/* * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/audio_processing/aec3/echo_remover.h" #include #include #include #include #include #include #include "api/array_view.h" #include "modules/audio_processing/aec3/aec3_common.h" #include "modules/audio_processing/aec3/aec3_fft.h" #include "modules/audio_processing/aec3/aec_state.h" #include "modules/audio_processing/aec3/comfort_noise_generator.h" #include "modules/audio_processing/aec3/echo_path_variability.h" #include "modules/audio_processing/aec3/echo_remover_metrics.h" #include "modules/audio_processing/aec3/fft_data.h" #include "modules/audio_processing/aec3/render_buffer.h" #include "modules/audio_processing/aec3/render_signal_analyzer.h" #include "modules/audio_processing/aec3/residual_echo_estimator.h" #include "modules/audio_processing/aec3/subtractor.h" #include "modules/audio_processing/aec3/subtractor_output.h" #include "modules/audio_processing/aec3/suppression_filter.h" #include "modules/audio_processing/aec3/suppression_gain.h" #include "modules/audio_processing/logging/apm_data_dumper.h" #include "rtc_base/atomic_ops.h" #include "rtc_base/checks.h" #include "rtc_base/logging.h" namespace webrtc { namespace { // Maximum number of channels for which the capture channel data is stored on // the stack. If the number of channels are larger than this, they are stored // using scratch memory that is pre-allocated on the heap. The reason for this // partitioning is not to waste heap space for handling the more common numbers // of channels, while at the same time not limiting the support for higher // numbers of channels by enforcing the capture channel data to be stored on the // stack using a fixed maximum value. constexpr size_t kMaxNumChannelsOnStack = 2; // Chooses the number of channels to store on the heap when that is required due // to the number of capture channels being larger than the pre-defined number // of channels to store on the stack. size_t NumChannelsOnHeap(size_t num_capture_channels) { return num_capture_channels > kMaxNumChannelsOnStack ? num_capture_channels : 0; } void LinearEchoPower(const FftData& E, const FftData& Y, std::array* S2) { for (size_t k = 0; k < E.re.size(); ++k) { (*S2)[k] = (Y.re[k] - E.re[k]) * (Y.re[k] - E.re[k]) + (Y.im[k] - E.im[k]) * (Y.im[k] - E.im[k]); } } // Fades between two input signals using a fix-sized transition. void SignalTransition(rtc::ArrayView from, rtc::ArrayView to, rtc::ArrayView out) { if (from == to) { RTC_DCHECK_EQ(to.size(), out.size()); std::copy(to.begin(), to.end(), out.begin()); } else { constexpr size_t kTransitionSize = 30; constexpr float kOneByTransitionSizePlusOne = 1.f / (kTransitionSize + 1); RTC_DCHECK_EQ(from.size(), to.size()); RTC_DCHECK_EQ(from.size(), out.size()); RTC_DCHECK_LE(kTransitionSize, out.size()); for (size_t k = 0; k < kTransitionSize; ++k) { float a = (k + 1) * kOneByTransitionSizePlusOne; out[k] = a * to[k] + (1.f - a) * from[k]; } std::copy(to.begin() + kTransitionSize, to.end(), out.begin() + kTransitionSize); } } // Computes a windowed (square root Hanning) padded FFT and updates the related // memory. void WindowedPaddedFft(const Aec3Fft& fft, rtc::ArrayView v, rtc::ArrayView v_old, FftData* V) { fft.PaddedFft(v, v_old, Aec3Fft::Window::kSqrtHanning, V); std::copy(v.begin(), v.end(), v_old.begin()); } // Class for removing the echo from the capture signal. class EchoRemoverImpl final : public EchoRemover { public: EchoRemoverImpl(const EchoCanceller3Config& config, int sample_rate_hz, size_t num_render_channels, size_t num_capture_channels); ~EchoRemoverImpl() override; EchoRemoverImpl(const EchoRemoverImpl&) = delete; EchoRemoverImpl& operator=(const EchoRemoverImpl&) = delete; void GetMetrics(EchoControl::Metrics* metrics) const override; // Removes the echo from a block of samples from the capture signal. The // supplied render signal is assumed to be pre-aligned with the capture // signal. void ProcessCapture( EchoPathVariability echo_path_variability, bool capture_signal_saturation, const absl::optional& external_delay, RenderBuffer* render_buffer, std::vector>>* linear_output, std::vector>>* capture) override; // Updates the status on whether echo leakage is detected in the output of the // echo remover. void UpdateEchoLeakageStatus(bool leakage_detected) override { echo_leakage_detected_ = leakage_detected; } void SetCaptureOutputUsage(bool capture_output_used) override { capture_output_used_ = capture_output_used; } private: // Selects which of the coarse and refined linear filter outputs that is most // appropriate to pass to the suppressor and forms the linear filter output by // smoothly transition between those. void FormLinearFilterOutput(const SubtractorOutput& subtractor_output, rtc::ArrayView output); static int instance_count_; const EchoCanceller3Config config_; const Aec3Fft fft_; std::unique_ptr data_dumper_; const Aec3Optimization optimization_; const int sample_rate_hz_; const size_t num_render_channels_; const size_t num_capture_channels_; const bool use_coarse_filter_output_; Subtractor subtractor_; SuppressionGain suppression_gain_; ComfortNoiseGenerator cng_; SuppressionFilter suppression_filter_; RenderSignalAnalyzer render_signal_analyzer_; ResidualEchoEstimator residual_echo_estimator_; bool echo_leakage_detected_ = false; bool capture_output_used_ = true; AecState aec_state_; EchoRemoverMetrics metrics_; std::vector> e_old_; std::vector> y_old_; size_t block_counter_ = 0; int gain_change_hangover_ = 0; bool refined_filter_output_last_selected_ = true; std::vector> e_heap_; std::vector> Y2_heap_; std::vector> E2_heap_; std::vector> R2_heap_; std::vector> S2_linear_heap_; std::vector Y_heap_; std::vector E_heap_; std::vector comfort_noise_heap_; std::vector high_band_comfort_noise_heap_; std::vector subtractor_output_heap_; }; int EchoRemoverImpl::instance_count_ = 0; EchoRemoverImpl::EchoRemoverImpl(const EchoCanceller3Config& config, int sample_rate_hz, size_t num_render_channels, size_t num_capture_channels) : config_(config), fft_(), data_dumper_( new ApmDataDumper(rtc::AtomicOps::Increment(&instance_count_))), optimization_(DetectOptimization()), sample_rate_hz_(sample_rate_hz), num_render_channels_(num_render_channels), num_capture_channels_(num_capture_channels), use_coarse_filter_output_( config_.filter.enable_coarse_filter_output_usage), subtractor_(config, num_render_channels_, num_capture_channels_, data_dumper_.get(), optimization_), suppression_gain_(config_, optimization_, sample_rate_hz, num_capture_channels), cng_(config_, optimization_, num_capture_channels_), suppression_filter_(optimization_, sample_rate_hz_, num_capture_channels_), render_signal_analyzer_(config_), residual_echo_estimator_(config_, num_render_channels), aec_state_(config_, num_capture_channels_), e_old_(num_capture_channels_, {0.f}), y_old_(num_capture_channels_, {0.f}), e_heap_(NumChannelsOnHeap(num_capture_channels_), {0.f}), Y2_heap_(NumChannelsOnHeap(num_capture_channels_)), E2_heap_(NumChannelsOnHeap(num_capture_channels_)), R2_heap_(NumChannelsOnHeap(num_capture_channels_)), S2_linear_heap_(NumChannelsOnHeap(num_capture_channels_)), Y_heap_(NumChannelsOnHeap(num_capture_channels_)), E_heap_(NumChannelsOnHeap(num_capture_channels_)), comfort_noise_heap_(NumChannelsOnHeap(num_capture_channels_)), high_band_comfort_noise_heap_(NumChannelsOnHeap(num_capture_channels_)), subtractor_output_heap_(NumChannelsOnHeap(num_capture_channels_)) { RTC_DCHECK(ValidFullBandRate(sample_rate_hz)); } EchoRemoverImpl::~EchoRemoverImpl() = default; void EchoRemoverImpl::GetMetrics(EchoControl::Metrics* metrics) const { // Echo return loss (ERL) is inverted to go from gain to attenuation. metrics->echo_return_loss = -10.0 * std::log10(aec_state_.ErlTimeDomain()); metrics->echo_return_loss_enhancement = Log2TodB(aec_state_.FullBandErleLog2()); } void EchoRemoverImpl::ProcessCapture( EchoPathVariability echo_path_variability, bool capture_signal_saturation, const absl::optional& external_delay, RenderBuffer* render_buffer, std::vector>>* linear_output, std::vector>>* capture) { ++block_counter_; const std::vector>>& x = render_buffer->Block(0); std::vector>>* y = capture; RTC_DCHECK(render_buffer); RTC_DCHECK(y); RTC_DCHECK_EQ(x.size(), NumBandsForRate(sample_rate_hz_)); RTC_DCHECK_EQ(y->size(), NumBandsForRate(sample_rate_hz_)); RTC_DCHECK_EQ(x[0].size(), num_render_channels_); RTC_DCHECK_EQ((*y)[0].size(), num_capture_channels_); RTC_DCHECK_EQ(x[0][0].size(), kBlockSize); RTC_DCHECK_EQ((*y)[0][0].size(), kBlockSize); // Stack allocated data to use when the number of channels is low. std::array, kMaxNumChannelsOnStack> e_stack; std::array, kMaxNumChannelsOnStack> Y2_stack; std::array, kMaxNumChannelsOnStack> E2_stack; std::array, kMaxNumChannelsOnStack> R2_stack; std::array, kMaxNumChannelsOnStack> S2_linear_stack; std::array Y_stack; std::array E_stack; std::array comfort_noise_stack; std::array high_band_comfort_noise_stack; std::array subtractor_output_stack; rtc::ArrayView> e(e_stack.data(), num_capture_channels_); rtc::ArrayView> Y2( Y2_stack.data(), num_capture_channels_); rtc::ArrayView> E2( E2_stack.data(), num_capture_channels_); rtc::ArrayView> R2( R2_stack.data(), num_capture_channels_); rtc::ArrayView> S2_linear( S2_linear_stack.data(), num_capture_channels_); rtc::ArrayView Y(Y_stack.data(), num_capture_channels_); rtc::ArrayView E(E_stack.data(), num_capture_channels_); rtc::ArrayView comfort_noise(comfort_noise_stack.data(), num_capture_channels_); rtc::ArrayView high_band_comfort_noise( high_band_comfort_noise_stack.data(), num_capture_channels_); rtc::ArrayView subtractor_output( subtractor_output_stack.data(), num_capture_channels_); if (NumChannelsOnHeap(num_capture_channels_) > 0) { // If the stack-allocated space is too small, use the heap for storing the // microphone data. e = rtc::ArrayView>(e_heap_.data(), num_capture_channels_); Y2 = rtc::ArrayView>( Y2_heap_.data(), num_capture_channels_); E2 = rtc::ArrayView>( E2_heap_.data(), num_capture_channels_); R2 = rtc::ArrayView>( R2_heap_.data(), num_capture_channels_); S2_linear = rtc::ArrayView>( S2_linear_heap_.data(), num_capture_channels_); Y = rtc::ArrayView(Y_heap_.data(), num_capture_channels_); E = rtc::ArrayView(E_heap_.data(), num_capture_channels_); comfort_noise = rtc::ArrayView(comfort_noise_heap_.data(), num_capture_channels_); high_band_comfort_noise = rtc::ArrayView( high_band_comfort_noise_heap_.data(), num_capture_channels_); subtractor_output = rtc::ArrayView( subtractor_output_heap_.data(), num_capture_channels_); } data_dumper_->DumpWav("aec3_echo_remover_capture_input", kBlockSize, &(*y)[0][0][0], 16000, 1); data_dumper_->DumpWav("aec3_echo_remover_render_input", kBlockSize, &x[0][0][0], 16000, 1); data_dumper_->DumpRaw("aec3_echo_remover_capture_input", (*y)[0][0]); data_dumper_->DumpRaw("aec3_echo_remover_render_input", x[0][0]); aec_state_.UpdateCaptureSaturation(capture_signal_saturation); if (echo_path_variability.AudioPathChanged()) { // Ensure that the gain change is only acted on once per frame. if (echo_path_variability.gain_change) { if (gain_change_hangover_ == 0) { constexpr int kMaxBlocksPerFrame = 3; gain_change_hangover_ = kMaxBlocksPerFrame; rtc::LoggingSeverity log_level = config_.delay.log_warning_on_delay_changes ? rtc::LS_WARNING : rtc::LS_VERBOSE; RTC_LOG_V(log_level) << "Gain change detected at block " << block_counter_; } else { echo_path_variability.gain_change = false; } } subtractor_.HandleEchoPathChange(echo_path_variability); aec_state_.HandleEchoPathChange(echo_path_variability); if (echo_path_variability.delay_change != EchoPathVariability::DelayAdjustment::kNone) { suppression_gain_.SetInitialState(true); } } if (gain_change_hangover_ > 0) { --gain_change_hangover_; } // Analyze the render signal. render_signal_analyzer_.Update(*render_buffer, aec_state_.MinDirectPathFilterDelay()); // State transition. if (aec_state_.TransitionTriggered()) { subtractor_.ExitInitialState(); suppression_gain_.SetInitialState(false); } // Perform linear echo cancellation. subtractor_.Process(*render_buffer, (*y)[0], render_signal_analyzer_, aec_state_, subtractor_output); // Compute spectra. for (size_t ch = 0; ch < num_capture_channels_; ++ch) { FormLinearFilterOutput(subtractor_output[ch], e[ch]); WindowedPaddedFft(fft_, (*y)[0][ch], y_old_[ch], &Y[ch]); WindowedPaddedFft(fft_, e[ch], e_old_[ch], &E[ch]); LinearEchoPower(E[ch], Y[ch], &S2_linear[ch]); Y[ch].Spectrum(optimization_, Y2[ch]); E[ch].Spectrum(optimization_, E2[ch]); } // Optionally return the linear filter output. if (linear_output) { RTC_DCHECK_GE(1, linear_output->size()); RTC_DCHECK_EQ(num_capture_channels_, linear_output[0].size()); for (size_t ch = 0; ch < num_capture_channels_; ++ch) { RTC_DCHECK_EQ(kBlockSize, (*linear_output)[0][ch].size()); std::copy(e[ch].begin(), e[ch].end(), (*linear_output)[0][ch].begin()); } } // Update the AEC state information. aec_state_.Update(external_delay, subtractor_.FilterFrequencyResponses(), subtractor_.FilterImpulseResponses(), *render_buffer, E2, Y2, subtractor_output); // Choose the linear output. const auto& Y_fft = aec_state_.UseLinearFilterOutput() ? E : Y; data_dumper_->DumpWav("aec3_output_linear", kBlockSize, &(*y)[0][0][0], 16000, 1); data_dumper_->DumpWav("aec3_output_linear2", kBlockSize, &e[0][0], 16000, 1); // Estimate the comfort noise. cng_.Compute(aec_state_.SaturatedCapture(), Y2, comfort_noise, high_band_comfort_noise); // Only do the below processing if the output of the audio processing module // is used. std::array G; if (capture_output_used_) { // Estimate the residual echo power. residual_echo_estimator_.Estimate(aec_state_, *render_buffer, S2_linear, Y2, suppression_gain_.IsDominantNearend(), R2); // Suppressor nearend estimate. if (aec_state_.UsableLinearEstimate()) { // E2 is bound by Y2. for (size_t ch = 0; ch < num_capture_channels_; ++ch) { std::transform(E2[ch].begin(), E2[ch].end(), Y2[ch].begin(), E2[ch].begin(), [](float a, float b) { return std::min(a, b); }); } } const auto& nearend_spectrum = aec_state_.UsableLinearEstimate() ? E2 : Y2; // Suppressor echo estimate. const auto& echo_spectrum = aec_state_.UsableLinearEstimate() ? S2_linear : R2; // Determine if the suppressor should assume clock drift. const bool clock_drift = config_.echo_removal_control.has_clock_drift || echo_path_variability.clock_drift; // Compute preferred gains. float high_bands_gain; suppression_gain_.GetGain(nearend_spectrum, echo_spectrum, R2, cng_.NoiseSpectrum(), render_signal_analyzer_, aec_state_, x, clock_drift, &high_bands_gain, &G); suppression_filter_.ApplyGain(comfort_noise, high_band_comfort_noise, G, high_bands_gain, Y_fft, y); } else { G.fill(0.f); } // Update the metrics. metrics_.Update(aec_state_, cng_.NoiseSpectrum()[0], G); // Debug outputs for the purpose of development and analysis. data_dumper_->DumpWav("aec3_echo_estimate", kBlockSize, &subtractor_output[0].s_refined[0], 16000, 1); data_dumper_->DumpRaw("aec3_output", (*y)[0][0]); data_dumper_->DumpRaw("aec3_narrow_render", render_signal_analyzer_.NarrowPeakBand() ? 1 : 0); data_dumper_->DumpRaw("aec3_N2", cng_.NoiseSpectrum()[0]); data_dumper_->DumpRaw("aec3_suppressor_gain", G); data_dumper_->DumpWav("aec3_output", rtc::ArrayView(&(*y)[0][0][0], kBlockSize), 16000, 1); data_dumper_->DumpRaw("aec3_using_subtractor_output[0]", aec_state_.UseLinearFilterOutput() ? 1 : 0); data_dumper_->DumpRaw("aec3_E2", E2[0]); data_dumper_->DumpRaw("aec3_S2_linear", S2_linear[0]); data_dumper_->DumpRaw("aec3_Y2", Y2[0]); data_dumper_->DumpRaw( "aec3_X2", render_buffer->Spectrum( aec_state_.MinDirectPathFilterDelay())[/*channel=*/0]); data_dumper_->DumpRaw("aec3_R2", R2[0]); data_dumper_->DumpRaw("aec3_filter_delay", aec_state_.MinDirectPathFilterDelay()); data_dumper_->DumpRaw("aec3_capture_saturation", aec_state_.SaturatedCapture() ? 1 : 0); } void EchoRemoverImpl::FormLinearFilterOutput( const SubtractorOutput& subtractor_output, rtc::ArrayView output) { RTC_DCHECK_EQ(subtractor_output.e_refined.size(), output.size()); RTC_DCHECK_EQ(subtractor_output.e_coarse.size(), output.size()); bool use_refined_output = true; if (use_coarse_filter_output_) { // As the output of the refined adaptive filter generally should be better // than the coarse filter output, add a margin and threshold for when // choosing the coarse filter output. if (subtractor_output.e2_coarse < 0.9f * subtractor_output.e2_refined && subtractor_output.y2 > 30.f * 30.f * kBlockSize && (subtractor_output.s2_refined > 60.f * 60.f * kBlockSize || subtractor_output.s2_coarse > 60.f * 60.f * kBlockSize)) { use_refined_output = false; } else { // If the refined filter is diverged, choose the filter output that has // the lowest power. if (subtractor_output.e2_coarse < subtractor_output.e2_refined && subtractor_output.y2 < subtractor_output.e2_refined) { use_refined_output = false; } } } SignalTransition(refined_filter_output_last_selected_ ? subtractor_output.e_refined : subtractor_output.e_coarse, use_refined_output ? subtractor_output.e_refined : subtractor_output.e_coarse, output); refined_filter_output_last_selected_ = use_refined_output; } } // namespace EchoRemover* EchoRemover::Create(const EchoCanceller3Config& config, int sample_rate_hz, size_t num_render_channels, size_t num_capture_channels) { return new EchoRemoverImpl(config, sample_rate_hz, num_render_channels, num_capture_channels); } } // namespace webrtc