/* * Copyright 2009 The WebRTC Project Authors. All rights reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "p2p/base/stun_port.h" #include #include "p2p/base/basic_packet_socket_factory.h" #include "p2p/base/test_stun_server.h" #include "rtc_base/gunit.h" #include "rtc_base/helpers.h" #include "rtc_base/socket_address.h" #include "rtc_base/ssl_adapter.h" #include "rtc_base/virtual_socket_server.h" #include "test/gmock.h" using cricket::ServerAddresses; using rtc::SocketAddress; using ::testing::_; using ::testing::Return; static const SocketAddress kLocalAddr("127.0.0.1", 0); static const SocketAddress kStunAddr1("127.0.0.1", 5000); static const SocketAddress kStunAddr2("127.0.0.1", 4000); static const SocketAddress kStunAddr3("127.0.0.1", 3000); static const SocketAddress kBadAddr("0.0.0.1", 5000); static const SocketAddress kStunHostnameAddr("localhost", 5000); static const SocketAddress kBadHostnameAddr("not-a-real-hostname", 5000); // STUN timeout (with all retries) is cricket::STUN_TOTAL_TIMEOUT. // Add some margin of error for slow bots. static const int kTimeoutMs = cricket::STUN_TOTAL_TIMEOUT; // stun prio = 100 << 24 | 30 (IPV4) << 8 | 256 - 0 static const uint32_t kStunCandidatePriority = 1677729535; static const int kInfiniteLifetime = -1; static const int kHighCostPortKeepaliveLifetimeMs = 2 * 60 * 1000; // Tests connecting a StunPort to a fake STUN server (cricket::StunServer) class StunPortTestBase : public ::testing::Test, public sigslot::has_slots<> { public: StunPortTestBase() : ss_(new rtc::VirtualSocketServer()), thread_(ss_.get()), network_("unittest", "unittest", kLocalAddr.ipaddr(), 32), socket_factory_(rtc::Thread::Current()), stun_server_1_(cricket::TestStunServer::Create(rtc::Thread::Current(), kStunAddr1)), stun_server_2_(cricket::TestStunServer::Create(rtc::Thread::Current(), kStunAddr2)), done_(false), error_(false), stun_keepalive_delay_(1), stun_keepalive_lifetime_(-1) { network_.AddIP(kLocalAddr.ipaddr()); } cricket::UDPPort* port() const { return stun_port_.get(); } rtc::AsyncPacketSocket* socket() const { return socket_.get(); } bool done() const { return done_; } bool error() const { return error_; } void SetNetworkType(rtc::AdapterType adapter_type) { network_.set_type(adapter_type); } void CreateStunPort(const rtc::SocketAddress& server_addr) { ServerAddresses stun_servers; stun_servers.insert(server_addr); CreateStunPort(stun_servers); } void CreateStunPort(const ServerAddresses& stun_servers) { stun_port_ = cricket::StunPort::Create( rtc::Thread::Current(), &socket_factory_, &network_, 0, 0, rtc::CreateRandomString(16), rtc::CreateRandomString(22), stun_servers, std::string(), absl::nullopt); stun_port_->set_stun_keepalive_delay(stun_keepalive_delay_); // If |stun_keepalive_lifetime_| is negative, let the stun port // choose its lifetime from the network type. if (stun_keepalive_lifetime_ >= 0) { stun_port_->set_stun_keepalive_lifetime(stun_keepalive_lifetime_); } stun_port_->SignalPortComplete.connect(this, &StunPortTestBase::OnPortComplete); stun_port_->SignalPortError.connect(this, &StunPortTestBase::OnPortError); stun_port_->SignalCandidateError.connect( this, &StunPortTestBase::OnCandidateError); } void CreateSharedUdpPort(const rtc::SocketAddress& server_addr, rtc::AsyncPacketSocket* socket) { if (socket) { socket_.reset(socket); } else { socket_.reset(socket_factory_.CreateUdpSocket( rtc::SocketAddress(kLocalAddr.ipaddr(), 0), 0, 0)); } ASSERT_TRUE(socket_ != NULL); socket_->SignalReadPacket.connect(this, &StunPortTestBase::OnReadPacket); stun_port_ = cricket::UDPPort::Create( rtc::Thread::Current(), &socket_factory_, &network_, socket_.get(), rtc::CreateRandomString(16), rtc::CreateRandomString(22), std::string(), false, absl::nullopt); ASSERT_TRUE(stun_port_ != NULL); ServerAddresses stun_servers; stun_servers.insert(server_addr); stun_port_->set_server_addresses(stun_servers); stun_port_->SignalPortComplete.connect(this, &StunPortTestBase::OnPortComplete); stun_port_->SignalPortError.connect(this, &StunPortTestBase::OnPortError); } void PrepareAddress() { stun_port_->PrepareAddress(); } void OnReadPacket(rtc::AsyncPacketSocket* socket, const char* data, size_t size, const rtc::SocketAddress& remote_addr, const int64_t& /* packet_time_us */) { stun_port_->HandleIncomingPacket(socket, data, size, remote_addr, /* packet_time_us */ -1); } void SendData(const char* data, size_t len) { stun_port_->HandleIncomingPacket(socket_.get(), data, len, rtc::SocketAddress("22.22.22.22", 0), /* packet_time_us */ -1); } protected: static void SetUpTestSuite() { // Ensure the RNG is inited. rtc::InitRandom(NULL, 0); } void OnPortComplete(cricket::Port* port) { ASSERT_FALSE(done_); done_ = true; error_ = false; } void OnPortError(cricket::Port* port) { done_ = true; error_ = true; } void OnCandidateError(cricket::Port* port, const cricket::IceCandidateErrorEvent& event) { error_event_ = event; } void SetKeepaliveDelay(int delay) { stun_keepalive_delay_ = delay; } void SetKeepaliveLifetime(int lifetime) { stun_keepalive_lifetime_ = lifetime; } cricket::TestStunServer* stun_server_1() { return stun_server_1_.get(); } cricket::TestStunServer* stun_server_2() { return stun_server_2_.get(); } private: std::unique_ptr ss_; rtc::AutoSocketServerThread thread_; rtc::Network network_; rtc::BasicPacketSocketFactory socket_factory_; std::unique_ptr stun_port_; std::unique_ptr stun_server_1_; std::unique_ptr stun_server_2_; std::unique_ptr socket_; bool done_; bool error_; int stun_keepalive_delay_; int stun_keepalive_lifetime_; protected: cricket::IceCandidateErrorEvent error_event_; }; class StunPortTestWithRealClock : public StunPortTestBase {}; class FakeClockBase { public: rtc::ScopedFakeClock fake_clock; }; class StunPortTest : public FakeClockBase, public StunPortTestBase {}; // Test that we can create a STUN port. TEST_F(StunPortTest, TestCreateStunPort) { CreateStunPort(kStunAddr1); EXPECT_EQ("stun", port()->Type()); EXPECT_EQ(0U, port()->Candidates().size()); } // Test that we can create a UDP port. TEST_F(StunPortTest, TestCreateUdpPort) { CreateSharedUdpPort(kStunAddr1, nullptr); EXPECT_EQ("local", port()->Type()); EXPECT_EQ(0U, port()->Candidates().size()); } // Test that we can get an address from a STUN server. TEST_F(StunPortTest, TestPrepareAddress) { CreateStunPort(kStunAddr1); PrepareAddress(); EXPECT_TRUE_SIMULATED_WAIT(done(), kTimeoutMs, fake_clock); ASSERT_EQ(1U, port()->Candidates().size()); EXPECT_TRUE(kLocalAddr.EqualIPs(port()->Candidates()[0].address())); std::string expected_server_url = "stun:127.0.0.1:5000"; EXPECT_EQ(port()->Candidates()[0].url(), expected_server_url); // TODO(deadbeef): Add IPv6 tests here. } // Test that we fail properly if we can't get an address. TEST_F(StunPortTest, TestPrepareAddressFail) { CreateStunPort(kBadAddr); PrepareAddress(); EXPECT_TRUE_SIMULATED_WAIT(done(), kTimeoutMs, fake_clock); EXPECT_TRUE(error()); EXPECT_EQ(0U, port()->Candidates().size()); EXPECT_EQ_SIMULATED_WAIT(error_event_.error_code, cricket::SERVER_NOT_REACHABLE_ERROR, kTimeoutMs, fake_clock); ASSERT_NE(error_event_.error_text.find("."), std::string::npos); ASSERT_NE(error_event_.address.find(kLocalAddr.HostAsSensitiveURIString()), std::string::npos); std::string server_url = "stun:" + kBadAddr.ToString(); ASSERT_EQ(error_event_.url, server_url); } // Test that we can get an address from a STUN server specified by a hostname. // Crashes on Linux, see webrtc:7416 #if defined(WEBRTC_LINUX) || defined(WEBRTC_WIN) #define MAYBE_TestPrepareAddressHostname DISABLED_TestPrepareAddressHostname #else #define MAYBE_TestPrepareAddressHostname TestPrepareAddressHostname #endif TEST_F(StunPortTest, MAYBE_TestPrepareAddressHostname) { CreateStunPort(kStunHostnameAddr); PrepareAddress(); EXPECT_TRUE_SIMULATED_WAIT(done(), kTimeoutMs, fake_clock); ASSERT_EQ(1U, port()->Candidates().size()); EXPECT_TRUE(kLocalAddr.EqualIPs(port()->Candidates()[0].address())); EXPECT_EQ(kStunCandidatePriority, port()->Candidates()[0].priority()); } // Test that we handle hostname lookup failures properly. TEST_F(StunPortTestWithRealClock, TestPrepareAddressHostnameFail) { CreateStunPort(kBadHostnameAddr); PrepareAddress(); EXPECT_TRUE_WAIT(done(), kTimeoutMs); EXPECT_TRUE(error()); EXPECT_EQ(0U, port()->Candidates().size()); EXPECT_EQ_WAIT(error_event_.error_code, cricket::SERVER_NOT_REACHABLE_ERROR, kTimeoutMs); } // This test verifies keepalive response messages don't result in // additional candidate generation. TEST_F(StunPortTest, TestKeepAliveResponse) { SetKeepaliveDelay(500); // 500ms of keepalive delay. CreateStunPort(kStunAddr1); PrepareAddress(); EXPECT_TRUE_SIMULATED_WAIT(done(), kTimeoutMs, fake_clock); ASSERT_EQ(1U, port()->Candidates().size()); EXPECT_TRUE(kLocalAddr.EqualIPs(port()->Candidates()[0].address())); SIMULATED_WAIT(false, 1000, fake_clock); EXPECT_EQ(1U, port()->Candidates().size()); } // Test that a local candidate can be generated using a shared socket. TEST_F(StunPortTest, TestSharedSocketPrepareAddress) { CreateSharedUdpPort(kStunAddr1, nullptr); PrepareAddress(); EXPECT_TRUE_SIMULATED_WAIT(done(), kTimeoutMs, fake_clock); ASSERT_EQ(1U, port()->Candidates().size()); EXPECT_TRUE(kLocalAddr.EqualIPs(port()->Candidates()[0].address())); } // Test that we still a get a local candidate with invalid stun server hostname. // Also verifing that UDPPort can receive packets when stun address can't be // resolved. TEST_F(StunPortTestWithRealClock, TestSharedSocketPrepareAddressInvalidHostname) { CreateSharedUdpPort(kBadHostnameAddr, nullptr); PrepareAddress(); EXPECT_TRUE_WAIT(done(), kTimeoutMs); ASSERT_EQ(1U, port()->Candidates().size()); EXPECT_TRUE(kLocalAddr.EqualIPs(port()->Candidates()[0].address())); // Send data to port after it's ready. This is to make sure, UDP port can // handle data with unresolved stun server address. std::string data = "some random data, sending to cricket::Port."; SendData(data.c_str(), data.length()); // No crash is success. } // Test that the same address is added only once if two STUN servers are in use. TEST_F(StunPortTest, TestNoDuplicatedAddressWithTwoStunServers) { ServerAddresses stun_servers; stun_servers.insert(kStunAddr1); stun_servers.insert(kStunAddr2); CreateStunPort(stun_servers); EXPECT_EQ("stun", port()->Type()); PrepareAddress(); EXPECT_TRUE_SIMULATED_WAIT(done(), kTimeoutMs, fake_clock); EXPECT_EQ(1U, port()->Candidates().size()); EXPECT_EQ(port()->Candidates()[0].relay_protocol(), ""); } // Test that candidates can be allocated for multiple STUN servers, one of which // is not reachable. TEST_F(StunPortTest, TestMultipleStunServersWithBadServer) { ServerAddresses stun_servers; stun_servers.insert(kStunAddr1); stun_servers.insert(kBadAddr); CreateStunPort(stun_servers); EXPECT_EQ("stun", port()->Type()); PrepareAddress(); EXPECT_TRUE_SIMULATED_WAIT(done(), kTimeoutMs, fake_clock); EXPECT_EQ(1U, port()->Candidates().size()); std::string server_url = "stun:" + kBadAddr.ToString(); ASSERT_EQ_SIMULATED_WAIT(error_event_.url, server_url, kTimeoutMs, fake_clock); } // Test that two candidates are allocated if the two STUN servers return // different mapped addresses. TEST_F(StunPortTest, TestTwoCandidatesWithTwoStunServersAcrossNat) { const SocketAddress kStunMappedAddr1("77.77.77.77", 0); const SocketAddress kStunMappedAddr2("88.77.77.77", 0); stun_server_1()->set_fake_stun_addr(kStunMappedAddr1); stun_server_2()->set_fake_stun_addr(kStunMappedAddr2); ServerAddresses stun_servers; stun_servers.insert(kStunAddr1); stun_servers.insert(kStunAddr2); CreateStunPort(stun_servers); EXPECT_EQ("stun", port()->Type()); PrepareAddress(); EXPECT_TRUE_SIMULATED_WAIT(done(), kTimeoutMs, fake_clock); EXPECT_EQ(2U, port()->Candidates().size()); EXPECT_EQ(port()->Candidates()[0].relay_protocol(), ""); EXPECT_EQ(port()->Candidates()[1].relay_protocol(), ""); } // Test that the stun_keepalive_lifetime is set correctly based on the network // type on a STUN port. Also test that it will be updated if the network type // changes. TEST_F(StunPortTest, TestStunPortGetStunKeepaliveLifetime) { // Lifetime for the default (unknown) network type is |kInfiniteLifetime|. CreateStunPort(kStunAddr1); EXPECT_EQ(kInfiniteLifetime, port()->stun_keepalive_lifetime()); // Lifetime for the cellular network is |kHighCostPortKeepaliveLifetimeMs| SetNetworkType(rtc::ADAPTER_TYPE_CELLULAR); EXPECT_EQ(kHighCostPortKeepaliveLifetimeMs, port()->stun_keepalive_lifetime()); // Lifetime for the wifi network is |kInfiniteLifetime|. SetNetworkType(rtc::ADAPTER_TYPE_WIFI); CreateStunPort(kStunAddr2); EXPECT_EQ(kInfiniteLifetime, port()->stun_keepalive_lifetime()); } // Test that the stun_keepalive_lifetime is set correctly based on the network // type on a shared STUN port (UDPPort). Also test that it will be updated // if the network type changes. TEST_F(StunPortTest, TestUdpPortGetStunKeepaliveLifetime) { // Lifetime for the default (unknown) network type is |kInfiniteLifetime|. CreateSharedUdpPort(kStunAddr1, nullptr); EXPECT_EQ(kInfiniteLifetime, port()->stun_keepalive_lifetime()); // Lifetime for the cellular network is |kHighCostPortKeepaliveLifetimeMs|. SetNetworkType(rtc::ADAPTER_TYPE_CELLULAR); EXPECT_EQ(kHighCostPortKeepaliveLifetimeMs, port()->stun_keepalive_lifetime()); // Lifetime for the wifi network type is |kInfiniteLifetime|. SetNetworkType(rtc::ADAPTER_TYPE_WIFI); CreateSharedUdpPort(kStunAddr2, nullptr); EXPECT_EQ(kInfiniteLifetime, port()->stun_keepalive_lifetime()); } // Test that STUN binding requests will be stopped shortly if the keep-alive // lifetime is short. TEST_F(StunPortTest, TestStunBindingRequestShortLifetime) { SetKeepaliveDelay(101); SetKeepaliveLifetime(100); CreateStunPort(kStunAddr1); PrepareAddress(); EXPECT_TRUE_SIMULATED_WAIT(done(), kTimeoutMs, fake_clock); EXPECT_TRUE_SIMULATED_WAIT( !port()->HasPendingRequest(cricket::STUN_BINDING_REQUEST), 2000, fake_clock); } // Test that by default, the STUN binding requests will last for a long time. TEST_F(StunPortTest, TestStunBindingRequestLongLifetime) { SetKeepaliveDelay(101); CreateStunPort(kStunAddr1); PrepareAddress(); EXPECT_TRUE_SIMULATED_WAIT(done(), kTimeoutMs, fake_clock); EXPECT_TRUE_SIMULATED_WAIT( port()->HasPendingRequest(cricket::STUN_BINDING_REQUEST), 1000, fake_clock); } class MockAsyncPacketSocket : public rtc::AsyncPacketSocket { public: ~MockAsyncPacketSocket() = default; MOCK_METHOD(SocketAddress, GetLocalAddress, (), (const, override)); MOCK_METHOD(SocketAddress, GetRemoteAddress, (), (const, override)); MOCK_METHOD(int, Send, (const void* pv, size_t cb, const rtc::PacketOptions& options), (override)); MOCK_METHOD(int, SendTo, (const void* pv, size_t cb, const SocketAddress& addr, const rtc::PacketOptions& options), (override)); MOCK_METHOD(int, Close, (), (override)); MOCK_METHOD(State, GetState, (), (const, override)); MOCK_METHOD(int, GetOption, (rtc::Socket::Option opt, int* value), (override)); MOCK_METHOD(int, SetOption, (rtc::Socket::Option opt, int value), (override)); MOCK_METHOD(int, GetError, (), (const, override)); MOCK_METHOD(void, SetError, (int error), (override)); }; // Test that outbound packets inherit the dscp value assigned to the socket. TEST_F(StunPortTest, TestStunPacketsHaveDscpPacketOption) { MockAsyncPacketSocket* socket = new MockAsyncPacketSocket(); CreateSharedUdpPort(kStunAddr1, socket); EXPECT_CALL(*socket, GetLocalAddress()).WillRepeatedly(Return(kLocalAddr)); EXPECT_CALL(*socket, GetState()) .WillRepeatedly(Return(rtc::AsyncPacketSocket::STATE_BOUND)); EXPECT_CALL(*socket, SetOption(_, _)).WillRepeatedly(Return(0)); // If DSCP is not set on the socket, stun packets should have no value. EXPECT_CALL(*socket, SendTo(_, _, _, ::testing::Field(&rtc::PacketOptions::dscp, ::testing::Eq(rtc::DSCP_NO_CHANGE)))) .WillOnce(Return(100)); PrepareAddress(); // Once it is set transport wide, they should inherit that value. port()->SetOption(rtc::Socket::OPT_DSCP, rtc::DSCP_AF41); EXPECT_CALL(*socket, SendTo(_, _, _, ::testing::Field(&rtc::PacketOptions::dscp, ::testing::Eq(rtc::DSCP_AF41)))) .WillRepeatedly(Return(100)); EXPECT_TRUE_SIMULATED_WAIT(done(), kTimeoutMs, fake_clock); }