aboutsummaryrefslogtreecommitdiff
path: root/webrtc/modules/video_coding/main/source/jitter_estimator.cc
diff options
context:
space:
mode:
Diffstat (limited to 'webrtc/modules/video_coding/main/source/jitter_estimator.cc')
-rw-r--r--webrtc/modules/video_coding/main/source/jitter_estimator.cc482
1 files changed, 0 insertions, 482 deletions
diff --git a/webrtc/modules/video_coding/main/source/jitter_estimator.cc b/webrtc/modules/video_coding/main/source/jitter_estimator.cc
deleted file mode 100644
index 5894c88d72..0000000000
--- a/webrtc/modules/video_coding/main/source/jitter_estimator.cc
+++ /dev/null
@@ -1,482 +0,0 @@
-/*
- * Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
- *
- * Use of this source code is governed by a BSD-style license
- * that can be found in the LICENSE file in the root of the source
- * tree. An additional intellectual property rights grant can be found
- * in the file PATENTS. All contributing project authors may
- * be found in the AUTHORS file in the root of the source tree.
- */
-
-#include "webrtc/modules/video_coding/main/source/internal_defines.h"
-#include "webrtc/modules/video_coding/main/source/jitter_estimator.h"
-#include "webrtc/modules/video_coding/main/source/rtt_filter.h"
-#include "webrtc/system_wrappers/include/clock.h"
-#include "webrtc/system_wrappers/include/field_trial.h"
-
-#include <assert.h>
-#include <math.h>
-#include <stdlib.h>
-#include <string.h>
-
-namespace webrtc {
-
-enum { kStartupDelaySamples = 30 };
-enum { kFsAccuStartupSamples = 5 };
-enum { kMaxFramerateEstimate = 200 };
-
-VCMJitterEstimator::VCMJitterEstimator(const Clock* clock,
- int32_t vcmId,
- int32_t receiverId)
- : _vcmId(vcmId),
- _receiverId(receiverId),
- _phi(0.97),
- _psi(0.9999),
- _alphaCountMax(400),
- _thetaLow(0.000001),
- _nackLimit(3),
- _numStdDevDelayOutlier(15),
- _numStdDevFrameSizeOutlier(3),
- _noiseStdDevs(2.33), // ~Less than 1% chance
- // (look up in normal distribution table)...
- _noiseStdDevOffset(30.0), // ...of getting 30 ms freezes
- _rttFilter(),
- fps_counter_(30), // TODO(sprang): Use an estimator with limit based on
- // time, rather than number of samples.
- low_rate_experiment_(kInit),
- clock_(clock) {
- Reset();
-}
-
-VCMJitterEstimator::~VCMJitterEstimator() {
-}
-
-VCMJitterEstimator&
-VCMJitterEstimator::operator=(const VCMJitterEstimator& rhs)
-{
- if (this != &rhs)
- {
- memcpy(_thetaCov, rhs._thetaCov, sizeof(_thetaCov));
- memcpy(_Qcov, rhs._Qcov, sizeof(_Qcov));
-
- _vcmId = rhs._vcmId;
- _receiverId = rhs._receiverId;
- _avgFrameSize = rhs._avgFrameSize;
- _varFrameSize = rhs._varFrameSize;
- _maxFrameSize = rhs._maxFrameSize;
- _fsSum = rhs._fsSum;
- _fsCount = rhs._fsCount;
- _lastUpdateT = rhs._lastUpdateT;
- _prevEstimate = rhs._prevEstimate;
- _prevFrameSize = rhs._prevFrameSize;
- _avgNoise = rhs._avgNoise;
- _alphaCount = rhs._alphaCount;
- _filterJitterEstimate = rhs._filterJitterEstimate;
- _startupCount = rhs._startupCount;
- _latestNackTimestamp = rhs._latestNackTimestamp;
- _nackCount = rhs._nackCount;
- _rttFilter = rhs._rttFilter;
- }
- return *this;
-}
-
-// Resets the JitterEstimate
-void
-VCMJitterEstimator::Reset()
-{
- _theta[0] = 1/(512e3/8);
- _theta[1] = 0;
- _varNoise = 4.0;
-
- _thetaCov[0][0] = 1e-4;
- _thetaCov[1][1] = 1e2;
- _thetaCov[0][1] = _thetaCov[1][0] = 0;
- _Qcov[0][0] = 2.5e-10;
- _Qcov[1][1] = 1e-10;
- _Qcov[0][1] = _Qcov[1][0] = 0;
- _avgFrameSize = 500;
- _maxFrameSize = 500;
- _varFrameSize = 100;
- _lastUpdateT = -1;
- _prevEstimate = -1.0;
- _prevFrameSize = 0;
- _avgNoise = 0.0;
- _alphaCount = 1;
- _filterJitterEstimate = 0.0;
- _latestNackTimestamp = 0;
- _nackCount = 0;
- _fsSum = 0;
- _fsCount = 0;
- _startupCount = 0;
- _rttFilter.Reset();
- fps_counter_.Reset();
-}
-
-void
-VCMJitterEstimator::ResetNackCount()
-{
- _nackCount = 0;
-}
-
-// Updates the estimates with the new measurements
-void
-VCMJitterEstimator::UpdateEstimate(int64_t frameDelayMS, uint32_t frameSizeBytes,
- bool incompleteFrame /* = false */)
-{
- if (frameSizeBytes == 0)
- {
- return;
- }
- int deltaFS = frameSizeBytes - _prevFrameSize;
- if (_fsCount < kFsAccuStartupSamples)
- {
- _fsSum += frameSizeBytes;
- _fsCount++;
- }
- else if (_fsCount == kFsAccuStartupSamples)
- {
- // Give the frame size filter
- _avgFrameSize = static_cast<double>(_fsSum) /
- static_cast<double>(_fsCount);
- _fsCount++;
- }
- if (!incompleteFrame || frameSizeBytes > _avgFrameSize)
- {
- double avgFrameSize = _phi * _avgFrameSize +
- (1 - _phi) * frameSizeBytes;
- if (frameSizeBytes < _avgFrameSize + 2 * sqrt(_varFrameSize))
- {
- // Only update the average frame size if this sample wasn't a
- // key frame
- _avgFrameSize = avgFrameSize;
- }
- // Update the variance anyway since we want to capture cases where we only get
- // key frames.
- _varFrameSize = VCM_MAX(_phi * _varFrameSize + (1 - _phi) *
- (frameSizeBytes - avgFrameSize) *
- (frameSizeBytes - avgFrameSize), 1.0);
- }
-
- // Update max frameSize estimate
- _maxFrameSize = VCM_MAX(_psi * _maxFrameSize, static_cast<double>(frameSizeBytes));
-
- if (_prevFrameSize == 0)
- {
- _prevFrameSize = frameSizeBytes;
- return;
- }
- _prevFrameSize = frameSizeBytes;
-
- // Only update the Kalman filter if the sample is not considered
- // an extreme outlier. Even if it is an extreme outlier from a
- // delay point of view, if the frame size also is large the
- // deviation is probably due to an incorrect line slope.
- double deviation = DeviationFromExpectedDelay(frameDelayMS, deltaFS);
-
- if (fabs(deviation) < _numStdDevDelayOutlier * sqrt(_varNoise) ||
- frameSizeBytes > _avgFrameSize + _numStdDevFrameSizeOutlier * sqrt(_varFrameSize))
- {
- // Update the variance of the deviation from the
- // line given by the Kalman filter
- EstimateRandomJitter(deviation, incompleteFrame);
- // Prevent updating with frames which have been congested by a large
- // frame, and therefore arrives almost at the same time as that frame.
- // This can occur when we receive a large frame (key frame) which
- // has been delayed. The next frame is of normal size (delta frame),
- // and thus deltaFS will be << 0. This removes all frame samples
- // which arrives after a key frame.
- if ((!incompleteFrame || deviation >= 0.0) &&
- static_cast<double>(deltaFS) > - 0.25 * _maxFrameSize)
- {
- // Update the Kalman filter with the new data
- KalmanEstimateChannel(frameDelayMS, deltaFS);
- }
- }
- else
- {
- int nStdDev = (deviation >= 0) ? _numStdDevDelayOutlier : -_numStdDevDelayOutlier;
- EstimateRandomJitter(nStdDev * sqrt(_varNoise), incompleteFrame);
- }
- // Post process the total estimated jitter
- if (_startupCount >= kStartupDelaySamples)
- {
- PostProcessEstimate();
- }
- else
- {
- _startupCount++;
- }
-}
-
-// Updates the nack/packet ratio
-void
-VCMJitterEstimator::FrameNacked()
-{
- // Wait until _nackLimit retransmissions has been received,
- // then always add ~1 RTT delay.
- // TODO(holmer): Should we ever remove the additional delay if the
- // the packet losses seem to have stopped? We could for instance scale
- // the number of RTTs to add with the amount of retransmissions in a given
- // time interval, or similar.
- if (_nackCount < _nackLimit)
- {
- _nackCount++;
- }
-}
-
-// Updates Kalman estimate of the channel
-// The caller is expected to sanity check the inputs.
-void
-VCMJitterEstimator::KalmanEstimateChannel(int64_t frameDelayMS,
- int32_t deltaFSBytes)
-{
- double Mh[2];
- double hMh_sigma;
- double kalmanGain[2];
- double measureRes;
- double t00, t01;
-
- // Kalman filtering
-
- // Prediction
- // M = M + Q
- _thetaCov[0][0] += _Qcov[0][0];
- _thetaCov[0][1] += _Qcov[0][1];
- _thetaCov[1][0] += _Qcov[1][0];
- _thetaCov[1][1] += _Qcov[1][1];
-
- // Kalman gain
- // K = M*h'/(sigma2n + h*M*h') = M*h'/(1 + h*M*h')
- // h = [dFS 1]
- // Mh = M*h'
- // hMh_sigma = h*M*h' + R
- Mh[0] = _thetaCov[0][0] * deltaFSBytes + _thetaCov[0][1];
- Mh[1] = _thetaCov[1][0] * deltaFSBytes + _thetaCov[1][1];
- // sigma weights measurements with a small deltaFS as noisy and
- // measurements with large deltaFS as good
- if (_maxFrameSize < 1.0)
- {
- return;
- }
- double sigma = (300.0 * exp(-fabs(static_cast<double>(deltaFSBytes)) /
- (1e0 * _maxFrameSize)) + 1) * sqrt(_varNoise);
- if (sigma < 1.0)
- {
- sigma = 1.0;
- }
- hMh_sigma = deltaFSBytes * Mh[0] + Mh[1] + sigma;
- if ((hMh_sigma < 1e-9 && hMh_sigma >= 0) || (hMh_sigma > -1e-9 && hMh_sigma <= 0))
- {
- assert(false);
- return;
- }
- kalmanGain[0] = Mh[0] / hMh_sigma;
- kalmanGain[1] = Mh[1] / hMh_sigma;
-
- // Correction
- // theta = theta + K*(dT - h*theta)
- measureRes = frameDelayMS - (deltaFSBytes * _theta[0] + _theta[1]);
- _theta[0] += kalmanGain[0] * measureRes;
- _theta[1] += kalmanGain[1] * measureRes;
-
- if (_theta[0] < _thetaLow)
- {
- _theta[0] = _thetaLow;
- }
-
- // M = (I - K*h)*M
- t00 = _thetaCov[0][0];
- t01 = _thetaCov[0][1];
- _thetaCov[0][0] = (1 - kalmanGain[0] * deltaFSBytes) * t00 -
- kalmanGain[0] * _thetaCov[1][0];
- _thetaCov[0][1] = (1 - kalmanGain[0] * deltaFSBytes) * t01 -
- kalmanGain[0] * _thetaCov[1][1];
- _thetaCov[1][0] = _thetaCov[1][0] * (1 - kalmanGain[1]) -
- kalmanGain[1] * deltaFSBytes * t00;
- _thetaCov[1][1] = _thetaCov[1][1] * (1 - kalmanGain[1]) -
- kalmanGain[1] * deltaFSBytes * t01;
-
- // Covariance matrix, must be positive semi-definite
- assert(_thetaCov[0][0] + _thetaCov[1][1] >= 0 &&
- _thetaCov[0][0] * _thetaCov[1][1] - _thetaCov[0][1] * _thetaCov[1][0] >= 0 &&
- _thetaCov[0][0] >= 0);
-}
-
-// Calculate difference in delay between a sample and the
-// expected delay estimated by the Kalman filter
-double
-VCMJitterEstimator::DeviationFromExpectedDelay(int64_t frameDelayMS,
- int32_t deltaFSBytes) const
-{
- return frameDelayMS - (_theta[0] * deltaFSBytes + _theta[1]);
-}
-
-// Estimates the random jitter by calculating the variance of the
-// sample distance from the line given by theta.
-void VCMJitterEstimator::EstimateRandomJitter(double d_dT,
- bool incompleteFrame) {
- uint64_t now = clock_->TimeInMicroseconds();
- if (_lastUpdateT != -1) {
- fps_counter_.AddSample(now - _lastUpdateT);
- }
- _lastUpdateT = now;
-
- if (_alphaCount == 0) {
- assert(false);
- return;
- }
- double alpha =
- static_cast<double>(_alphaCount - 1) / static_cast<double>(_alphaCount);
- _alphaCount++;
- if (_alphaCount > _alphaCountMax)
- _alphaCount = _alphaCountMax;
-
- if (LowRateExperimentEnabled()) {
- // In order to avoid a low frame rate stream to react slower to changes,
- // scale the alpha weight relative a 30 fps stream.
- double fps = GetFrameRate();
- if (fps > 0.0) {
- double rate_scale = 30.0 / fps;
- // At startup, there can be a lot of noise in the fps estimate.
- // Interpolate rate_scale linearly, from 1.0 at sample #1, to 30.0 / fps
- // at sample #kStartupDelaySamples.
- if (_alphaCount < kStartupDelaySamples) {
- rate_scale =
- (_alphaCount * rate_scale + (kStartupDelaySamples - _alphaCount)) /
- kStartupDelaySamples;
- }
- alpha = pow(alpha, rate_scale);
- }
- }
-
- double avgNoise = alpha * _avgNoise + (1 - alpha) * d_dT;
- double varNoise =
- alpha * _varNoise + (1 - alpha) * (d_dT - _avgNoise) * (d_dT - _avgNoise);
- if (!incompleteFrame || varNoise > _varNoise) {
- _avgNoise = avgNoise;
- _varNoise = varNoise;
- }
- if (_varNoise < 1.0) {
- // The variance should never be zero, since we might get
- // stuck and consider all samples as outliers.
- _varNoise = 1.0;
- }
-}
-
-double
-VCMJitterEstimator::NoiseThreshold() const
-{
- double noiseThreshold = _noiseStdDevs * sqrt(_varNoise) - _noiseStdDevOffset;
- if (noiseThreshold < 1.0)
- {
- noiseThreshold = 1.0;
- }
- return noiseThreshold;
-}
-
-// Calculates the current jitter estimate from the filtered estimates
-double
-VCMJitterEstimator::CalculateEstimate()
-{
- double ret = _theta[0] * (_maxFrameSize - _avgFrameSize) + NoiseThreshold();
-
- // A very low estimate (or negative) is neglected
- if (ret < 1.0) {
- if (_prevEstimate <= 0.01)
- {
- ret = 1.0;
- }
- else
- {
- ret = _prevEstimate;
- }
- }
- if (ret > 10000.0) // Sanity
- {
- ret = 10000.0;
- }
- _prevEstimate = ret;
- return ret;
-}
-
-void
-VCMJitterEstimator::PostProcessEstimate()
-{
- _filterJitterEstimate = CalculateEstimate();
-}
-
-void
-VCMJitterEstimator::UpdateRtt(int64_t rttMs)
-{
- _rttFilter.Update(rttMs);
-}
-
-void
-VCMJitterEstimator::UpdateMaxFrameSize(uint32_t frameSizeBytes)
-{
- if (_maxFrameSize < frameSizeBytes)
- {
- _maxFrameSize = frameSizeBytes;
- }
-}
-
-// Returns the current filtered estimate if available,
-// otherwise tries to calculate an estimate.
-int VCMJitterEstimator::GetJitterEstimate(double rttMultiplier) {
- double jitterMS = CalculateEstimate() + OPERATING_SYSTEM_JITTER;
- if (_filterJitterEstimate > jitterMS)
- jitterMS = _filterJitterEstimate;
- if (_nackCount >= _nackLimit)
- jitterMS += _rttFilter.RttMs() * rttMultiplier;
-
- if (LowRateExperimentEnabled()) {
- static const double kJitterScaleLowThreshold = 5.0;
- static const double kJitterScaleHighThreshold = 10.0;
- double fps = GetFrameRate();
- // Ignore jitter for very low fps streams.
- if (fps < kJitterScaleLowThreshold) {
- if (fps == 0.0) {
- return jitterMS;
- }
- return 0;
- }
-
- // Semi-low frame rate; scale by factor linearly interpolated from 0.0 at
- // kJitterScaleLowThreshold to 1.0 at kJitterScaleHighThreshold.
- if (fps < kJitterScaleHighThreshold) {
- jitterMS =
- (1.0 / (kJitterScaleHighThreshold - kJitterScaleLowThreshold)) *
- (fps - kJitterScaleLowThreshold) * jitterMS;
- }
- }
-
- return static_cast<uint32_t>(jitterMS + 0.5);
-}
-
-bool VCMJitterEstimator::LowRateExperimentEnabled() {
- if (low_rate_experiment_ == kInit) {
- std::string group =
- webrtc::field_trial::FindFullName("WebRTC-ReducedJitterDelay");
- if (group == "Disabled") {
- low_rate_experiment_ = kDisabled;
- } else {
- low_rate_experiment_ = kEnabled;
- }
- }
- return low_rate_experiment_ == kEnabled ? true : false;
-}
-
-double VCMJitterEstimator::GetFrameRate() const {
- if (fps_counter_.count() == 0)
- return 0;
-
- double fps = 1000000.0 / fps_counter_.ComputeMean();
- // Sanity check.
- assert(fps >= 0.0);
- if (fps > kMaxFramerateEstimate) {
- fps = kMaxFramerateEstimate;
- }
- return fps;
-}
-
-}