aboutsummaryrefslogtreecommitdiff
path: root/webrtc/modules/rtp_rtcp/source/byte_io.h
diff options
context:
space:
mode:
Diffstat (limited to 'webrtc/modules/rtp_rtcp/source/byte_io.h')
-rw-r--r--webrtc/modules/rtp_rtcp/source/byte_io.h404
1 files changed, 404 insertions, 0 deletions
diff --git a/webrtc/modules/rtp_rtcp/source/byte_io.h b/webrtc/modules/rtp_rtcp/source/byte_io.h
new file mode 100644
index 0000000000..d8903b8483
--- /dev/null
+++ b/webrtc/modules/rtp_rtcp/source/byte_io.h
@@ -0,0 +1,404 @@
+/*
+ * Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef WEBRTC_MODULES_RTP_RTCP_SOURCE_BYTE_IO_H_
+#define WEBRTC_MODULES_RTP_RTCP_SOURCE_BYTE_IO_H_
+
+
+// This file contains classes for reading and writing integer types from/to
+// byte array representations. Signed/unsigned, partial (whole byte) sizes,
+// and big/little endian byte order is all supported.
+//
+// Usage examples:
+//
+// uint8_t* buffer = ...;
+//
+// // Read an unsigned 4 byte integer in big endian format
+// uint32_t val = ByteReader<uint32_t>::ReadBigEndian(buffer);
+//
+// // Read a signed 24-bit (3 byte) integer in little endian format
+// int32_t val = ByteReader<int32_t, 3>::ReadLittle(buffer);
+//
+// // Write an unsigned 8 byte integer in little endian format
+// ByteWriter<uint64_t>::WriteLittleEndian(buffer, val);
+//
+// Write an unsigned 40-bit (5 byte) integer in big endian format
+// ByteWriter<uint64_t, 5>::WriteBigEndian(buffer, val);
+//
+// These classes are implemented as recursive templetizations, inteded to make
+// it easy for the compiler to completely inline the reading/writing.
+
+
+#include <limits>
+
+#include "webrtc/typedefs.h"
+
+namespace webrtc {
+
+// According to ISO C standard ISO/IEC 9899, section 6.2.6.2 (2), the three
+// representations of signed integers allowed are two's complement, one's
+// complement and sign/magnitude. We can detect which is used by looking at
+// the two last bits of -1, which will be 11 in two's complement, 10 in one's
+// complement and 01 in sign/magnitude.
+// TODO(sprang): In the unlikely event that we actually need to support a
+// platform that doesn't use two's complement, implement conversion to/from
+// wire format.
+
+namespace {
+inline void AssertTwosComplement() {
+ // Assume the if any one signed integer type is two's complement, then all
+ // other will be too.
+ static_assert(
+ (-1 & 0x03) == 0x03,
+ "Only two's complement representation of signed integers supported.");
+}
+// Plain const char* won't work for static_assert, use #define instead.
+#define kSizeErrorMsg "Byte size must be less than or equal to data type size."
+}
+
+// Utility class for getting the unsigned equivalent of a signed type.
+template <typename T>
+struct UnsignedOf;
+
+// Class for reading integers from a sequence of bytes.
+// T = type of integer, B = bytes to read, is_signed = true if signed integer.
+// If is_signed is true and B < sizeof(T), sign extension might be needed.
+template <typename T,
+ unsigned int B = sizeof(T),
+ bool is_signed = std::numeric_limits<T>::is_signed>
+class ByteReader;
+
+// Specialization of ByteReader for unsigned types.
+template <typename T, unsigned int B>
+class ByteReader<T, B, false> {
+ public:
+ static T ReadBigEndian(const uint8_t* data) {
+ static_assert(B <= sizeof(T), kSizeErrorMsg);
+ return InternalReadBigEndian(data);
+ }
+
+ static T ReadLittleEndian(const uint8_t* data) {
+ static_assert(B <= sizeof(T), kSizeErrorMsg);
+ return InternalReadLittleEndian(data);
+ }
+
+ private:
+ static T InternalReadBigEndian(const uint8_t* data) {
+ T val(0);
+ for (unsigned int i = 0; i < B; ++i)
+ val |= static_cast<T>(data[i]) << ((B - 1 - i) * 8);
+ return val;
+ }
+
+ static T InternalReadLittleEndian(const uint8_t* data) {
+ T val(0);
+ for (unsigned int i = 0; i < B; ++i)
+ val |= static_cast<T>(data[i]) << (i * 8);
+ return val;
+ }
+};
+
+// Specialization of ByteReader for signed types.
+template <typename T, unsigned int B>
+class ByteReader<T, B, true> {
+ public:
+ typedef typename UnsignedOf<T>::Type U;
+
+ static T ReadBigEndian(const uint8_t* data) {
+ U unsigned_val = ByteReader<T, B, false>::ReadBigEndian(data);
+ if (B < sizeof(T))
+ unsigned_val = SignExtend(unsigned_val);
+ return ReinterpretAsSigned(unsigned_val);
+ }
+
+ static T ReadLittleEndian(const uint8_t* data) {
+ U unsigned_val = ByteReader<T, B, false>::ReadLittleEndian(data);
+ if (B < sizeof(T))
+ unsigned_val = SignExtend(unsigned_val);
+ return ReinterpretAsSigned(unsigned_val);
+ }
+
+ private:
+ // As a hack to avoid implementation-specific or undefined behavior when
+ // bit-shifting or casting signed integers, read as a signed equivalent
+ // instead and convert to signed. This is safe since we have asserted that
+ // two's complement for is used.
+ static T ReinterpretAsSigned(U unsigned_val) {
+ // An unsigned value with only the highest order bit set (ex 0x80).
+ const U kUnsignedHighestBitMask =
+ static_cast<U>(1) << ((sizeof(U) * 8) - 1);
+ // A signed value with only the highest bit set. Since this is two's
+ // complement form, we can use the min value from std::numeric_limits.
+ const T kSignedHighestBitMask = std::numeric_limits<T>::min();
+
+ T val;
+ if ((unsigned_val & kUnsignedHighestBitMask) != 0) {
+ // Casting is only safe when unsigned value can be represented in the
+ // signed target type, so mask out highest bit and mask it back manually.
+ val = static_cast<T>(unsigned_val & ~kUnsignedHighestBitMask);
+ val |= kSignedHighestBitMask;
+ } else {
+ val = static_cast<T>(unsigned_val);
+ }
+ return val;
+ }
+
+ // If number of bytes is less than native data type (eg 24 bit, in int32_t),
+ // and the most significant bit of the actual data is set, we must sign
+ // extend the remaining byte(s) with ones so that the correct negative
+ // number is retained.
+ // Ex: 0x810A0B -> 0xFF810A0B, but 0x710A0B -> 0x00710A0B
+ static U SignExtend(const U val) {
+ const uint8_t kMsb = static_cast<uint8_t>(val >> ((B - 1) * 8));
+ if ((kMsb & 0x80) != 0) {
+ // Create a mask where all bits used by the B bytes are set to one,
+ // for instance 0x00FFFFFF for B = 3. Bit-wise invert that mask (to
+ // (0xFF000000 in the example above) and add it to the input value.
+ // The "B % sizeof(T)" is a workaround to undefined values warnings for
+ // B == sizeof(T), in which case this code won't be called anyway.
+ const U kUsedBitsMask = (1 << ((B % sizeof(T)) * 8)) - 1;
+ return ~kUsedBitsMask | val;
+ }
+ return val;
+ }
+};
+
+// Class for writing integers to a sequence of bytes
+// T = type of integer, B = bytes to write
+template <typename T,
+ unsigned int B = sizeof(T),
+ bool is_signed = std::numeric_limits<T>::is_signed>
+class ByteWriter;
+
+// Specialization of ByteWriter for unsigned types.
+template <typename T, unsigned int B>
+class ByteWriter<T, B, false> {
+ public:
+ static void WriteBigEndian(uint8_t* data, T val) {
+ static_assert(B <= sizeof(T), kSizeErrorMsg);
+ for (unsigned int i = 0; i < B; ++i) {
+ data[i] = val >> ((B - 1 - i) * 8);
+ }
+ }
+
+ static void WriteLittleEndian(uint8_t* data, T val) {
+ static_assert(B <= sizeof(T), kSizeErrorMsg);
+ for (unsigned int i = 0; i < B; ++i) {
+ data[i] = val >> (i * 8);
+ }
+ }
+};
+
+// Specialization of ByteWriter for signed types.
+template <typename T, unsigned int B>
+class ByteWriter<T, B, true> {
+ public:
+ typedef typename UnsignedOf<T>::Type U;
+
+ static void WriteBigEndian(uint8_t* data, T val) {
+ ByteWriter<U, B, false>::WriteBigEndian(data, ReinterpretAsUnsigned(val));
+ }
+
+ static void WriteLittleEndian(uint8_t* data, T val) {
+ ByteWriter<U, B, false>::WriteLittleEndian(data,
+ ReinterpretAsUnsigned(val));
+ }
+
+ private:
+ static U ReinterpretAsUnsigned(T val) {
+ // According to ISO C standard ISO/IEC 9899, section 6.3.1.3 (1, 2) a
+ // conversion from signed to unsigned keeps the value if the new type can
+ // represent it, and otherwise adds one more than the max value of T until
+ // the value is in range. For two's complement, this fortunately means
+ // that the bit-wise value will be intact. Thus, since we have asserted that
+ // two's complement form is actually used, a simple cast is sufficient.
+ return static_cast<U>(val);
+ }
+};
+
+// ----- Below follows specializations of UnsignedOf utility class -----
+
+template <>
+struct UnsignedOf<int8_t> {
+ typedef uint8_t Type;
+};
+template <>
+struct UnsignedOf<int16_t> {
+ typedef uint16_t Type;
+};
+template <>
+struct UnsignedOf<int32_t> {
+ typedef uint32_t Type;
+};
+template <>
+struct UnsignedOf<int64_t> {
+ typedef uint64_t Type;
+};
+
+// ----- Below follows specializations for unsigned, B in { 1, 2, 4, 8 } -----
+
+// TODO(sprang): Check if these actually help or if generic cases will be
+// unrolled to and optimized to similar performance.
+
+// Specializations for single bytes
+template <typename T>
+class ByteReader<T, 1, false> {
+ public:
+ static T ReadBigEndian(const uint8_t* data) {
+ static_assert(sizeof(T) == 1, kSizeErrorMsg);
+ return data[0];
+ }
+
+ static T ReadLittleEndian(const uint8_t* data) {
+ static_assert(sizeof(T) == 1, kSizeErrorMsg);
+ return data[0];
+ }
+};
+
+template <typename T>
+class ByteWriter<T, 1, false> {
+ public:
+ static void WriteBigEndian(uint8_t* data, T val) {
+ static_assert(sizeof(T) == 1, kSizeErrorMsg);
+ data[0] = val;
+ }
+
+ static void WriteLittleEndian(uint8_t* data, T val) {
+ static_assert(sizeof(T) == 1, kSizeErrorMsg);
+ data[0] = val;
+ }
+};
+
+// Specializations for two byte words
+template <typename T>
+class ByteReader<T, 2, false> {
+ public:
+ static T ReadBigEndian(const uint8_t* data) {
+ static_assert(sizeof(T) >= 2, kSizeErrorMsg);
+ return (data[0] << 8) | data[1];
+ }
+
+ static T ReadLittleEndian(const uint8_t* data) {
+ static_assert(sizeof(T) >= 2, kSizeErrorMsg);
+ return data[0] | (data[1] << 8);
+ }
+};
+
+template <typename T>
+class ByteWriter<T, 2, false> {
+ public:
+ static void WriteBigEndian(uint8_t* data, T val) {
+ static_assert(sizeof(T) >= 2, kSizeErrorMsg);
+ data[0] = val >> 8;
+ data[1] = val;
+ }
+
+ static void WriteLittleEndian(uint8_t* data, T val) {
+ static_assert(sizeof(T) >= 2, kSizeErrorMsg);
+ data[0] = val;
+ data[1] = val >> 8;
+ }
+};
+
+// Specializations for four byte words.
+template <typename T>
+class ByteReader<T, 4, false> {
+ public:
+ static T ReadBigEndian(const uint8_t* data) {
+ static_assert(sizeof(T) >= 4, kSizeErrorMsg);
+ return (data[0] << 24) | (data[1] << 16) | (data[2] << 8) | data[3];
+ }
+
+ static T ReadLittleEndian(const uint8_t* data) {
+ static_assert(sizeof(T) >= 4, kSizeErrorMsg);
+ return data[0] | (data[1] << 8) | (data[2] << 16) | (data[3] << 24);
+ }
+};
+
+// Specializations for four byte words.
+template <typename T>
+class ByteWriter<T, 4, false> {
+ public:
+ static void WriteBigEndian(uint8_t* data, T val) {
+ static_assert(sizeof(T) >= 4, kSizeErrorMsg);
+ data[0] = val >> 24;
+ data[1] = val >> 16;
+ data[2] = val >> 8;
+ data[3] = val;
+ }
+
+ static void WriteLittleEndian(uint8_t* data, T val) {
+ static_assert(sizeof(T) >= 4, kSizeErrorMsg);
+ data[0] = val;
+ data[1] = val >> 8;
+ data[2] = val >> 16;
+ data[3] = val >> 24;
+ }
+};
+
+// Specializations for eight byte words.
+template <typename T>
+class ByteReader<T, 8, false> {
+ public:
+ static T ReadBigEndian(const uint8_t* data) {
+ static_assert(sizeof(T) >= 8, kSizeErrorMsg);
+ return
+ (Get(data, 0) << 56) | (Get(data, 1) << 48) |
+ (Get(data, 2) << 40) | (Get(data, 3) << 32) |
+ (Get(data, 4) << 24) | (Get(data, 5) << 16) |
+ (Get(data, 6) << 8) | Get(data, 7);
+ }
+
+ static T ReadLittleEndian(const uint8_t* data) {
+ static_assert(sizeof(T) >= 8, kSizeErrorMsg);
+ return
+ Get(data, 0) | (Get(data, 1) << 8) |
+ (Get(data, 2) << 16) | (Get(data, 3) << 24) |
+ (Get(data, 4) << 32) | (Get(data, 5) << 40) |
+ (Get(data, 6) << 48) | (Get(data, 7) << 56);
+ }
+
+ private:
+ inline static T Get(const uint8_t* data, unsigned int index) {
+ return static_cast<T>(data[index]);
+ }
+};
+
+template <typename T>
+class ByteWriter<T, 8, false> {
+ public:
+ static void WriteBigEndian(uint8_t* data, T val) {
+ static_assert(sizeof(T) >= 8, kSizeErrorMsg);
+ data[0] = val >> 56;
+ data[1] = val >> 48;
+ data[2] = val >> 40;
+ data[3] = val >> 32;
+ data[4] = val >> 24;
+ data[5] = val >> 16;
+ data[6] = val >> 8;
+ data[7] = val;
+ }
+
+ static void WriteLittleEndian(uint8_t* data, T val) {
+ static_assert(sizeof(T) >= 8, kSizeErrorMsg);
+ data[0] = val;
+ data[1] = val >> 8;
+ data[2] = val >> 16;
+ data[3] = val >> 24;
+ data[4] = val >> 32;
+ data[5] = val >> 40;
+ data[6] = val >> 48;
+ data[7] = val >> 56;
+ }
+};
+
+} // namespace webrtc
+
+#endif // WEBRTC_MODULES_RTP_RTCP_SOURCE_BYTE_IO_H_