rate_hz_, sample_rate_hz);
+ RTC_CHECK_EQ(num_capture_channels_, num_channels);
+
+ capture_mangler_->ProcessChunk(audio, temp_capture_out_buffer_.channels());
+}
+
+void IntelligibilityEnhancer::DispatchAudio(
+ IntelligibilityEnhancer::AudioSource source,
+ const complex<float>* in_block,
+ complex<float>* out_block) {
+ switch (source) {
+ case kRenderStream:
+ ProcessClearBlock(in_block, out_block);
+ break;
+ case kCaptureStream:
+ ProcessNoiseBlock(in_block, out_block);
+ break;
+ }
+}
+
+void IntelligibilityEnhancer::ProcessClearBlock(const complex<float>* in_block,
+ complex<float>* out_block) {
+ if (block_count_ < 2) {
+ memset(out_block, 0, freqs_ * sizeof(*out_block));
+ ++block_count_;
+ return;
+ }
+
+ // TODO(ekm): Use VAD to |Step| and |AnalyzeClearBlock| only if necessary.
+ if (true) {
+ clear_variance_.Step(in_block, false);
+ if (block_count_ % analysis_rate_ == analysis_rate_ - 1) {
+ const float power_target = std::accumulate(
+ clear_variance_.variance(), clear_variance_.variance() + freqs_, 0.f);
+ AnalyzeClearBlock(power_target);
+ ++analysis_step_;
+ }
+ ++block_count_;
+ }
+
+ if (active_) {
+ gain_applier_.Apply(in_block, out_block);
+ }
+}
+
+void IntelligibilityEnhancer::AnalyzeClearBlock(float power_target) {
+ FilterVariance(clear_variance_.variance(), filtered_clear_var_.get());
+ FilterVariance(noise_variance_.variance(), filtered_noise_var_.get());
+
+ SolveForGainsGivenLambda(kLambdaTop, start_freq_, gains_eq_.get());
+ const float power_top =
+ DotProduct(gains_eq_.get(), filtered_clear_var_.get(), bank_size_);
+ SolveForGainsGivenLambda(kLambdaBot, start_freq_, gains_eq_.get());
+ const float power_bot =
+ DotProduct(gains_eq_.get(), filtered_clear_var_.get(), bank_size_);
+ if (power_target >= power_bot && power_target <= power_top) {
+ SolveForLambda(power_target, power_bot, power_top);
+ UpdateErbGains();
+ } // Else experiencing variance underflow, so do nothing.
+}
+
+void IntelligibilityEnhancer::SolveForLambda(float power_target,
+ float power_bot,
+ float power_top) {
+ const float kConvergeThresh = 0.001f; // TODO(ekmeyerson): Find best values
+ const int kMaxIters = 100; // for these, based on experiments.
+
+ const float reciprocal_power_target = 1.f / power_target;
+ float lambda_bot = kLambdaBot;
+ float lambda_top = kLambdaTop;
+ float power_ratio = 2.0f; // Ratio of achieved power to target power.
+ int iters = 0;
+ while (std::fabs(power_ratio - 1.0f) > kConvergeThresh &&
+ iters <= kMaxIters) {
+ const float lambda = lambda_bot + (lambda_top - lambda_bot) / 2.0f;
+ SolveForGainsGivenLambda(lambda, start_freq_, gains_eq_.get());
+ const float power =
+ DotProduct(gains_eq_.get(), filtered_clear_var_.get(), bank_size_);
+ if (power < power_target) {
+ lambda_bot = lambda;
+ } else {
+ lambda_top = lambda;
+ }
+ power_ratio = std::fabs(power * reciprocal_power_target);
+ ++iters;
+ }
+}
+
+void IntelligibilityEnhancer::UpdateErbGains() {
+ // (ERB gain) = filterbank' * (freq gain)
+ float* gains = gain_applier_.target();
+ for (size_t i = 0; i < freqs_; ++i) {
+ gains[i] = 0.0f;
+ for (size_t j = 0; j < bank_size_; ++j) {
+ gains[i] = fmaf(filter_bank_[j][i], gains_eq_[j], gains[i]);
+ }
+ }
+}
+
+void IntelligibilityEnhancer::ProcessNoiseBlock(const complex<float>* in_block,
+ complex<float>* /*out_block*/) {
+ noise_variance_.Step(in_block);
+}
+
+size_t IntelligibilityEnhancer::GetBankSize(int sample_rate,
+ size_t erb_resolution) {
+ float freq_limit = sample_rate / 2000.0f;
+ size_t erb_scale = static_cast<size_t>(ceilf(
+ 11.17f * logf((freq_limit + 0.312f) / (freq_limit + 14.6575f)) + 43.0f));
+ return erb_scale * erb_resolution;
+}
+
+void IntelligibilityEnhancer::CreateErbBank() {
+ size_t lf = 1, rf = 4;
+
+ for (size_t i = 0; i < bank_size_; ++i) {
+ float abs_temp = fabsf((i + 1.0f) / static_cast<float>(erb_resolution_));
+ center_freqs_[i] = 676170.4f / (47.06538f - expf(0.08950404f * abs_temp));
+ center_freqs_[i] -= 14678.49f;
+ }
+ float last_center_freq = center_freqs_[bank_size_ - 1];
+ for (size_t i = 0; i < bank_size_; ++i) {
+ center_freqs_[i] *= 0.5f * sample_rate_hz_ / last_center_freq;
+ }
+
+ for (size_t i = 0; i < bank_size_; ++i) {
+ filter_bank_[i].resize(freqs_);
+ }
+
+ for (size_t i = 1; i <= bank_size_; ++i) {
+ size_t lll, ll, rr, rrr;
+ static const size_t kOne = 1; // Avoids repeated static_cast<>s below.
+ lll = static_cast<size_t>(round(
+ center_freqs_[max(kOne, i - lf) - 1] * freqs_ /
+ (0.5f * sample_rate_hz_)));
+ ll = static_cast<size_t>(round(
+ center_freqs_[max(kOne, i) - 1] * freqs_ / (0.5f * sample_rate_hz_)));
+ lll = min(freqs_, max(lll, kOne)) - 1;
+ ll = min(freqs_, max(ll, kOne)) - 1;
+
+ rrr = static_cast<size_t>(round(
+ center_freqs_[min(bank_size_, i + rf) - 1] * freqs_ /
+ (0.5f * sample_rate_hz_)));
+ rr = static_cast<size_t>(round(
+ center_freqs_[min(bank_size_, i + 1) - 1] * freqs_ /
+ (0.5f * sample_rate_hz_)));
+ rrr = min(freqs_, max(rrr, kOne)) - 1;
+ rr = min(freqs_, max(rr, kOne)) - 1;
+
+ float step, element;
+
+ step = 1.0f / (ll - lll);
+ element = 0.0f;
+ for (size_t j = lll; j <= ll; ++j) {
+ filter_bank_[i - 1][j] = element;
+ element += step;
+ }
+ step = 1.0f / (rrr - rr);
+ element = 1.0f;
+ for (size_t j = rr; j <= rrr; ++j) {
+ filter_bank_[i - 1][j] = element;
+ element -= step;
+ }
+ for (size_t j = ll; j <= rr; ++j) {
+ filter_bank_[i - 1][j] = 1.0f;
+ }
+ }
+
+ float sum;
+ for (size_t i = 0; i < freqs_; ++i) {
+ sum = 0.0f;
+ for (size_t j = 0; j < bank_size_; ++j) {
+ sum += filter_bank_[j][i];
+ }
+ for (size_t j = 0; j < bank_size_; ++j) {
+ filter_bank_[j][i] /= sum;
+ }
+ }
+}
+
+void IntelligibilityEnhancer::SolveForGainsGivenLambda(float lambda,
+ size_t start_freq,
+ float* sols) {
+ bool quadratic = (kConfigRho < 1.0f);
+ const float* var_x0 = filtered_clear_var_.get();
+ const float* var_n0 = filtered_noise_var_.get();
+
+ for (size_t n = 0; n < start_freq; ++n) {
+ sols[n] = 1.0f;
+ }
+
+ // Analytic solution for optimal gains. See paper for derivation.
+ for (size_t n = start_freq - 1; n < bank_size_; ++n) {
+ float alpha0, beta0, gamma0;
+ gamma0 = 0.5f * rho_[n] * var_x0[n] * var_n0[n] +
+ lambda * var_x0[n] * var_n0[n] * var_n0[n];
+ beta0 = lambda * var_x0[n] * (2 - rho_[n]) * var_x0[n] * var_n0[n];
+ if (quadratic) {
+ alpha0 = lambda * var_x0[n] * (1 - rho_[n]) * var_x0[n] * var_x0[n];
+ sols[n] =
+ (-beta0 - sqrtf(beta0 * beta0 - 4 * alpha0 * gamma0)) / (2 * alpha0);
+ } else {
+ sols[n] = -gamma0 / beta0;
+ }
+ sols[n] = fmax(0, sols[n]);
+ }
+}
+
+void IntelligibilityEnhancer::FilterVariance(const float* var, float* result) {
+ RTC_DCHECK_GT(freqs_, 0u);
+ for (size_t i = 0; i < bank_size_; ++i) {
+ result[i] = DotProduct(&filter_bank_[i][0], var, freqs_);
+ }
+}
+
+float IntelligibilityEnhancer::DotProduct(const float* a,
+ const float* b,
+ size_t length) {
+ float ret = 0.0f;
+
+ for (size_t i = 0; i < length; ++i) {
+ ret = fmaf(a[i], b[i], ret);
+ }
+ return ret;
+}
+
+bool IntelligibilityEnhancer::active() const {
+ return active_;
+}
+
+} // namespace webrtc