/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/audio_coding/neteq/neteq_impl.h" #include #include #include #include #include #include #include #include #include "api/audio_codecs/audio_decoder.h" #include "api/neteq/tick_timer.h" #include "common_audio/signal_processing/include/signal_processing_library.h" #include "modules/audio_coding/codecs/cng/webrtc_cng.h" #include "modules/audio_coding/neteq/accelerate.h" #include "modules/audio_coding/neteq/background_noise.h" #include "modules/audio_coding/neteq/comfort_noise.h" #include "modules/audio_coding/neteq/decision_logic.h" #include "modules/audio_coding/neteq/decoder_database.h" #include "modules/audio_coding/neteq/dtmf_buffer.h" #include "modules/audio_coding/neteq/dtmf_tone_generator.h" #include "modules/audio_coding/neteq/expand.h" #include "modules/audio_coding/neteq/merge.h" #include "modules/audio_coding/neteq/nack_tracker.h" #include "modules/audio_coding/neteq/normal.h" #include "modules/audio_coding/neteq/packet.h" #include "modules/audio_coding/neteq/packet_buffer.h" #include "modules/audio_coding/neteq/post_decode_vad.h" #include "modules/audio_coding/neteq/preemptive_expand.h" #include "modules/audio_coding/neteq/red_payload_splitter.h" #include "modules/audio_coding/neteq/statistics_calculator.h" #include "modules/audio_coding/neteq/sync_buffer.h" #include "modules/audio_coding/neteq/time_stretch.h" #include "modules/audio_coding/neteq/timestamp_scaler.h" #include "rtc_base/checks.h" #include "rtc_base/logging.h" #include "rtc_base/numerics/safe_conversions.h" #include "rtc_base/sanitizer.h" #include "rtc_base/strings/audio_format_to_string.h" #include "rtc_base/trace_event.h" #include "system_wrappers/include/clock.h" #include "system_wrappers/include/field_trial.h" namespace webrtc { namespace { std::unique_ptr CreateNetEqController( const NetEqControllerFactory& controller_factory, int base_min_delay, int max_packets_in_buffer, bool enable_rtx_handling, bool allow_time_stretching, TickTimer* tick_timer, webrtc::Clock* clock) { NetEqController::Config config; config.base_min_delay_ms = base_min_delay; config.max_packets_in_buffer = max_packets_in_buffer; config.enable_rtx_handling = enable_rtx_handling; config.allow_time_stretching = allow_time_stretching; config.tick_timer = tick_timer; config.clock = clock; return controller_factory.CreateNetEqController(config); } int GetDelayChainLengthMs(int config_extra_delay_ms) { constexpr char kExtraDelayFieldTrial[] = "WebRTC-Audio-NetEqExtraDelay"; if (webrtc::field_trial::IsEnabled(kExtraDelayFieldTrial)) { const auto field_trial_string = webrtc::field_trial::FindFullName(kExtraDelayFieldTrial); int extra_delay_ms = -1; if (sscanf(field_trial_string.c_str(), "Enabled-%d", &extra_delay_ms) == 1 && extra_delay_ms >= 0 && extra_delay_ms <= 2000) { RTC_LOG(LS_INFO) << "Delay chain length set to " << extra_delay_ms << " ms in field trial"; return (extra_delay_ms / 10) * 10; // Rounding down to multiple of 10. } } // Field trial not set, or invalid value read. Use value from config. return config_extra_delay_ms; } } // namespace NetEqImpl::Dependencies::Dependencies( const NetEq::Config& config, Clock* clock, const rtc::scoped_refptr& decoder_factory, const NetEqControllerFactory& controller_factory) : clock(clock), tick_timer(new TickTimer), stats(new StatisticsCalculator), decoder_database( new DecoderDatabase(decoder_factory, config.codec_pair_id)), dtmf_buffer(new DtmfBuffer(config.sample_rate_hz)), dtmf_tone_generator(new DtmfToneGenerator), packet_buffer( new PacketBuffer(config.max_packets_in_buffer, tick_timer.get())), neteq_controller( CreateNetEqController(controller_factory, config.min_delay_ms, config.max_packets_in_buffer, config.enable_rtx_handling, !config.for_test_no_time_stretching, tick_timer.get(), clock)), red_payload_splitter(new RedPayloadSplitter), timestamp_scaler(new TimestampScaler(*decoder_database)), accelerate_factory(new AccelerateFactory), expand_factory(new ExpandFactory), preemptive_expand_factory(new PreemptiveExpandFactory) {} NetEqImpl::Dependencies::~Dependencies() = default; NetEqImpl::NetEqImpl(const NetEq::Config& config, Dependencies&& deps, bool create_components) : clock_(deps.clock), tick_timer_(std::move(deps.tick_timer)), decoder_database_(std::move(deps.decoder_database)), dtmf_buffer_(std::move(deps.dtmf_buffer)), dtmf_tone_generator_(std::move(deps.dtmf_tone_generator)), packet_buffer_(std::move(deps.packet_buffer)), red_payload_splitter_(std::move(deps.red_payload_splitter)), timestamp_scaler_(std::move(deps.timestamp_scaler)), vad_(new PostDecodeVad()), expand_factory_(std::move(deps.expand_factory)), accelerate_factory_(std::move(deps.accelerate_factory)), preemptive_expand_factory_(std::move(deps.preemptive_expand_factory)), stats_(std::move(deps.stats)), controller_(std::move(deps.neteq_controller)), last_mode_(Mode::kNormal), decoded_buffer_length_(kMaxFrameSize), decoded_buffer_(new int16_t[decoded_buffer_length_]), playout_timestamp_(0), new_codec_(false), timestamp_(0), reset_decoder_(false), first_packet_(true), enable_fast_accelerate_(config.enable_fast_accelerate), nack_enabled_(false), enable_muted_state_(config.enable_muted_state), expand_uma_logger_("WebRTC.Audio.ExpandRatePercent", 10, // Report once every 10 s. tick_timer_.get()), speech_expand_uma_logger_("WebRTC.Audio.SpeechExpandRatePercent", 10, // Report once every 10 s. tick_timer_.get()), no_time_stretching_(config.for_test_no_time_stretching), enable_rtx_handling_(config.enable_rtx_handling), output_delay_chain_ms_( GetDelayChainLengthMs(config.extra_output_delay_ms)), output_delay_chain_(rtc::CheckedDivExact(output_delay_chain_ms_, 10)) { RTC_LOG(LS_INFO) << "NetEq config: " << config.ToString(); int fs = config.sample_rate_hz; if (fs != 8000 && fs != 16000 && fs != 32000 && fs != 48000) { RTC_LOG(LS_ERROR) << "Sample rate " << fs << " Hz not supported. " "Changing to 8000 Hz."; fs = 8000; } controller_->SetMaximumDelay(config.max_delay_ms); fs_hz_ = fs; fs_mult_ = fs / 8000; last_output_sample_rate_hz_ = fs; output_size_samples_ = static_cast(kOutputSizeMs * 8 * fs_mult_); controller_->SetSampleRate(fs_hz_, output_size_samples_); decoder_frame_length_ = 2 * output_size_samples_; // 20 ms. if (create_components) { SetSampleRateAndChannels(fs, 1); // Default is 1 channel. } RTC_DCHECK(!vad_->enabled()); if (config.enable_post_decode_vad) { vad_->Enable(); } } NetEqImpl::~NetEqImpl() = default; int NetEqImpl::InsertPacket(const RTPHeader& rtp_header, rtc::ArrayView payload) { rtc::MsanCheckInitialized(payload); TRACE_EVENT0("webrtc", "NetEqImpl::InsertPacket"); MutexLock lock(&mutex_); if (InsertPacketInternal(rtp_header, payload) != 0) { return kFail; } return kOK; } void NetEqImpl::InsertEmptyPacket(const RTPHeader& /*rtp_header*/) { // TODO(henrik.lundin) Handle NACK as well. This will make use of the // rtp_header parameter. // https://bugs.chromium.org/p/webrtc/issues/detail?id=7611 MutexLock lock(&mutex_); controller_->RegisterEmptyPacket(); } namespace { void SetAudioFrameActivityAndType(bool vad_enabled, NetEqImpl::OutputType type, AudioFrame::VADActivity last_vad_activity, AudioFrame* audio_frame) { switch (type) { case NetEqImpl::OutputType::kNormalSpeech: { audio_frame->speech_type_ = AudioFrame::kNormalSpeech; audio_frame->vad_activity_ = AudioFrame::kVadActive; break; } case NetEqImpl::OutputType::kVadPassive: { // This should only be reached if the VAD is enabled. RTC_DCHECK(vad_enabled); audio_frame->speech_type_ = AudioFrame::kNormalSpeech; audio_frame->vad_activity_ = AudioFrame::kVadPassive; break; } case NetEqImpl::OutputType::kCNG: { audio_frame->speech_type_ = AudioFrame::kCNG; audio_frame->vad_activity_ = AudioFrame::kVadPassive; break; } case NetEqImpl::OutputType::kPLC: { audio_frame->speech_type_ = AudioFrame::kPLC; audio_frame->vad_activity_ = last_vad_activity; break; } case NetEqImpl::OutputType::kPLCCNG: { audio_frame->speech_type_ = AudioFrame::kPLCCNG; audio_frame->vad_activity_ = AudioFrame::kVadPassive; break; } case NetEqImpl::OutputType::kCodecPLC: { audio_frame->speech_type_ = AudioFrame::kCodecPLC; audio_frame->vad_activity_ = last_vad_activity; break; } default: RTC_NOTREACHED(); } if (!vad_enabled) { // Always set kVadUnknown when receive VAD is inactive. audio_frame->vad_activity_ = AudioFrame::kVadUnknown; } } } // namespace int NetEqImpl::GetAudio(AudioFrame* audio_frame, bool* muted, absl::optional action_override) { TRACE_EVENT0("webrtc", "NetEqImpl::GetAudio"); MutexLock lock(&mutex_); if (GetAudioInternal(audio_frame, muted, action_override) != 0) { return kFail; } RTC_DCHECK_EQ( audio_frame->sample_rate_hz_, rtc::dchecked_cast(audio_frame->samples_per_channel_ * 100)); RTC_DCHECK_EQ(*muted, audio_frame->muted()); SetAudioFrameActivityAndType(vad_->enabled(), LastOutputType(), last_vad_activity_, audio_frame); last_vad_activity_ = audio_frame->vad_activity_; last_output_sample_rate_hz_ = audio_frame->sample_rate_hz_; RTC_DCHECK(last_output_sample_rate_hz_ == 8000 || last_output_sample_rate_hz_ == 16000 || last_output_sample_rate_hz_ == 32000 || last_output_sample_rate_hz_ == 48000) << "Unexpected sample rate " << last_output_sample_rate_hz_; if (!output_delay_chain_.empty()) { if (output_delay_chain_empty_) { for (auto& f : output_delay_chain_) { f.CopyFrom(*audio_frame); } output_delay_chain_empty_ = false; delayed_last_output_sample_rate_hz_ = last_output_sample_rate_hz_; } else { RTC_DCHECK_GE(output_delay_chain_ix_, 0); RTC_DCHECK_LT(output_delay_chain_ix_, output_delay_chain_.size()); swap(output_delay_chain_[output_delay_chain_ix_], *audio_frame); *muted = audio_frame->muted(); output_delay_chain_ix_ = (output_delay_chain_ix_ + 1) % output_delay_chain_.size(); delayed_last_output_sample_rate_hz_ = audio_frame->sample_rate_hz(); } } return kOK; } void NetEqImpl::SetCodecs(const std::map& codecs) { MutexLock lock(&mutex_); const std::vector changed_payload_types = decoder_database_->SetCodecs(codecs); for (const int pt : changed_payload_types) { packet_buffer_->DiscardPacketsWithPayloadType(pt, stats_.get()); } } bool NetEqImpl::RegisterPayloadType(int rtp_payload_type, const SdpAudioFormat& audio_format) { RTC_LOG(LS_VERBOSE) << "NetEqImpl::RegisterPayloadType: payload type " << rtp_payload_type << ", codec " << rtc::ToString(audio_format); MutexLock lock(&mutex_); return decoder_database_->RegisterPayload(rtp_payload_type, audio_format) == DecoderDatabase::kOK; } int NetEqImpl::RemovePayloadType(uint8_t rtp_payload_type) { MutexLock lock(&mutex_); int ret = decoder_database_->Remove(rtp_payload_type); if (ret == DecoderDatabase::kOK || ret == DecoderDatabase::kDecoderNotFound) { packet_buffer_->DiscardPacketsWithPayloadType(rtp_payload_type, stats_.get()); return kOK; } return kFail; } void NetEqImpl::RemoveAllPayloadTypes() { MutexLock lock(&mutex_); decoder_database_->RemoveAll(); } bool NetEqImpl::SetMinimumDelay(int delay_ms) { MutexLock lock(&mutex_); if (delay_ms >= 0 && delay_ms <= 10000) { assert(controller_.get()); return controller_->SetMinimumDelay( std::max(delay_ms - output_delay_chain_ms_, 0)); } return false; } bool NetEqImpl::SetMaximumDelay(int delay_ms) { MutexLock lock(&mutex_); if (delay_ms >= 0 && delay_ms <= 10000) { assert(controller_.get()); return controller_->SetMaximumDelay( std::max(delay_ms - output_delay_chain_ms_, 0)); } return false; } bool NetEqImpl::SetBaseMinimumDelayMs(int delay_ms) { MutexLock lock(&mutex_); if (delay_ms >= 0 && delay_ms <= 10000) { return controller_->SetBaseMinimumDelay(delay_ms); } return false; } int NetEqImpl::GetBaseMinimumDelayMs() const { MutexLock lock(&mutex_); return controller_->GetBaseMinimumDelay(); } int NetEqImpl::TargetDelayMs() const { MutexLock lock(&mutex_); RTC_DCHECK(controller_.get()); return controller_->TargetLevelMs() + output_delay_chain_ms_; } int NetEqImpl::FilteredCurrentDelayMs() const { MutexLock lock(&mutex_); // Sum up the filtered packet buffer level with the future length of the sync // buffer. const int delay_samples = controller_->GetFilteredBufferLevel() + sync_buffer_->FutureLength(); // The division below will truncate. The return value is in ms. return delay_samples / rtc::CheckedDivExact(fs_hz_, 1000) + output_delay_chain_ms_; } int NetEqImpl::NetworkStatistics(NetEqNetworkStatistics* stats) { MutexLock lock(&mutex_); assert(decoder_database_.get()); *stats = CurrentNetworkStatisticsInternal(); stats_->GetNetworkStatistics(decoder_frame_length_, stats); // Compensate for output delay chain. stats->mean_waiting_time_ms += output_delay_chain_ms_; stats->median_waiting_time_ms += output_delay_chain_ms_; stats->min_waiting_time_ms += output_delay_chain_ms_; stats->max_waiting_time_ms += output_delay_chain_ms_; return 0; } NetEqNetworkStatistics NetEqImpl::CurrentNetworkStatistics() const { MutexLock lock(&mutex_); return CurrentNetworkStatisticsInternal(); } NetEqNetworkStatistics NetEqImpl::CurrentNetworkStatisticsInternal() const { assert(decoder_database_.get()); NetEqNetworkStatistics stats; const size_t total_samples_in_buffers = packet_buffer_->NumSamplesInBuffer(decoder_frame_length_) + sync_buffer_->FutureLength(); assert(controller_.get()); stats.preferred_buffer_size_ms = controller_->TargetLevelMs(); stats.jitter_peaks_found = controller_->PeakFound(); RTC_DCHECK_GT(fs_hz_, 0); stats.current_buffer_size_ms = static_cast(total_samples_in_buffers * 1000 / fs_hz_); // Compensate for output delay chain. stats.current_buffer_size_ms += output_delay_chain_ms_; stats.preferred_buffer_size_ms += output_delay_chain_ms_; return stats; } NetEqLifetimeStatistics NetEqImpl::GetLifetimeStatistics() const { MutexLock lock(&mutex_); return stats_->GetLifetimeStatistics(); } NetEqOperationsAndState NetEqImpl::GetOperationsAndState() const { MutexLock lock(&mutex_); auto result = stats_->GetOperationsAndState(); result.current_buffer_size_ms = (packet_buffer_->NumSamplesInBuffer(decoder_frame_length_) + sync_buffer_->FutureLength()) * 1000 / fs_hz_; result.current_frame_size_ms = decoder_frame_length_ * 1000 / fs_hz_; result.next_packet_available = packet_buffer_->PeekNextPacket() && packet_buffer_->PeekNextPacket()->timestamp == sync_buffer_->end_timestamp(); return result; } void NetEqImpl::EnableVad() { MutexLock lock(&mutex_); assert(vad_.get()); vad_->Enable(); } void NetEqImpl::DisableVad() { MutexLock lock(&mutex_); assert(vad_.get()); vad_->Disable(); } absl::optional NetEqImpl::GetPlayoutTimestamp() const { MutexLock lock(&mutex_); if (first_packet_ || last_mode_ == Mode::kRfc3389Cng || last_mode_ == Mode::kCodecInternalCng) { // We don't have a valid RTP timestamp until we have decoded our first // RTP packet. Also, the RTP timestamp is not accurate while playing CNG, // which is indicated by returning an empty value. return absl::nullopt; } size_t sum_samples_in_output_delay_chain = 0; for (const auto& audio_frame : output_delay_chain_) { sum_samples_in_output_delay_chain += audio_frame.samples_per_channel(); } return timestamp_scaler_->ToExternal( playout_timestamp_ - static_cast(sum_samples_in_output_delay_chain)); } int NetEqImpl::last_output_sample_rate_hz() const { MutexLock lock(&mutex_); return delayed_last_output_sample_rate_hz_.value_or( last_output_sample_rate_hz_); } absl::optional NetEqImpl::GetDecoderFormat( int payload_type) const { MutexLock lock(&mutex_); const DecoderDatabase::DecoderInfo* const di = decoder_database_->GetDecoderInfo(payload_type); if (di) { const AudioDecoder* const decoder = di->GetDecoder(); // TODO(kwiberg): Why the special case for RED? return DecoderFormat{ /*sample_rate_hz=*/di->IsRed() ? 8000 : di->SampleRateHz(), /*num_channels=*/ decoder ? rtc::dchecked_cast(decoder->Channels()) : 1, /*sdp_format=*/di->GetFormat()}; } else { // Payload type not registered. return absl::nullopt; } } void NetEqImpl::FlushBuffers() { MutexLock lock(&mutex_); RTC_LOG(LS_VERBOSE) << "FlushBuffers"; packet_buffer_->Flush(stats_.get()); assert(sync_buffer_.get()); assert(expand_.get()); sync_buffer_->Flush(); sync_buffer_->set_next_index(sync_buffer_->next_index() - expand_->overlap_length()); // Set to wait for new codec. first_packet_ = true; } void NetEqImpl::EnableNack(size_t max_nack_list_size) { MutexLock lock(&mutex_); if (!nack_enabled_) { const int kNackThresholdPackets = 2; nack_.reset(NackTracker::Create(kNackThresholdPackets)); nack_enabled_ = true; nack_->UpdateSampleRate(fs_hz_); } nack_->SetMaxNackListSize(max_nack_list_size); } void NetEqImpl::DisableNack() { MutexLock lock(&mutex_); nack_.reset(); nack_enabled_ = false; } std::vector NetEqImpl::GetNackList(int64_t round_trip_time_ms) const { MutexLock lock(&mutex_); if (!nack_enabled_) { return std::vector(); } RTC_DCHECK(nack_.get()); return nack_->GetNackList(round_trip_time_ms); } std::vector NetEqImpl::LastDecodedTimestamps() const { MutexLock lock(&mutex_); return last_decoded_timestamps_; } int NetEqImpl::SyncBufferSizeMs() const { MutexLock lock(&mutex_); return rtc::dchecked_cast(sync_buffer_->FutureLength() / rtc::CheckedDivExact(fs_hz_, 1000)); } const SyncBuffer* NetEqImpl::sync_buffer_for_test() const { MutexLock lock(&mutex_); return sync_buffer_.get(); } NetEq::Operation NetEqImpl::last_operation_for_test() const { MutexLock lock(&mutex_); return last_operation_; } // Methods below this line are private. int NetEqImpl::InsertPacketInternal(const RTPHeader& rtp_header, rtc::ArrayView payload) { if (payload.empty()) { RTC_LOG_F(LS_ERROR) << "payload is empty"; return kInvalidPointer; } int64_t receive_time_ms = clock_->TimeInMilliseconds(); stats_->ReceivedPacket(); PacketList packet_list; // Insert packet in a packet list. packet_list.push_back([&rtp_header, &payload, &receive_time_ms] { // Convert to Packet. Packet packet; packet.payload_type = rtp_header.payloadType; packet.sequence_number = rtp_header.sequenceNumber; packet.timestamp = rtp_header.timestamp; packet.payload.SetData(payload.data(), payload.size()); packet.packet_info = RtpPacketInfo(rtp_header, receive_time_ms); // Waiting time will be set upon inserting the packet in the buffer. RTC_DCHECK(!packet.waiting_time); return packet; }()); bool update_sample_rate_and_channels = first_packet_; if (update_sample_rate_and_channels) { // Reset timestamp scaling. timestamp_scaler_->Reset(); } if (!decoder_database_->IsRed(rtp_header.payloadType)) { // Scale timestamp to internal domain (only for some codecs). timestamp_scaler_->ToInternal(&packet_list); } // Store these for later use, since the first packet may very well disappear // before we need these values. uint32_t main_timestamp = packet_list.front().timestamp; uint8_t main_payload_type = packet_list.front().payload_type; uint16_t main_sequence_number = packet_list.front().sequence_number; // Reinitialize NetEq if it's needed (changed SSRC or first call). if (update_sample_rate_and_channels) { // Note: |first_packet_| will be cleared further down in this method, once // the packet has been successfully inserted into the packet buffer. // Flush the packet buffer and DTMF buffer. packet_buffer_->Flush(stats_.get()); dtmf_buffer_->Flush(); // Update audio buffer timestamp. sync_buffer_->IncreaseEndTimestamp(main_timestamp - timestamp_); // Update codecs. timestamp_ = main_timestamp; } if (nack_enabled_) { RTC_DCHECK(nack_); if (update_sample_rate_and_channels) { nack_->Reset(); } nack_->UpdateLastReceivedPacket(rtp_header.sequenceNumber, rtp_header.timestamp); } // Check for RED payload type, and separate payloads into several packets. if (decoder_database_->IsRed(rtp_header.payloadType)) { if (!red_payload_splitter_->SplitRed(&packet_list)) { return kRedundancySplitError; } // Only accept a few RED payloads of the same type as the main data, // DTMF events and CNG. red_payload_splitter_->CheckRedPayloads(&packet_list, *decoder_database_); if (packet_list.empty()) { return kRedundancySplitError; } } // Check payload types. if (decoder_database_->CheckPayloadTypes(packet_list) == DecoderDatabase::kDecoderNotFound) { return kUnknownRtpPayloadType; } RTC_DCHECK(!packet_list.empty()); // Update main_timestamp, if new packets appear in the list // after RED splitting. if (decoder_database_->IsRed(rtp_header.payloadType)) { timestamp_scaler_->ToInternal(&packet_list); main_timestamp = packet_list.front().timestamp; main_payload_type = packet_list.front().payload_type; main_sequence_number = packet_list.front().sequence_number; } // Process DTMF payloads. Cycle through the list of packets, and pick out any // DTMF payloads found. PacketList::iterator it = packet_list.begin(); while (it != packet_list.end()) { const Packet& current_packet = (*it); RTC_DCHECK(!current_packet.payload.empty()); if (decoder_database_->IsDtmf(current_packet.payload_type)) { DtmfEvent event; int ret = DtmfBuffer::ParseEvent(current_packet.timestamp, current_packet.payload.data(), current_packet.payload.size(), &event); if (ret != DtmfBuffer::kOK) { return kDtmfParsingError; } if (dtmf_buffer_->InsertEvent(event) != DtmfBuffer::kOK) { return kDtmfInsertError; } it = packet_list.erase(it); } else { ++it; } } PacketList parsed_packet_list; bool is_dtx = false; while (!packet_list.empty()) { Packet& packet = packet_list.front(); const DecoderDatabase::DecoderInfo* info = decoder_database_->GetDecoderInfo(packet.payload_type); if (!info) { RTC_LOG(LS_WARNING) << "SplitAudio unknown payload type"; return kUnknownRtpPayloadType; } if (info->IsComfortNoise()) { // Carry comfort noise packets along. parsed_packet_list.splice(parsed_packet_list.end(), packet_list, packet_list.begin()); } else { const auto sequence_number = packet.sequence_number; const auto payload_type = packet.payload_type; const Packet::Priority original_priority = packet.priority; const auto& packet_info = packet.packet_info; auto packet_from_result = [&](AudioDecoder::ParseResult& result) { Packet new_packet; new_packet.sequence_number = sequence_number; new_packet.payload_type = payload_type; new_packet.timestamp = result.timestamp; new_packet.priority.codec_level = result.priority; new_packet.priority.red_level = original_priority.red_level; new_packet.packet_info = packet_info; new_packet.frame = std::move(result.frame); return new_packet; }; std::vector results = info->GetDecoder()->ParsePayload(std::move(packet.payload), packet.timestamp); if (results.empty()) { packet_list.pop_front(); } else { bool first = true; for (auto& result : results) { RTC_DCHECK(result.frame); RTC_DCHECK_GE(result.priority, 0); is_dtx = is_dtx || result.frame->IsDtxPacket(); if (first) { // Re-use the node and move it to parsed_packet_list. packet_list.front() = packet_from_result(result); parsed_packet_list.splice(parsed_packet_list.end(), packet_list, packet_list.begin()); first = false; } else { parsed_packet_list.push_back(packet_from_result(result)); } } } } } // Calculate the number of primary (non-FEC/RED) packets. const size_t number_of_primary_packets = std::count_if( parsed_packet_list.begin(), parsed_packet_list.end(), [](const Packet& in) { return in.priority.codec_level == 0; }); if (number_of_primary_packets < parsed_packet_list.size()) { stats_->SecondaryPacketsReceived(parsed_packet_list.size() - number_of_primary_packets); } // Insert packets in buffer. const int target_level_ms = controller_->TargetLevelMs(); const int ret = packet_buffer_->InsertPacketList( &parsed_packet_list, *decoder_database_, ¤t_rtp_payload_type_, ¤t_cng_rtp_payload_type_, stats_.get(), decoder_frame_length_, last_output_sample_rate_hz_, target_level_ms); bool buffer_flush_occured = false; if (ret == PacketBuffer::kFlushed) { // Reset DSP timestamp etc. if packet buffer flushed. new_codec_ = true; update_sample_rate_and_channels = true; buffer_flush_occured = true; } else if (ret == PacketBuffer::kPartialFlush) { // Forward sync buffer timestamp timestamp_ = packet_buffer_->PeekNextPacket()->timestamp; sync_buffer_->IncreaseEndTimestamp(timestamp_ - sync_buffer_->end_timestamp()); buffer_flush_occured = true; } else if (ret != PacketBuffer::kOK) { return kOtherError; } if (first_packet_) { first_packet_ = false; // Update the codec on the next GetAudio call. new_codec_ = true; } if (current_rtp_payload_type_) { RTC_DCHECK(decoder_database_->GetDecoderInfo(*current_rtp_payload_type_)) << "Payload type " << static_cast(*current_rtp_payload_type_) << " is unknown where it shouldn't be"; } if (update_sample_rate_and_channels && !packet_buffer_->Empty()) { // We do not use |current_rtp_payload_type_| to |set payload_type|, but // get the next RTP header from |packet_buffer_| to obtain the payload type. // The reason for it is the following corner case. If NetEq receives a // CNG packet with a sample rate different than the current CNG then it // flushes its buffer, assuming send codec must have been changed. However, // payload type of the hypothetically new send codec is not known. const Packet* next_packet = packet_buffer_->PeekNextPacket(); RTC_DCHECK(next_packet); const int payload_type = next_packet->payload_type; size_t channels = 1; if (!decoder_database_->IsComfortNoise(payload_type)) { AudioDecoder* decoder = decoder_database_->GetDecoder(payload_type); assert(decoder); // Payloads are already checked to be valid. channels = decoder->Channels(); } const DecoderDatabase::DecoderInfo* decoder_info = decoder_database_->GetDecoderInfo(payload_type); assert(decoder_info); if (decoder_info->SampleRateHz() != fs_hz_ || channels != algorithm_buffer_->Channels()) { SetSampleRateAndChannels(decoder_info->SampleRateHz(), channels); } if (nack_enabled_) { RTC_DCHECK(nack_); // Update the sample rate even if the rate is not new, because of Reset(). nack_->UpdateSampleRate(fs_hz_); } } const DecoderDatabase::DecoderInfo* dec_info = decoder_database_->GetDecoderInfo(main_payload_type); assert(dec_info); // Already checked that the payload type is known. NetEqController::PacketArrivedInfo info; info.is_cng_or_dtmf = dec_info->IsComfortNoise() || dec_info->IsDtmf(); info.packet_length_samples = number_of_primary_packets * decoder_frame_length_; info.main_timestamp = main_timestamp; info.main_sequence_number = main_sequence_number; info.is_dtx = is_dtx; info.buffer_flush = buffer_flush_occured; // Only update statistics if incoming packet is not older than last played // out packet or RTX handling is enabled, and if new codec flag is not // set. const bool should_update_stats = (enable_rtx_handling_ || static_cast(main_timestamp - timestamp_) >= 0) && !new_codec_; auto relative_delay = controller_->PacketArrived(fs_hz_, should_update_stats, info); if (relative_delay) { stats_->RelativePacketArrivalDelay(relative_delay.value()); } return 0; } int NetEqImpl::GetAudioInternal(AudioFrame* audio_frame, bool* muted, absl::optional action_override) { PacketList packet_list; DtmfEvent dtmf_event; Operation operation; bool play_dtmf; *muted = false; last_decoded_timestamps_.clear(); last_decoded_packet_infos_.clear(); tick_timer_->Increment(); stats_->IncreaseCounter(output_size_samples_, fs_hz_); const auto lifetime_stats = stats_->GetLifetimeStatistics(); expand_uma_logger_.UpdateSampleCounter(lifetime_stats.concealed_samples, fs_hz_); speech_expand_uma_logger_.UpdateSampleCounter( lifetime_stats.concealed_samples - lifetime_stats.silent_concealed_samples, fs_hz_); // Check for muted state. if (enable_muted_state_ && expand_->Muted() && packet_buffer_->Empty()) { RTC_DCHECK_EQ(last_mode_, Mode::kExpand); audio_frame->Reset(); RTC_DCHECK(audio_frame->muted()); // Reset() should mute the frame. playout_timestamp_ += static_cast(output_size_samples_); audio_frame->sample_rate_hz_ = fs_hz_; audio_frame->samples_per_channel_ = output_size_samples_; audio_frame->timestamp_ = first_packet_ ? 0 : timestamp_scaler_->ToExternal(playout_timestamp_) - static_cast(audio_frame->samples_per_channel_); audio_frame->num_channels_ = sync_buffer_->Channels(); stats_->ExpandedNoiseSamples(output_size_samples_, false); controller_->NotifyMutedState(); *muted = true; return 0; } int return_value = GetDecision(&operation, &packet_list, &dtmf_event, &play_dtmf, action_override); if (return_value != 0) { last_mode_ = Mode::kError; return return_value; } AudioDecoder::SpeechType speech_type; int length = 0; const size_t start_num_packets = packet_list.size(); int decode_return_value = Decode(&packet_list, &operation, &length, &speech_type); assert(vad_.get()); bool sid_frame_available = (operation == Operation::kRfc3389Cng && !packet_list.empty()); vad_->Update(decoded_buffer_.get(), static_cast(length), speech_type, sid_frame_available, fs_hz_); // This is the criterion that we did decode some data through the speech // decoder, and the operation resulted in comfort noise. const bool codec_internal_sid_frame = (speech_type == AudioDecoder::kComfortNoise && start_num_packets > packet_list.size()); if (sid_frame_available || codec_internal_sid_frame) { // Start a new stopwatch since we are decoding a new CNG packet. generated_noise_stopwatch_ = tick_timer_->GetNewStopwatch(); } algorithm_buffer_->Clear(); switch (operation) { case Operation::kNormal: { DoNormal(decoded_buffer_.get(), length, speech_type, play_dtmf); if (length > 0) { stats_->DecodedOutputPlayed(); } break; } case Operation::kMerge: { DoMerge(decoded_buffer_.get(), length, speech_type, play_dtmf); break; } case Operation::kExpand: { RTC_DCHECK_EQ(return_value, 0); if (!current_rtp_payload_type_ || !DoCodecPlc()) { return_value = DoExpand(play_dtmf); } RTC_DCHECK_GE(sync_buffer_->FutureLength() - expand_->overlap_length(), output_size_samples_); break; } case Operation::kAccelerate: case Operation::kFastAccelerate: { const bool fast_accelerate = enable_fast_accelerate_ && (operation == Operation::kFastAccelerate); return_value = DoAccelerate(decoded_buffer_.get(), length, speech_type, play_dtmf, fast_accelerate); break; } case Operation::kPreemptiveExpand: { return_value = DoPreemptiveExpand(decoded_buffer_.get(), length, speech_type, play_dtmf); break; } case Operation::kRfc3389Cng: case Operation::kRfc3389CngNoPacket: { return_value = DoRfc3389Cng(&packet_list, play_dtmf); break; } case Operation::kCodecInternalCng: { // This handles the case when there is no transmission and the decoder // should produce internal comfort noise. // TODO(hlundin): Write test for codec-internal CNG. DoCodecInternalCng(decoded_buffer_.get(), length); break; } case Operation::kDtmf: { // TODO(hlundin): Write test for this. return_value = DoDtmf(dtmf_event, &play_dtmf); break; } case Operation::kUndefined: { RTC_LOG(LS_ERROR) << "Invalid operation kUndefined."; assert(false); // This should not happen. last_mode_ = Mode::kError; return kInvalidOperation; } } // End of switch. last_operation_ = operation; if (return_value < 0) { return return_value; } if (last_mode_ != Mode::kRfc3389Cng) { comfort_noise_->Reset(); } // We treat it as if all packets referenced to by |last_decoded_packet_infos_| // were mashed together when creating the samples in |algorithm_buffer_|. RtpPacketInfos packet_infos(last_decoded_packet_infos_); // Copy samples from |algorithm_buffer_| to |sync_buffer_|. // // TODO(bugs.webrtc.org/10757): // We would in the future also like to pass |packet_infos| so that we can do // sample-perfect tracking of that information across |sync_buffer_|. sync_buffer_->PushBack(*algorithm_buffer_); // Extract data from |sync_buffer_| to |output|. size_t num_output_samples_per_channel = output_size_samples_; size_t num_output_samples = output_size_samples_ * sync_buffer_->Channels(); if (num_output_samples > AudioFrame::kMaxDataSizeSamples) { RTC_LOG(LS_WARNING) << "Output array is too short. " << AudioFrame::kMaxDataSizeSamples << " < " << output_size_samples_ << " * " << sync_buffer_->Channels(); num_output_samples = AudioFrame::kMaxDataSizeSamples; num_output_samples_per_channel = AudioFrame::kMaxDataSizeSamples / sync_buffer_->Channels(); } sync_buffer_->GetNextAudioInterleaved(num_output_samples_per_channel, audio_frame); audio_frame->sample_rate_hz_ = fs_hz_; // TODO(bugs.webrtc.org/10757): // We don't have the ability to properly track individual packets once their // audio samples have entered |sync_buffer_|. So for now, treat it as if // |packet_infos| from packets decoded by the current |GetAudioInternal()| // call were all consumed assembling the current audio frame and the current // audio frame only. audio_frame->packet_infos_ = std::move(packet_infos); if (sync_buffer_->FutureLength() < expand_->overlap_length()) { // The sync buffer should always contain |overlap_length| samples, but now // too many samples have been extracted. Reinstall the |overlap_length| // lookahead by moving the index. const size_t missing_lookahead_samples = expand_->overlap_length() - sync_buffer_->FutureLength(); RTC_DCHECK_GE(sync_buffer_->next_index(), missing_lookahead_samples); sync_buffer_->set_next_index(sync_buffer_->next_index() - missing_lookahead_samples); } if (audio_frame->samples_per_channel_ != output_size_samples_) { RTC_LOG(LS_ERROR) << "audio_frame->samples_per_channel_ (" << audio_frame->samples_per_channel_ << ") != output_size_samples_ (" << output_size_samples_ << ")"; // TODO(minyue): treatment of under-run, filling zeros audio_frame->Mute(); return kSampleUnderrun; } // Should always have overlap samples left in the |sync_buffer_|. RTC_DCHECK_GE(sync_buffer_->FutureLength(), expand_->overlap_length()); // TODO(yujo): For muted frames, this can be a copy rather than an addition. if (play_dtmf) { return_value = DtmfOverdub(dtmf_event, sync_buffer_->Channels(), audio_frame->mutable_data()); } // Update the background noise parameters if last operation wrote data // straight from the decoder to the |sync_buffer_|. That is, none of the // operations that modify the signal can be followed by a parameter update. if ((last_mode_ == Mode::kNormal) || (last_mode_ == Mode::kAccelerateFail) || (last_mode_ == Mode::kPreemptiveExpandFail) || (last_mode_ == Mode::kRfc3389Cng) || (last_mode_ == Mode::kCodecInternalCng)) { background_noise_->Update(*sync_buffer_, *vad_.get()); } if (operation == Operation::kDtmf) { // DTMF data was written the end of |sync_buffer_|. // Update index to end of DTMF data in |sync_buffer_|. sync_buffer_->set_dtmf_index(sync_buffer_->Size()); } if (last_mode_ != Mode::kExpand && last_mode_ != Mode::kCodecPlc) { // If last operation was not expand, calculate the |playout_timestamp_| from // the |sync_buffer_|. However, do not update the |playout_timestamp_| if it // would be moved "backwards". uint32_t temp_timestamp = sync_buffer_->end_timestamp() - static_cast(sync_buffer_->FutureLength()); if (static_cast(temp_timestamp - playout_timestamp_) > 0) { playout_timestamp_ = temp_timestamp; } } else { // Use dead reckoning to estimate the |playout_timestamp_|. playout_timestamp_ += static_cast(output_size_samples_); } // Set the timestamp in the audio frame to zero before the first packet has // been inserted. Otherwise, subtract the frame size in samples to get the // timestamp of the first sample in the frame (playout_timestamp_ is the // last + 1). audio_frame->timestamp_ = first_packet_ ? 0 : timestamp_scaler_->ToExternal(playout_timestamp_) - static_cast(audio_frame->samples_per_channel_); if (!(last_mode_ == Mode::kRfc3389Cng || last_mode_ == Mode::kCodecInternalCng || last_mode_ == Mode::kExpand || last_mode_ == Mode::kCodecPlc)) { generated_noise_stopwatch_.reset(); } if (decode_return_value) return decode_return_value; return return_value; } int NetEqImpl::GetDecision(Operation* operation, PacketList* packet_list, DtmfEvent* dtmf_event, bool* play_dtmf, absl::optional action_override) { // Initialize output variables. *play_dtmf = false; *operation = Operation::kUndefined; assert(sync_buffer_.get()); uint32_t end_timestamp = sync_buffer_->end_timestamp(); if (!new_codec_) { const uint32_t five_seconds_samples = 5 * fs_hz_; packet_buffer_->DiscardOldPackets(end_timestamp, five_seconds_samples, stats_.get()); } const Packet* packet = packet_buffer_->PeekNextPacket(); RTC_DCHECK(!generated_noise_stopwatch_ || generated_noise_stopwatch_->ElapsedTicks() >= 1); uint64_t generated_noise_samples = generated_noise_stopwatch_ ? (generated_noise_stopwatch_->ElapsedTicks() - 1) * output_size_samples_ + controller_->noise_fast_forward() : 0; if (controller_->CngRfc3389On() || last_mode_ == Mode::kRfc3389Cng) { // Because of timestamp peculiarities, we have to "manually" disallow using // a CNG packet with the same timestamp as the one that was last played. // This can happen when using redundancy and will cause the timing to shift. while (packet && decoder_database_->IsComfortNoise(packet->payload_type) && (end_timestamp >= packet->timestamp || end_timestamp + generated_noise_samples > packet->timestamp)) { // Don't use this packet, discard it. if (packet_buffer_->DiscardNextPacket(stats_.get()) != PacketBuffer::kOK) { assert(false); // Must be ok by design. } // Check buffer again. if (!new_codec_) { packet_buffer_->DiscardOldPackets(end_timestamp, 5 * fs_hz_, stats_.get()); } packet = packet_buffer_->PeekNextPacket(); } } assert(expand_.get()); const int samples_left = static_cast(sync_buffer_->FutureLength() - expand_->overlap_length()); if (last_mode_ == Mode::kAccelerateSuccess || last_mode_ == Mode::kAccelerateLowEnergy || last_mode_ == Mode::kPreemptiveExpandSuccess || last_mode_ == Mode::kPreemptiveExpandLowEnergy) { // Subtract (samples_left + output_size_samples_) from sampleMemory. controller_->AddSampleMemory( -(samples_left + rtc::dchecked_cast(output_size_samples_))); } // Check if it is time to play a DTMF event. if (dtmf_buffer_->GetEvent( static_cast(end_timestamp + generated_noise_samples), dtmf_event)) { *play_dtmf = true; } // Get instruction. assert(sync_buffer_.get()); assert(expand_.get()); generated_noise_samples = generated_noise_stopwatch_ ? generated_noise_stopwatch_->ElapsedTicks() * output_size_samples_ + controller_->noise_fast_forward() : 0; NetEqController::NetEqStatus status; status.packet_buffer_info.dtx_or_cng = packet_buffer_->ContainsDtxOrCngPacket(decoder_database_.get()); status.packet_buffer_info.num_samples = packet_buffer_->NumSamplesInBuffer(decoder_frame_length_); status.packet_buffer_info.span_samples = packet_buffer_->GetSpanSamples( decoder_frame_length_, last_output_sample_rate_hz_, true); status.packet_buffer_info.span_samples_no_dtx = packet_buffer_->GetSpanSamples(decoder_frame_length_, last_output_sample_rate_hz_, false); status.packet_buffer_info.num_packets = packet_buffer_->NumPacketsInBuffer(); status.target_timestamp = sync_buffer_->end_timestamp(); status.expand_mutefactor = expand_->MuteFactor(0); status.last_packet_samples = decoder_frame_length_; status.last_mode = last_mode_; status.play_dtmf = *play_dtmf; status.generated_noise_samples = generated_noise_samples; status.sync_buffer_samples = sync_buffer_->FutureLength(); if (packet) { status.next_packet = { packet->timestamp, packet->frame && packet->frame->IsDtxPacket(), decoder_database_->IsComfortNoise(packet->payload_type)}; } *operation = controller_->GetDecision(status, &reset_decoder_); // Disallow time stretching if this packet is DTX, because such a decision may // be based on earlier buffer level estimate, as we do not update buffer level // during DTX. When we have a better way to update buffer level during DTX, // this can be discarded. if (packet && packet->frame && packet->frame->IsDtxPacket() && (*operation == Operation::kMerge || *operation == Operation::kAccelerate || *operation == Operation::kFastAccelerate || *operation == Operation::kPreemptiveExpand)) { *operation = Operation::kNormal; } if (action_override) { // Use the provided action instead of the decision NetEq decided on. *operation = *action_override; } // Check if we already have enough samples in the |sync_buffer_|. If so, // change decision to normal, unless the decision was merge, accelerate, or // preemptive expand. if (samples_left >= rtc::dchecked_cast(output_size_samples_) && *operation != Operation::kMerge && *operation != Operation::kAccelerate && *operation != Operation::kFastAccelerate && *operation != Operation::kPreemptiveExpand) { *operation = Operation::kNormal; return 0; } controller_->ExpandDecision(*operation); if ((last_mode_ == Mode::kCodecPlc) && (*operation != Operation::kExpand)) { // Getting out of the PLC expand mode, reporting interruptions. // NetEq PLC reports this metrics in expand.cc stats_->EndExpandEvent(fs_hz_); } // Check conditions for reset. if (new_codec_ || *operation == Operation::kUndefined) { // The only valid reason to get kUndefined is that new_codec_ is set. assert(new_codec_); if (*play_dtmf && !packet) { timestamp_ = dtmf_event->timestamp; } else { if (!packet) { RTC_LOG(LS_ERROR) << "Packet missing where it shouldn't."; return -1; } timestamp_ = packet->timestamp; if (*operation == Operation::kRfc3389CngNoPacket && decoder_database_->IsComfortNoise(packet->payload_type)) { // Change decision to CNG packet, since we do have a CNG packet, but it // was considered too early to use. Now, use it anyway. *operation = Operation::kRfc3389Cng; } else if (*operation != Operation::kRfc3389Cng) { *operation = Operation::kNormal; } } // Adjust |sync_buffer_| timestamp before setting |end_timestamp| to the // new value. sync_buffer_->IncreaseEndTimestamp(timestamp_ - end_timestamp); end_timestamp = timestamp_; new_codec_ = false; controller_->SoftReset(); stats_->ResetMcu(); } size_t required_samples = output_size_samples_; const size_t samples_10_ms = static_cast(80 * fs_mult_); const size_t samples_20_ms = 2 * samples_10_ms; const size_t samples_30_ms = 3 * samples_10_ms; switch (*operation) { case Operation::kExpand: { timestamp_ = end_timestamp; return 0; } case Operation::kRfc3389CngNoPacket: case Operation::kCodecInternalCng: { return 0; } case Operation::kDtmf: { // TODO(hlundin): Write test for this. // Update timestamp. timestamp_ = end_timestamp; const uint64_t generated_noise_samples = generated_noise_stopwatch_ ? generated_noise_stopwatch_->ElapsedTicks() * output_size_samples_ + controller_->noise_fast_forward() : 0; if (generated_noise_samples > 0 && last_mode_ != Mode::kDtmf) { // Make a jump in timestamp due to the recently played comfort noise. uint32_t timestamp_jump = static_cast(generated_noise_samples); sync_buffer_->IncreaseEndTimestamp(timestamp_jump); timestamp_ += timestamp_jump; } return 0; } case Operation::kAccelerate: case Operation::kFastAccelerate: { // In order to do an accelerate we need at least 30 ms of audio data. if (samples_left >= static_cast(samples_30_ms)) { // Already have enough data, so we do not need to extract any more. controller_->set_sample_memory(samples_left); controller_->set_prev_time_scale(true); return 0; } else if (samples_left >= static_cast(samples_10_ms) && decoder_frame_length_ >= samples_30_ms) { // Avoid decoding more data as it might overflow the playout buffer. *operation = Operation::kNormal; return 0; } else if (samples_left < static_cast(samples_20_ms) && decoder_frame_length_ < samples_30_ms) { // Build up decoded data by decoding at least 20 ms of audio data. Do // not perform accelerate yet, but wait until we only need to do one // decoding. required_samples = 2 * output_size_samples_; *operation = Operation::kNormal; } // If none of the above is true, we have one of two possible situations: // (1) 20 ms <= samples_left < 30 ms and decoder_frame_length_ < 30 ms; or // (2) samples_left < 10 ms and decoder_frame_length_ >= 30 ms. // In either case, we move on with the accelerate decision, and decode one // frame now. break; } case Operation::kPreemptiveExpand: { // In order to do a preemptive expand we need at least 30 ms of decoded // audio data. if ((samples_left >= static_cast(samples_30_ms)) || (samples_left >= static_cast(samples_10_ms) && decoder_frame_length_ >= samples_30_ms)) { // Already have enough data, so we do not need to extract any more. // Or, avoid decoding more data as it might overflow the playout buffer. // Still try preemptive expand, though. controller_->set_sample_memory(samples_left); controller_->set_prev_time_scale(true); return 0; } if (samples_left < static_cast(samples_20_ms) && decoder_frame_length_ < samples_30_ms) { // Build up decoded data by decoding at least 20 ms of audio data. // Still try to perform preemptive expand. required_samples = 2 * output_size_samples_; } // Move on with the preemptive expand decision. break; } case Operation::kMerge: { required_samples = std::max(merge_->RequiredFutureSamples(), required_samples); break; } default: { // Do nothing. } } // Get packets from buffer. int extracted_samples = 0; if (packet) { sync_buffer_->IncreaseEndTimestamp(packet->timestamp - end_timestamp); if (*operation != Operation::kRfc3389Cng) { // We are about to decode and use a non-CNG packet. controller_->SetCngOff(); } extracted_samples = ExtractPackets(required_samples, packet_list); if (extracted_samples < 0) { return kPacketBufferCorruption; } } if (*operation == Operation::kAccelerate || *operation == Operation::kFastAccelerate || *operation == Operation::kPreemptiveExpand) { controller_->set_sample_memory(samples_left + extracted_samples); controller_->set_prev_time_scale(true); } if (*operation == Operation::kAccelerate || *operation == Operation::kFastAccelerate) { // Check that we have enough data (30ms) to do accelerate. if (extracted_samples + samples_left < static_cast(samples_30_ms)) { // TODO(hlundin): Write test for this. // Not enough, do normal operation instead. *operation = Operation::kNormal; } } timestamp_ = end_timestamp; return 0; } int NetEqImpl::Decode(PacketList* packet_list, Operation* operation, int* decoded_length, AudioDecoder::SpeechType* speech_type) { *speech_type = AudioDecoder::kSpeech; // When packet_list is empty, we may be in kCodecInternalCng mode, and for // that we use current active decoder. AudioDecoder* decoder = decoder_database_->GetActiveDecoder(); if (!packet_list->empty()) { const Packet& packet = packet_list->front(); uint8_t payload_type = packet.payload_type; if (!decoder_database_->IsComfortNoise(payload_type)) { decoder = decoder_database_->GetDecoder(payload_type); assert(decoder); if (!decoder) { RTC_LOG(LS_WARNING) << "Unknown payload type " << static_cast(payload_type); packet_list->clear(); return kDecoderNotFound; } bool decoder_changed; decoder_database_->SetActiveDecoder(payload_type, &decoder_changed); if (decoder_changed) { // We have a new decoder. Re-init some values. const DecoderDatabase::DecoderInfo* decoder_info = decoder_database_->GetDecoderInfo(payload_type); assert(decoder_info); if (!decoder_info) { RTC_LOG(LS_WARNING) << "Unknown payload type " << static_cast(payload_type); packet_list->clear(); return kDecoderNotFound; } // If sampling rate or number of channels has changed, we need to make // a reset. if (decoder_info->SampleRateHz() != fs_hz_ || decoder->Channels() != algorithm_buffer_->Channels()) { // TODO(tlegrand): Add unittest to cover this event. SetSampleRateAndChannels(decoder_info->SampleRateHz(), decoder->Channels()); } sync_buffer_->set_end_timestamp(timestamp_); playout_timestamp_ = timestamp_; } } } if (reset_decoder_) { // TODO(hlundin): Write test for this. if (decoder) decoder->Reset(); // Reset comfort noise decoder. ComfortNoiseDecoder* cng_decoder = decoder_database_->GetActiveCngDecoder(); if (cng_decoder) cng_decoder->Reset(); reset_decoder_ = false; } *decoded_length = 0; // Update codec-internal PLC state. if ((*operation == Operation::kMerge) && decoder && decoder->HasDecodePlc()) { decoder->DecodePlc(1, &decoded_buffer_[*decoded_length]); } int return_value; if (*operation == Operation::kCodecInternalCng) { RTC_DCHECK(packet_list->empty()); return_value = DecodeCng(decoder, decoded_length, speech_type); } else { return_value = DecodeLoop(packet_list, *operation, decoder, decoded_length, speech_type); } if (*decoded_length < 0) { // Error returned from the decoder. *decoded_length = 0; sync_buffer_->IncreaseEndTimestamp( static_cast(decoder_frame_length_)); int error_code = 0; if (decoder) error_code = decoder->ErrorCode(); if (error_code != 0) { // Got some error code from the decoder. return_value = kDecoderErrorCode; RTC_LOG(LS_WARNING) << "Decoder returned error code: " << error_code; } else { // Decoder does not implement error codes. Return generic error. return_value = kOtherDecoderError; RTC_LOG(LS_WARNING) << "Decoder error (no error code)"; } *operation = Operation::kExpand; // Do expansion to get data instead. } if (*speech_type != AudioDecoder::kComfortNoise) { // Don't increment timestamp if codec returned CNG speech type // since in this case, the we will increment the CNGplayedTS counter. // Increase with number of samples per channel. assert(*decoded_length == 0 || (decoder && decoder->Channels() == sync_buffer_->Channels())); sync_buffer_->IncreaseEndTimestamp( *decoded_length / static_cast(sync_buffer_->Channels())); } return return_value; } int NetEqImpl::DecodeCng(AudioDecoder* decoder, int* decoded_length, AudioDecoder::SpeechType* speech_type) { if (!decoder) { // This happens when active decoder is not defined. *decoded_length = -1; return 0; } while (*decoded_length < rtc::dchecked_cast(output_size_samples_)) { const int length = decoder->Decode( nullptr, 0, fs_hz_, (decoded_buffer_length_ - *decoded_length) * sizeof(int16_t), &decoded_buffer_[*decoded_length], speech_type); if (length > 0) { *decoded_length += length; } else { // Error. RTC_LOG(LS_WARNING) << "Failed to decode CNG"; *decoded_length = -1; break; } if (*decoded_length > static_cast(decoded_buffer_length_)) { // Guard against overflow. RTC_LOG(LS_WARNING) << "Decoded too much CNG."; return kDecodedTooMuch; } } return 0; } int NetEqImpl::DecodeLoop(PacketList* packet_list, const Operation& operation, AudioDecoder* decoder, int* decoded_length, AudioDecoder::SpeechType* speech_type) { RTC_DCHECK(last_decoded_timestamps_.empty()); RTC_DCHECK(last_decoded_packet_infos_.empty()); // Do decoding. while (!packet_list->empty() && !decoder_database_->IsComfortNoise( packet_list->front().payload_type)) { assert(decoder); // At this point, we must have a decoder object. // The number of channels in the |sync_buffer_| should be the same as the // number decoder channels. assert(sync_buffer_->Channels() == decoder->Channels()); assert(decoded_buffer_length_ >= kMaxFrameSize * decoder->Channels()); assert(operation == Operation::kNormal || operation == Operation::kAccelerate || operation == Operation::kFastAccelerate || operation == Operation::kMerge || operation == Operation::kPreemptiveExpand); auto opt_result = packet_list->front().frame->Decode( rtc::ArrayView(&decoded_buffer_[*decoded_length], decoded_buffer_length_ - *decoded_length)); last_decoded_timestamps_.push_back(packet_list->front().timestamp); last_decoded_packet_infos_.push_back( std::move(packet_list->front().packet_info)); packet_list->pop_front(); if (opt_result) { const auto& result = *opt_result; *speech_type = result.speech_type; if (result.num_decoded_samples > 0) { *decoded_length += rtc::dchecked_cast(result.num_decoded_samples); // Update |decoder_frame_length_| with number of samples per channel. decoder_frame_length_ = result.num_decoded_samples / decoder->Channels(); } } else { // Error. // TODO(ossu): What to put here? RTC_LOG(LS_WARNING) << "Decode error"; *decoded_length = -1; last_decoded_packet_infos_.clear(); packet_list->clear(); break; } if (*decoded_length > rtc::dchecked_cast(decoded_buffer_length_)) { // Guard against overflow. RTC_LOG(LS_WARNING) << "Decoded too much."; packet_list->clear(); return kDecodedTooMuch; } } // End of decode loop. // If the list is not empty at this point, either a decoding error terminated // the while-loop, or list must hold exactly one CNG packet. assert(packet_list->empty() || *decoded_length < 0 || (packet_list->size() == 1 && decoder_database_->IsComfortNoise( packet_list->front().payload_type))); return 0; } void NetEqImpl::DoNormal(const int16_t* decoded_buffer, size_t decoded_length, AudioDecoder::SpeechType speech_type, bool play_dtmf) { assert(normal_.get()); normal_->Process(decoded_buffer, decoded_length, last_mode_, algorithm_buffer_.get()); if (decoded_length != 0) { last_mode_ = Mode::kNormal; } // If last packet was decoded as an inband CNG, set mode to CNG instead. if ((speech_type == AudioDecoder::kComfortNoise) || ((last_mode_ == Mode::kCodecInternalCng) && (decoded_length == 0))) { // TODO(hlundin): Remove second part of || statement above. last_mode_ = Mode::kCodecInternalCng; } if (!play_dtmf) { dtmf_tone_generator_->Reset(); } } void NetEqImpl::DoMerge(int16_t* decoded_buffer, size_t decoded_length, AudioDecoder::SpeechType speech_type, bool play_dtmf) { assert(merge_.get()); size_t new_length = merge_->Process(decoded_buffer, decoded_length, algorithm_buffer_.get()); // Correction can be negative. int expand_length_correction = rtc::dchecked_cast(new_length) - rtc::dchecked_cast(decoded_length / algorithm_buffer_->Channels()); // Update in-call and post-call statistics. if (expand_->MuteFactor(0) == 0) { // Expand generates only noise. stats_->ExpandedNoiseSamplesCorrection(expand_length_correction); } else { // Expansion generates more than only noise. stats_->ExpandedVoiceSamplesCorrection(expand_length_correction); } last_mode_ = Mode::kMerge; // If last packet was decoded as an inband CNG, set mode to CNG instead. if (speech_type == AudioDecoder::kComfortNoise) { last_mode_ = Mode::kCodecInternalCng; } expand_->Reset(); if (!play_dtmf) { dtmf_tone_generator_->Reset(); } } bool NetEqImpl::DoCodecPlc() { AudioDecoder* decoder = decoder_database_->GetActiveDecoder(); if (!decoder) { return false; } const size_t channels = algorithm_buffer_->Channels(); const size_t requested_samples_per_channel = output_size_samples_ - (sync_buffer_->FutureLength() - expand_->overlap_length()); concealment_audio_.Clear(); decoder->GeneratePlc(requested_samples_per_channel, &concealment_audio_); if (concealment_audio_.empty()) { // Nothing produced. Resort to regular expand. return false; } RTC_CHECK_GE(concealment_audio_.size(), requested_samples_per_channel * channels); sync_buffer_->PushBackInterleaved(concealment_audio_); RTC_DCHECK_NE(algorithm_buffer_->Channels(), 0); const size_t concealed_samples_per_channel = concealment_audio_.size() / channels; // Update in-call and post-call statistics. const bool is_new_concealment_event = (last_mode_ != Mode::kCodecPlc); if (std::all_of(concealment_audio_.cbegin(), concealment_audio_.cend(), [](int16_t i) { return i == 0; })) { // Expand operation generates only noise. stats_->ExpandedNoiseSamples(concealed_samples_per_channel, is_new_concealment_event); } else { // Expand operation generates more than only noise. stats_->ExpandedVoiceSamples(concealed_samples_per_channel, is_new_concealment_event); } last_mode_ = Mode::kCodecPlc; if (!generated_noise_stopwatch_) { // Start a new stopwatch since we may be covering for a lost CNG packet. generated_noise_stopwatch_ = tick_timer_->GetNewStopwatch(); } return true; } int NetEqImpl::DoExpand(bool play_dtmf) { while ((sync_buffer_->FutureLength() - expand_->overlap_length()) < output_size_samples_) { algorithm_buffer_->Clear(); int return_value = expand_->Process(algorithm_buffer_.get()); size_t length = algorithm_buffer_->Size(); bool is_new_concealment_event = (last_mode_ != Mode::kExpand); // Update in-call and post-call statistics. if (expand_->MuteFactor(0) == 0) { // Expand operation generates only noise. stats_->ExpandedNoiseSamples(length, is_new_concealment_event); } else { // Expand operation generates more than only noise. stats_->ExpandedVoiceSamples(length, is_new_concealment_event); } last_mode_ = Mode::kExpand; if (return_value < 0) { return return_value; } sync_buffer_->PushBack(*algorithm_buffer_); algorithm_buffer_->Clear(); } if (!play_dtmf) { dtmf_tone_generator_->Reset(); } if (!generated_noise_stopwatch_) { // Start a new stopwatch since we may be covering for a lost CNG packet. generated_noise_stopwatch_ = tick_timer_->GetNewStopwatch(); } return 0; } int NetEqImpl::DoAccelerate(int16_t* decoded_buffer, size_t decoded_length, AudioDecoder::SpeechType speech_type, bool play_dtmf, bool fast_accelerate) { const size_t required_samples = static_cast(240 * fs_mult_); // Must have 30 ms. size_t borrowed_samples_per_channel = 0; size_t num_channels = algorithm_buffer_->Channels(); size_t decoded_length_per_channel = decoded_length / num_channels; if (decoded_length_per_channel < required_samples) { // Must move data from the |sync_buffer_| in order to get 30 ms. borrowed_samples_per_channel = static_cast(required_samples - decoded_length_per_channel); memmove(&decoded_buffer[borrowed_samples_per_channel * num_channels], decoded_buffer, sizeof(int16_t) * decoded_length); sync_buffer_->ReadInterleavedFromEnd(borrowed_samples_per_channel, decoded_buffer); decoded_length = required_samples * num_channels; } size_t samples_removed = 0; Accelerate::ReturnCodes return_code = accelerate_->Process(decoded_buffer, decoded_length, fast_accelerate, algorithm_buffer_.get(), &samples_removed); stats_->AcceleratedSamples(samples_removed); switch (return_code) { case Accelerate::kSuccess: last_mode_ = Mode::kAccelerateSuccess; break; case Accelerate::kSuccessLowEnergy: last_mode_ = Mode::kAccelerateLowEnergy; break; case Accelerate::kNoStretch: last_mode_ = Mode::kAccelerateFail; break; case Accelerate::kError: // TODO(hlundin): Map to Modes::kError instead? last_mode_ = Mode::kAccelerateFail; return kAccelerateError; } if (borrowed_samples_per_channel > 0) { // Copy borrowed samples back to the |sync_buffer_|. size_t length = algorithm_buffer_->Size(); if (length < borrowed_samples_per_channel) { // This destroys the beginning of the buffer, but will not cause any // problems. sync_buffer_->ReplaceAtIndex( *algorithm_buffer_, sync_buffer_->Size() - borrowed_samples_per_channel); sync_buffer_->PushFrontZeros(borrowed_samples_per_channel - length); algorithm_buffer_->PopFront(length); assert(algorithm_buffer_->Empty()); } else { sync_buffer_->ReplaceAtIndex( *algorithm_buffer_, borrowed_samples_per_channel, sync_buffer_->Size() - borrowed_samples_per_channel); algorithm_buffer_->PopFront(borrowed_samples_per_channel); } } // If last packet was decoded as an inband CNG, set mode to CNG instead. if (speech_type == AudioDecoder::kComfortNoise) { last_mode_ = Mode::kCodecInternalCng; } if (!play_dtmf) { dtmf_tone_generator_->Reset(); } expand_->Reset(); return 0; } int NetEqImpl::DoPreemptiveExpand(int16_t* decoded_buffer, size_t decoded_length, AudioDecoder::SpeechType speech_type, bool play_dtmf) { const size_t required_samples = static_cast(240 * fs_mult_); // Must have 30 ms. size_t num_channels = algorithm_buffer_->Channels(); size_t borrowed_samples_per_channel = 0; size_t old_borrowed_samples_per_channel = 0; size_t decoded_length_per_channel = decoded_length / num_channels; if (decoded_length_per_channel < required_samples) { // Must move data from the |sync_buffer_| in order to get 30 ms. borrowed_samples_per_channel = required_samples - decoded_length_per_channel; // Calculate how many of these were already played out. old_borrowed_samples_per_channel = (borrowed_samples_per_channel > sync_buffer_->FutureLength()) ? (borrowed_samples_per_channel - sync_buffer_->FutureLength()) : 0; memmove(&decoded_buffer[borrowed_samples_per_channel * num_channels], decoded_buffer, sizeof(int16_t) * decoded_length); sync_buffer_->ReadInterleavedFromEnd(borrowed_samples_per_channel, decoded_buffer); decoded_length = required_samples * num_channels; } size_t samples_added = 0; PreemptiveExpand::ReturnCodes return_code = preemptive_expand_->Process( decoded_buffer, decoded_length, old_borrowed_samples_per_channel, algorithm_buffer_.get(), &samples_added); stats_->PreemptiveExpandedSamples(samples_added); switch (return_code) { case PreemptiveExpand::kSuccess: last_mode_ = Mode::kPreemptiveExpandSuccess; break; case PreemptiveExpand::kSuccessLowEnergy: last_mode_ = Mode::kPreemptiveExpandLowEnergy; break; case PreemptiveExpand::kNoStretch: last_mode_ = Mode::kPreemptiveExpandFail; break; case PreemptiveExpand::kError: // TODO(hlundin): Map to Modes::kError instead? last_mode_ = Mode::kPreemptiveExpandFail; return kPreemptiveExpandError; } if (borrowed_samples_per_channel > 0) { // Copy borrowed samples back to the |sync_buffer_|. sync_buffer_->ReplaceAtIndex( *algorithm_buffer_, borrowed_samples_per_channel, sync_buffer_->Size() - borrowed_samples_per_channel); algorithm_buffer_->PopFront(borrowed_samples_per_channel); } // If last packet was decoded as an inband CNG, set mode to CNG instead. if (speech_type == AudioDecoder::kComfortNoise) { last_mode_ = Mode::kCodecInternalCng; } if (!play_dtmf) { dtmf_tone_generator_->Reset(); } expand_->Reset(); return 0; } int NetEqImpl::DoRfc3389Cng(PacketList* packet_list, bool play_dtmf) { if (!packet_list->empty()) { // Must have exactly one SID frame at this point. assert(packet_list->size() == 1); const Packet& packet = packet_list->front(); if (!decoder_database_->IsComfortNoise(packet.payload_type)) { RTC_LOG(LS_ERROR) << "Trying to decode non-CNG payload as CNG."; return kOtherError; } if (comfort_noise_->UpdateParameters(packet) == ComfortNoise::kInternalError) { algorithm_buffer_->Zeros(output_size_samples_); return -comfort_noise_->internal_error_code(); } } int cn_return = comfort_noise_->Generate(output_size_samples_, algorithm_buffer_.get()); expand_->Reset(); last_mode_ = Mode::kRfc3389Cng; if (!play_dtmf) { dtmf_tone_generator_->Reset(); } if (cn_return == ComfortNoise::kInternalError) { RTC_LOG(LS_WARNING) << "Comfort noise generator returned error code: " << comfort_noise_->internal_error_code(); return kComfortNoiseErrorCode; } else if (cn_return == ComfortNoise::kUnknownPayloadType) { return kUnknownRtpPayloadType; } return 0; } void NetEqImpl::DoCodecInternalCng(const int16_t* decoded_buffer, size_t decoded_length) { RTC_DCHECK(normal_.get()); normal_->Process(decoded_buffer, decoded_length, last_mode_, algorithm_buffer_.get()); last_mode_ = Mode::kCodecInternalCng; expand_->Reset(); } int NetEqImpl::DoDtmf(const DtmfEvent& dtmf_event, bool* play_dtmf) { // This block of the code and the block further down, handling |dtmf_switch| // are commented out. Otherwise playing out-of-band DTMF would fail in VoE // test, DtmfTest.ManualSuccessfullySendsOutOfBandTelephoneEvents. This is // equivalent to |dtmf_switch| always be false. // // See http://webrtc-codereview.appspot.com/1195004/ for discussion // On this issue. This change might cause some glitches at the point of // switch from audio to DTMF. Issue 1545 is filed to track this. // // bool dtmf_switch = false; // if ((last_mode_ != Modes::kDtmf) && // dtmf_tone_generator_->initialized()) { // // Special case; see below. // // We must catch this before calling Generate, since |initialized| is // // modified in that call. // dtmf_switch = true; // } int dtmf_return_value = 0; if (!dtmf_tone_generator_->initialized()) { // Initialize if not already done. dtmf_return_value = dtmf_tone_generator_->Init(fs_hz_, dtmf_event.event_no, dtmf_event.volume); } if (dtmf_return_value == 0) { // Generate DTMF signal. dtmf_return_value = dtmf_tone_generator_->Generate(output_size_samples_, algorithm_buffer_.get()); } if (dtmf_return_value < 0) { algorithm_buffer_->Zeros(output_size_samples_); return dtmf_return_value; } // if (dtmf_switch) { // // This is the special case where the previous operation was DTMF // // overdub, but the current instruction is "regular" DTMF. We must make // // sure that the DTMF does not have any discontinuities. The first DTMF // // sample that we generate now must be played out immediately, therefore // // it must be copied to the speech buffer. // // TODO(hlundin): This code seems incorrect. (Legacy.) Write test and // // verify correct operation. // assert(false); // // Must generate enough data to replace all of the |sync_buffer_| // // "future". // int required_length = sync_buffer_->FutureLength(); // assert(dtmf_tone_generator_->initialized()); // dtmf_return_value = dtmf_tone_generator_->Generate(required_length, // algorithm_buffer_); // assert((size_t) required_length == algorithm_buffer_->Size()); // if (dtmf_return_value < 0) { // algorithm_buffer_->Zeros(output_size_samples_); // return dtmf_return_value; // } // // // Overwrite the "future" part of the speech buffer with the new DTMF // // data. // // TODO(hlundin): It seems that this overwriting has gone lost. // // Not adapted for multi-channel yet. // assert(algorithm_buffer_->Channels() == 1); // if (algorithm_buffer_->Channels() != 1) { // RTC_LOG(LS_WARNING) << "DTMF not supported for more than one channel"; // return kStereoNotSupported; // } // // Shuffle the remaining data to the beginning of algorithm buffer. // algorithm_buffer_->PopFront(sync_buffer_->FutureLength()); // } sync_buffer_->IncreaseEndTimestamp( static_cast(output_size_samples_)); expand_->Reset(); last_mode_ = Mode::kDtmf; // Set to false because the DTMF is already in the algorithm buffer. *play_dtmf = false; return 0; } int NetEqImpl::DtmfOverdub(const DtmfEvent& dtmf_event, size_t num_channels, int16_t* output) const { size_t out_index = 0; size_t overdub_length = output_size_samples_; // Default value. if (sync_buffer_->dtmf_index() > sync_buffer_->next_index()) { // Special operation for transition from "DTMF only" to "DTMF overdub". out_index = std::min(sync_buffer_->dtmf_index() - sync_buffer_->next_index(), output_size_samples_); overdub_length = output_size_samples_ - out_index; } AudioMultiVector dtmf_output(num_channels); int dtmf_return_value = 0; if (!dtmf_tone_generator_->initialized()) { dtmf_return_value = dtmf_tone_generator_->Init(fs_hz_, dtmf_event.event_no, dtmf_event.volume); } if (dtmf_return_value == 0) { dtmf_return_value = dtmf_tone_generator_->Generate(overdub_length, &dtmf_output); assert(overdub_length == dtmf_output.Size()); } dtmf_output.ReadInterleaved(overdub_length, &output[out_index]); return dtmf_return_value < 0 ? dtmf_return_value : 0; } int NetEqImpl::ExtractPackets(size_t required_samples, PacketList* packet_list) { bool first_packet = true; uint8_t prev_payload_type = 0; uint32_t prev_timestamp = 0; uint16_t prev_sequence_number = 0; bool next_packet_available = false; const Packet* next_packet = packet_buffer_->PeekNextPacket(); RTC_DCHECK(next_packet); if (!next_packet) { RTC_LOG(LS_ERROR) << "Packet buffer unexpectedly empty."; return -1; } uint32_t first_timestamp = next_packet->timestamp; size_t extracted_samples = 0; // Packet extraction loop. do { timestamp_ = next_packet->timestamp; absl::optional packet = packet_buffer_->GetNextPacket(); // |next_packet| may be invalid after the |packet_buffer_| operation. next_packet = nullptr; if (!packet) { RTC_LOG(LS_ERROR) << "Should always be able to extract a packet here"; assert(false); // Should always be able to extract a packet here. return -1; } const uint64_t waiting_time_ms = packet->waiting_time->ElapsedMs(); stats_->StoreWaitingTime(waiting_time_ms); RTC_DCHECK(!packet->empty()); if (first_packet) { first_packet = false; if (nack_enabled_) { RTC_DCHECK(nack_); // TODO(henrik.lundin): Should we update this for all decoded packets? nack_->UpdateLastDecodedPacket(packet->sequence_number, packet->timestamp); } prev_sequence_number = packet->sequence_number; prev_timestamp = packet->timestamp; prev_payload_type = packet->payload_type; } const bool has_cng_packet = decoder_database_->IsComfortNoise(packet->payload_type); // Store number of extracted samples. size_t packet_duration = 0; if (packet->frame) { packet_duration = packet->frame->Duration(); // TODO(ossu): Is this the correct way to track Opus FEC packets? if (packet->priority.codec_level > 0) { stats_->SecondaryDecodedSamples( rtc::dchecked_cast(packet_duration)); } } else if (!has_cng_packet) { RTC_LOG(LS_WARNING) << "Unknown payload type " << static_cast(packet->payload_type); RTC_NOTREACHED(); } if (packet_duration == 0) { // Decoder did not return a packet duration. Assume that the packet // contains the same number of samples as the previous one. packet_duration = decoder_frame_length_; } extracted_samples = packet->timestamp - first_timestamp + packet_duration; RTC_DCHECK(controller_); stats_->JitterBufferDelay( packet_duration, waiting_time_ms + output_delay_chain_ms_, controller_->TargetLevelMs() + output_delay_chain_ms_); packet_list->push_back(std::move(*packet)); // Store packet in list. packet = absl::nullopt; // Ensure it's never used after the move. // Check what packet is available next. next_packet = packet_buffer_->PeekNextPacket(); next_packet_available = false; if (next_packet && prev_payload_type == next_packet->payload_type && !has_cng_packet) { int16_t seq_no_diff = next_packet->sequence_number - prev_sequence_number; size_t ts_diff = next_packet->timestamp - prev_timestamp; if ((seq_no_diff == 1 || seq_no_diff == 0) && ts_diff <= packet_duration) { // The next sequence number is available, or the next part of a packet // that was split into pieces upon insertion. next_packet_available = true; } prev_sequence_number = next_packet->sequence_number; prev_timestamp = next_packet->timestamp; } } while (extracted_samples < required_samples && next_packet_available); if (extracted_samples > 0) { // Delete old packets only when we are going to decode something. Otherwise, // we could end up in the situation where we never decode anything, since // all incoming packets are considered too old but the buffer will also // never be flooded and flushed. packet_buffer_->DiscardAllOldPackets(timestamp_, stats_.get()); } return rtc::dchecked_cast(extracted_samples); } void NetEqImpl::UpdatePlcComponents(int fs_hz, size_t channels) { // Delete objects and create new ones. expand_.reset(expand_factory_->Create(background_noise_.get(), sync_buffer_.get(), &random_vector_, stats_.get(), fs_hz, channels)); merge_.reset(new Merge(fs_hz, channels, expand_.get(), sync_buffer_.get())); } void NetEqImpl::SetSampleRateAndChannels(int fs_hz, size_t channels) { RTC_LOG(LS_VERBOSE) << "SetSampleRateAndChannels " << fs_hz << " " << channels; // TODO(hlundin): Change to an enumerator and skip assert. assert(fs_hz == 8000 || fs_hz == 16000 || fs_hz == 32000 || fs_hz == 48000); assert(channels > 0); // Before changing the sample rate, end and report any ongoing expand event. stats_->EndExpandEvent(fs_hz_); fs_hz_ = fs_hz; fs_mult_ = fs_hz / 8000; output_size_samples_ = static_cast(kOutputSizeMs * 8 * fs_mult_); decoder_frame_length_ = 3 * output_size_samples_; // Initialize to 30ms. last_mode_ = Mode::kNormal; ComfortNoiseDecoder* cng_decoder = decoder_database_->GetActiveCngDecoder(); if (cng_decoder) cng_decoder->Reset(); // Reinit post-decode VAD with new sample rate. assert(vad_.get()); // Cannot be NULL here. vad_->Init(); // Delete algorithm buffer and create a new one. algorithm_buffer_.reset(new AudioMultiVector(channels)); // Delete sync buffer and create a new one. sync_buffer_.reset(new SyncBuffer(channels, kSyncBufferSize * fs_mult_)); // Delete BackgroundNoise object and create a new one. background_noise_.reset(new BackgroundNoise(channels)); // Reset random vector. random_vector_.Reset(); UpdatePlcComponents(fs_hz, channels); // Move index so that we create a small set of future samples (all 0). sync_buffer_->set_next_index(sync_buffer_->next_index() - expand_->overlap_length()); normal_.reset(new Normal(fs_hz, decoder_database_.get(), *background_noise_, expand_.get(), stats_.get())); accelerate_.reset( accelerate_factory_->Create(fs_hz, channels, *background_noise_)); preemptive_expand_.reset(preemptive_expand_factory_->Create( fs_hz, channels, *background_noise_, expand_->overlap_length())); // Delete ComfortNoise object and create a new one. comfort_noise_.reset( new ComfortNoise(fs_hz, decoder_database_.get(), sync_buffer_.get())); // Verify that |decoded_buffer_| is long enough. if (decoded_buffer_length_ < kMaxFrameSize * channels) { // Reallocate to larger size. decoded_buffer_length_ = kMaxFrameSize * channels; decoded_buffer_.reset(new int16_t[decoded_buffer_length_]); } RTC_CHECK(controller_) << "Unexpectedly found no NetEqController"; controller_->SetSampleRate(fs_hz_, output_size_samples_); } NetEqImpl::OutputType NetEqImpl::LastOutputType() { assert(vad_.get()); assert(expand_.get()); if (last_mode_ == Mode::kCodecInternalCng || last_mode_ == Mode::kRfc3389Cng) { return OutputType::kCNG; } else if (last_mode_ == Mode::kExpand && expand_->MuteFactor(0) == 0) { // Expand mode has faded down to background noise only (very long expand). return OutputType::kPLCCNG; } else if (last_mode_ == Mode::kExpand) { return OutputType::kPLC; } else if (vad_->running() && !vad_->active_speech()) { return OutputType::kVadPassive; } else if (last_mode_ == Mode::kCodecPlc) { return OutputType::kCodecPLC; } else { return OutputType::kNormalSpeech; } } } // namespace webrtc