/* * Copyright 2017 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "pc/dtls_srtp_transport.h" #include #include #include #include #include "call/rtp_demuxer.h" #include "media/base/fake_rtp.h" #include "p2p/base/dtls_transport_internal.h" #include "p2p/base/fake_dtls_transport.h" #include "p2p/base/fake_ice_transport.h" #include "p2p/base/p2p_constants.h" #include "pc/rtp_transport.h" #include "pc/test/rtp_transport_test_util.h" #include "rtc_base/async_packet_socket.h" #include "rtc_base/byte_order.h" #include "rtc_base/copy_on_write_buffer.h" #include "rtc_base/rtc_certificate.h" #include "rtc_base/ssl_identity.h" #include "test/gtest.h" using cricket::FakeDtlsTransport; using cricket::FakeIceTransport; using webrtc::DtlsSrtpTransport; using webrtc::RtpTransport; using webrtc::SrtpTransport; const int kRtpAuthTagLen = 10; class DtlsSrtpTransportTest : public ::testing::Test, public sigslot::has_slots<> { protected: DtlsSrtpTransportTest() {} ~DtlsSrtpTransportTest() { if (dtls_srtp_transport1_) { dtls_srtp_transport1_->UnregisterRtpDemuxerSink(&transport_observer1_); } if (dtls_srtp_transport2_) { dtls_srtp_transport2_->UnregisterRtpDemuxerSink(&transport_observer2_); } } std::unique_ptr MakeDtlsSrtpTransport( FakeDtlsTransport* rtp_dtls, FakeDtlsTransport* rtcp_dtls, bool rtcp_mux_enabled) { auto dtls_srtp_transport = std::make_unique(rtcp_mux_enabled); dtls_srtp_transport->SetDtlsTransports(rtp_dtls, rtcp_dtls); return dtls_srtp_transport; } void MakeDtlsSrtpTransports(FakeDtlsTransport* rtp_dtls1, FakeDtlsTransport* rtcp_dtls1, FakeDtlsTransport* rtp_dtls2, FakeDtlsTransport* rtcp_dtls2, bool rtcp_mux_enabled) { dtls_srtp_transport1_ = MakeDtlsSrtpTransport(rtp_dtls1, rtcp_dtls1, rtcp_mux_enabled); dtls_srtp_transport2_ = MakeDtlsSrtpTransport(rtp_dtls2, rtcp_dtls2, rtcp_mux_enabled); dtls_srtp_transport1_->SignalRtcpPacketReceived.connect( &transport_observer1_, &webrtc::TransportObserver::OnRtcpPacketReceived); dtls_srtp_transport1_->SignalReadyToSend.connect( &transport_observer1_, &webrtc::TransportObserver::OnReadyToSend); dtls_srtp_transport2_->SignalRtcpPacketReceived.connect( &transport_observer2_, &webrtc::TransportObserver::OnRtcpPacketReceived); dtls_srtp_transport2_->SignalReadyToSend.connect( &transport_observer2_, &webrtc::TransportObserver::OnReadyToSend); webrtc::RtpDemuxerCriteria demuxer_criteria; // 0x00 is the payload type used in kPcmuFrame. demuxer_criteria.payload_types = {0x00}; dtls_srtp_transport1_->RegisterRtpDemuxerSink(demuxer_criteria, &transport_observer1_); dtls_srtp_transport2_->RegisterRtpDemuxerSink(demuxer_criteria, &transport_observer2_); } void CompleteDtlsHandshake(FakeDtlsTransport* fake_dtls1, FakeDtlsTransport* fake_dtls2) { auto cert1 = rtc::RTCCertificate::Create( rtc::SSLIdentity::Create("session1", rtc::KT_DEFAULT)); fake_dtls1->SetLocalCertificate(cert1); auto cert2 = rtc::RTCCertificate::Create( rtc::SSLIdentity::Create("session1", rtc::KT_DEFAULT)); fake_dtls2->SetLocalCertificate(cert2); fake_dtls1->SetDestination(fake_dtls2); } void SendRecvRtpPackets() { ASSERT_TRUE(dtls_srtp_transport1_); ASSERT_TRUE(dtls_srtp_transport2_); ASSERT_TRUE(dtls_srtp_transport1_->IsSrtpActive()); ASSERT_TRUE(dtls_srtp_transport2_->IsSrtpActive()); size_t rtp_len = sizeof(kPcmuFrame); size_t packet_size = rtp_len + kRtpAuthTagLen; rtc::Buffer rtp_packet_buffer(packet_size); char* rtp_packet_data = rtp_packet_buffer.data(); memcpy(rtp_packet_data, kPcmuFrame, rtp_len); // In order to be able to run this test function multiple times we can not // use the same sequence number twice. Increase the sequence number by one. rtc::SetBE16(reinterpret_cast(rtp_packet_data) + 2, ++sequence_number_); rtc::CopyOnWriteBuffer rtp_packet1to2(rtp_packet_data, rtp_len, packet_size); rtc::CopyOnWriteBuffer rtp_packet2to1(rtp_packet_data, rtp_len, packet_size); rtc::PacketOptions options; // Send a packet from |srtp_transport1_| to |srtp_transport2_| and verify // that the packet can be successfully received and decrypted. int prev_received_packets = transport_observer2_.rtp_count(); ASSERT_TRUE(dtls_srtp_transport1_->SendRtpPacket(&rtp_packet1to2, options, cricket::PF_SRTP_BYPASS)); ASSERT_TRUE(transport_observer2_.last_recv_rtp_packet().data()); EXPECT_EQ(0, memcmp(transport_observer2_.last_recv_rtp_packet().data(), kPcmuFrame, rtp_len)); EXPECT_EQ(prev_received_packets + 1, transport_observer2_.rtp_count()); prev_received_packets = transport_observer1_.rtp_count(); ASSERT_TRUE(dtls_srtp_transport2_->SendRtpPacket(&rtp_packet2to1, options, cricket::PF_SRTP_BYPASS)); ASSERT_TRUE(transport_observer1_.last_recv_rtp_packet().data()); EXPECT_EQ(0, memcmp(transport_observer1_.last_recv_rtp_packet().data(), kPcmuFrame, rtp_len)); EXPECT_EQ(prev_received_packets + 1, transport_observer1_.rtp_count()); } void SendRecvRtcpPackets() { size_t rtcp_len = sizeof(kRtcpReport); size_t packet_size = rtcp_len + 4 + kRtpAuthTagLen; rtc::Buffer rtcp_packet_buffer(packet_size); // TODO(zhihuang): Remove the extra copy when the SendRtpPacket method // doesn't take the CopyOnWriteBuffer by pointer. rtc::CopyOnWriteBuffer rtcp_packet1to2(kRtcpReport, rtcp_len, packet_size); rtc::CopyOnWriteBuffer rtcp_packet2to1(kRtcpReport, rtcp_len, packet_size); rtc::PacketOptions options; // Send a packet from |srtp_transport1_| to |srtp_transport2_| and verify // that the packet can be successfully received and decrypted. int prev_received_packets = transport_observer2_.rtcp_count(); ASSERT_TRUE(dtls_srtp_transport1_->SendRtcpPacket(&rtcp_packet1to2, options, cricket::PF_SRTP_BYPASS)); ASSERT_TRUE(transport_observer2_.last_recv_rtcp_packet().data()); EXPECT_EQ(0, memcmp(transport_observer2_.last_recv_rtcp_packet().data(), kRtcpReport, rtcp_len)); EXPECT_EQ(prev_received_packets + 1, transport_observer2_.rtcp_count()); // Do the same thing in the opposite direction; prev_received_packets = transport_observer1_.rtcp_count(); ASSERT_TRUE(dtls_srtp_transport2_->SendRtcpPacket(&rtcp_packet2to1, options, cricket::PF_SRTP_BYPASS)); ASSERT_TRUE(transport_observer1_.last_recv_rtcp_packet().data()); EXPECT_EQ(0, memcmp(transport_observer1_.last_recv_rtcp_packet().data(), kRtcpReport, rtcp_len)); EXPECT_EQ(prev_received_packets + 1, transport_observer1_.rtcp_count()); } void SendRecvRtpPacketsWithHeaderExtension( const std::vector& encrypted_header_ids) { ASSERT_TRUE(dtls_srtp_transport1_); ASSERT_TRUE(dtls_srtp_transport2_); ASSERT_TRUE(dtls_srtp_transport1_->IsSrtpActive()); ASSERT_TRUE(dtls_srtp_transport2_->IsSrtpActive()); size_t rtp_len = sizeof(kPcmuFrameWithExtensions); size_t packet_size = rtp_len + kRtpAuthTagLen; rtc::Buffer rtp_packet_buffer(packet_size); char* rtp_packet_data = rtp_packet_buffer.data(); memcpy(rtp_packet_data, kPcmuFrameWithExtensions, rtp_len); // In order to be able to run this test function multiple times we can not // use the same sequence number twice. Increase the sequence number by one. rtc::SetBE16(reinterpret_cast(rtp_packet_data) + 2, ++sequence_number_); rtc::CopyOnWriteBuffer rtp_packet1to2(rtp_packet_data, rtp_len, packet_size); rtc::CopyOnWriteBuffer rtp_packet2to1(rtp_packet_data, rtp_len, packet_size); char original_rtp_data[sizeof(kPcmuFrameWithExtensions)]; memcpy(original_rtp_data, rtp_packet_data, rtp_len); rtc::PacketOptions options; // Send a packet from |srtp_transport1_| to |srtp_transport2_| and verify // that the packet can be successfully received and decrypted. ASSERT_TRUE(dtls_srtp_transport1_->SendRtpPacket(&rtp_packet1to2, options, cricket::PF_SRTP_BYPASS)); ASSERT_TRUE(transport_observer2_.last_recv_rtp_packet().data()); EXPECT_EQ(0, memcmp(transport_observer2_.last_recv_rtp_packet().data(), original_rtp_data, rtp_len)); // Get the encrypted packet from underneath packet transport and verify the // data and header extension are actually encrypted. auto fake_dtls_transport = static_cast( dtls_srtp_transport1_->rtp_packet_transport()); auto fake_ice_transport = static_cast(fake_dtls_transport->ice_transport()); EXPECT_NE(0, memcmp(fake_ice_transport->last_sent_packet().data(), original_rtp_data, rtp_len)); CompareHeaderExtensions(reinterpret_cast( fake_ice_transport->last_sent_packet().data()), fake_ice_transport->last_sent_packet().size(), original_rtp_data, rtp_len, encrypted_header_ids, false); // Do the same thing in the opposite direction. ASSERT_TRUE(dtls_srtp_transport2_->SendRtpPacket(&rtp_packet2to1, options, cricket::PF_SRTP_BYPASS)); ASSERT_TRUE(transport_observer1_.last_recv_rtp_packet().data()); EXPECT_EQ(0, memcmp(transport_observer1_.last_recv_rtp_packet().data(), original_rtp_data, rtp_len)); // Get the encrypted packet from underneath packet transport and verify the // data and header extension are actually encrypted. fake_dtls_transport = static_cast( dtls_srtp_transport2_->rtp_packet_transport()); fake_ice_transport = static_cast(fake_dtls_transport->ice_transport()); EXPECT_NE(0, memcmp(fake_ice_transport->last_sent_packet().data(), original_rtp_data, rtp_len)); CompareHeaderExtensions(reinterpret_cast( fake_ice_transport->last_sent_packet().data()), fake_ice_transport->last_sent_packet().size(), original_rtp_data, rtp_len, encrypted_header_ids, false); } void SendRecvPackets() { SendRecvRtpPackets(); SendRecvRtcpPackets(); } std::unique_ptr dtls_srtp_transport1_; std::unique_ptr dtls_srtp_transport2_; webrtc::TransportObserver transport_observer1_; webrtc::TransportObserver transport_observer2_; int sequence_number_ = 0; }; // Tests that if RTCP muxing is enabled and transports are set after RTP // transport finished the handshake, SRTP is set up. TEST_F(DtlsSrtpTransportTest, SetTransportsAfterHandshakeCompleteWithRtcpMux) { auto rtp_dtls1 = std::make_unique( "video", cricket::ICE_CANDIDATE_COMPONENT_RTP); auto rtp_dtls2 = std::make_unique( "video", cricket::ICE_CANDIDATE_COMPONENT_RTP); MakeDtlsSrtpTransports(rtp_dtls1.get(), nullptr, rtp_dtls2.get(), nullptr, /*rtcp_mux_enabled=*/true); auto rtp_dtls3 = std::make_unique( "audio", cricket::ICE_CANDIDATE_COMPONENT_RTP); auto rtp_dtls4 = std::make_unique( "audio", cricket::ICE_CANDIDATE_COMPONENT_RTP); CompleteDtlsHandshake(rtp_dtls3.get(), rtp_dtls4.get()); dtls_srtp_transport1_->SetDtlsTransports(rtp_dtls3.get(), nullptr); dtls_srtp_transport2_->SetDtlsTransports(rtp_dtls4.get(), nullptr); SendRecvPackets(); } // Tests that if RTCP muxing is not enabled and transports are set after both // RTP and RTCP transports finished the handshake, SRTP is set up. TEST_F(DtlsSrtpTransportTest, SetTransportsAfterHandshakeCompleteWithoutRtcpMux) { auto rtp_dtls1 = std::make_unique( "video", cricket::ICE_CANDIDATE_COMPONENT_RTP); auto rtcp_dtls1 = std::make_unique( "video", cricket::ICE_CANDIDATE_COMPONENT_RTCP); auto rtp_dtls2 = std::make_unique( "video", cricket::ICE_CANDIDATE_COMPONENT_RTP); auto rtcp_dtls2 = std::make_unique( "video", cricket::ICE_CANDIDATE_COMPONENT_RTCP); MakeDtlsSrtpTransports(rtp_dtls1.get(), rtcp_dtls1.get(), rtp_dtls2.get(), rtcp_dtls2.get(), /*rtcp_mux_enabled=*/false); auto rtp_dtls3 = std::make_unique( "audio", cricket::ICE_CANDIDATE_COMPONENT_RTP); auto rtcp_dtls3 = std::make_unique( "audio", cricket::ICE_CANDIDATE_COMPONENT_RTCP); auto rtp_dtls4 = std::make_unique( "audio", cricket::ICE_CANDIDATE_COMPONENT_RTP); auto rtcp_dtls4 = std::make_unique( "audio", cricket::ICE_CANDIDATE_COMPONENT_RTCP); CompleteDtlsHandshake(rtp_dtls3.get(), rtp_dtls4.get()); CompleteDtlsHandshake(rtcp_dtls3.get(), rtcp_dtls4.get()); dtls_srtp_transport1_->SetDtlsTransports(rtp_dtls3.get(), rtcp_dtls3.get()); dtls_srtp_transport2_->SetDtlsTransports(rtp_dtls4.get(), rtcp_dtls4.get()); SendRecvPackets(); } // Tests if RTCP muxing is enabled, SRTP is set up as soon as the RTP DTLS // handshake is finished. TEST_F(DtlsSrtpTransportTest, SetTransportsBeforeHandshakeCompleteWithRtcpMux) { auto rtp_dtls1 = std::make_unique( "audio", cricket::ICE_CANDIDATE_COMPONENT_RTP); auto rtcp_dtls1 = std::make_unique( "audio", cricket::ICE_CANDIDATE_COMPONENT_RTCP); auto rtp_dtls2 = std::make_unique( "audio", cricket::ICE_CANDIDATE_COMPONENT_RTP); auto rtcp_dtls2 = std::make_unique( "audio", cricket::ICE_CANDIDATE_COMPONENT_RTCP); MakeDtlsSrtpTransports(rtp_dtls1.get(), rtcp_dtls1.get(), rtp_dtls2.get(), rtcp_dtls2.get(), /*rtcp_mux_enabled=*/false); dtls_srtp_transport1_->SetRtcpMuxEnabled(true); dtls_srtp_transport2_->SetRtcpMuxEnabled(true); CompleteDtlsHandshake(rtp_dtls1.get(), rtp_dtls2.get()); SendRecvPackets(); } // Tests if RTCP muxing is not enabled, SRTP is set up when both the RTP and // RTCP DTLS handshake are finished. TEST_F(DtlsSrtpTransportTest, SetTransportsBeforeHandshakeCompleteWithoutRtcpMux) { auto rtp_dtls1 = std::make_unique( "audio", cricket::ICE_CANDIDATE_COMPONENT_RTP); auto rtcp_dtls1 = std::make_unique( "audio", cricket::ICE_CANDIDATE_COMPONENT_RTCP); auto rtp_dtls2 = std::make_unique( "audio", cricket::ICE_CANDIDATE_COMPONENT_RTP); auto rtcp_dtls2 = std::make_unique( "audio", cricket::ICE_CANDIDATE_COMPONENT_RTCP); MakeDtlsSrtpTransports(rtp_dtls1.get(), rtcp_dtls1.get(), rtp_dtls2.get(), rtcp_dtls2.get(), /*rtcp_mux_enabled=*/false); CompleteDtlsHandshake(rtp_dtls1.get(), rtp_dtls2.get()); EXPECT_FALSE(dtls_srtp_transport1_->IsSrtpActive()); EXPECT_FALSE(dtls_srtp_transport2_->IsSrtpActive()); CompleteDtlsHandshake(rtcp_dtls1.get(), rtcp_dtls2.get()); SendRecvPackets(); } // Tests that if the DtlsTransport underneath is changed, the previous DTLS-SRTP // context will be reset and will be re-setup once the new transports' handshake // complete. TEST_F(DtlsSrtpTransportTest, DtlsSrtpResetAfterDtlsTransportChange) { auto rtp_dtls1 = std::make_unique( "audio", cricket::ICE_CANDIDATE_COMPONENT_RTP); auto rtp_dtls2 = std::make_unique( "audio", cricket::ICE_CANDIDATE_COMPONENT_RTP); MakeDtlsSrtpTransports(rtp_dtls1.get(), nullptr, rtp_dtls2.get(), nullptr, /*rtcp_mux_enabled=*/true); CompleteDtlsHandshake(rtp_dtls1.get(), rtp_dtls2.get()); EXPECT_TRUE(dtls_srtp_transport1_->IsSrtpActive()); EXPECT_TRUE(dtls_srtp_transport2_->IsSrtpActive()); auto rtp_dtls3 = std::make_unique( "audio", cricket::ICE_CANDIDATE_COMPONENT_RTP); auto rtp_dtls4 = std::make_unique( "audio", cricket::ICE_CANDIDATE_COMPONENT_RTP); // The previous context is reset. dtls_srtp_transport1_->SetDtlsTransports(rtp_dtls3.get(), nullptr); dtls_srtp_transport2_->SetDtlsTransports(rtp_dtls4.get(), nullptr); EXPECT_FALSE(dtls_srtp_transport1_->IsSrtpActive()); EXPECT_FALSE(dtls_srtp_transport2_->IsSrtpActive()); // Re-setup. CompleteDtlsHandshake(rtp_dtls3.get(), rtp_dtls4.get()); SendRecvPackets(); } // Tests if only the RTP DTLS handshake complete, and then RTCP muxing is // enabled, SRTP is set up. TEST_F(DtlsSrtpTransportTest, RtcpMuxEnabledAfterRtpTransportHandshakeComplete) { auto rtp_dtls1 = std::make_unique( "audio", cricket::ICE_CANDIDATE_COMPONENT_RTP); auto rtcp_dtls1 = std::make_unique( "audio", cricket::ICE_CANDIDATE_COMPONENT_RTCP); auto rtp_dtls2 = std::make_unique( "audio", cricket::ICE_CANDIDATE_COMPONENT_RTP); auto rtcp_dtls2 = std::make_unique( "audio", cricket::ICE_CANDIDATE_COMPONENT_RTCP); MakeDtlsSrtpTransports(rtp_dtls1.get(), rtcp_dtls1.get(), rtp_dtls2.get(), rtcp_dtls2.get(), /*rtcp_mux_enabled=*/false); CompleteDtlsHandshake(rtp_dtls1.get(), rtp_dtls2.get()); // Inactive because the RTCP transport handshake didn't complete. EXPECT_FALSE(dtls_srtp_transport1_->IsSrtpActive()); EXPECT_FALSE(dtls_srtp_transport2_->IsSrtpActive()); dtls_srtp_transport1_->SetRtcpMuxEnabled(true); dtls_srtp_transport2_->SetRtcpMuxEnabled(true); // The transports should be active and be able to send packets when the // RTCP muxing is enabled. SendRecvPackets(); } // Tests that when SetSend/RecvEncryptedHeaderExtensionIds is called, the SRTP // sessions are updated with new encryped header extension IDs immediately. TEST_F(DtlsSrtpTransportTest, EncryptedHeaderExtensionIdUpdated) { auto rtp_dtls1 = std::make_unique( "audio", cricket::ICE_CANDIDATE_COMPONENT_RTP); auto rtp_dtls2 = std::make_unique( "audio", cricket::ICE_CANDIDATE_COMPONENT_RTP); MakeDtlsSrtpTransports(rtp_dtls1.get(), nullptr, rtp_dtls2.get(), nullptr, /*rtcp_mux_enabled=*/true); CompleteDtlsHandshake(rtp_dtls1.get(), rtp_dtls2.get()); std::vector encrypted_headers; encrypted_headers.push_back(kHeaderExtensionIDs[0]); encrypted_headers.push_back(kHeaderExtensionIDs[1]); dtls_srtp_transport1_->UpdateSendEncryptedHeaderExtensionIds( encrypted_headers); dtls_srtp_transport1_->UpdateRecvEncryptedHeaderExtensionIds( encrypted_headers); dtls_srtp_transport2_->UpdateSendEncryptedHeaderExtensionIds( encrypted_headers); dtls_srtp_transport2_->UpdateRecvEncryptedHeaderExtensionIds( encrypted_headers); } // Tests if RTCP muxing is enabled. DtlsSrtpTransport is ready to send once the // RTP DtlsTransport is ready. TEST_F(DtlsSrtpTransportTest, SignalReadyToSendFiredWithRtcpMux) { auto rtp_dtls1 = std::make_unique( "audio", cricket::ICE_CANDIDATE_COMPONENT_RTP); auto rtp_dtls2 = std::make_unique( "audio", cricket::ICE_CANDIDATE_COMPONENT_RTP); MakeDtlsSrtpTransports(rtp_dtls1.get(), nullptr, rtp_dtls2.get(), nullptr, /*rtcp_mux_enabled=*/true); rtp_dtls1->SetDestination(rtp_dtls2.get()); EXPECT_TRUE(transport_observer1_.ready_to_send()); EXPECT_TRUE(transport_observer2_.ready_to_send()); } // Tests if RTCP muxing is not enabled. DtlsSrtpTransport is ready to send once // both the RTP and RTCP DtlsTransport are ready. TEST_F(DtlsSrtpTransportTest, SignalReadyToSendFiredWithoutRtcpMux) { auto rtp_dtls1 = std::make_unique( "audio", cricket::ICE_CANDIDATE_COMPONENT_RTP); auto rtcp_dtls1 = std::make_unique( "audio", cricket::ICE_CANDIDATE_COMPONENT_RTCP); auto rtp_dtls2 = std::make_unique( "audio", cricket::ICE_CANDIDATE_COMPONENT_RTP); auto rtcp_dtls2 = std::make_unique( "audio", cricket::ICE_CANDIDATE_COMPONENT_RTCP); MakeDtlsSrtpTransports(rtp_dtls1.get(), rtcp_dtls1.get(), rtp_dtls2.get(), rtcp_dtls2.get(), /*rtcp_mux_enabled=*/false); rtp_dtls1->SetDestination(rtp_dtls2.get()); EXPECT_FALSE(transport_observer1_.ready_to_send()); EXPECT_FALSE(transport_observer2_.ready_to_send()); rtcp_dtls1->SetDestination(rtcp_dtls2.get()); EXPECT_TRUE(transport_observer1_.ready_to_send()); EXPECT_TRUE(transport_observer2_.ready_to_send()); } // Test that if an endpoint "fully" enables RTCP mux, setting the RTCP // transport to null, it *doesn't* reset its SRTP context. That would cause the // ROC and SRTCP index to be reset, causing replay detection and other errors // when attempting to unprotect packets. // Regression test for bugs.webrtc.org/8996 TEST_F(DtlsSrtpTransportTest, SrtpSessionNotResetWhenRtcpTransportRemoved) { auto rtp_dtls1 = std::make_unique( "audio", cricket::ICE_CANDIDATE_COMPONENT_RTP); auto rtcp_dtls1 = std::make_unique( "audio", cricket::ICE_CANDIDATE_COMPONENT_RTCP); auto rtp_dtls2 = std::make_unique( "audio", cricket::ICE_CANDIDATE_COMPONENT_RTP); auto rtcp_dtls2 = std::make_unique( "audio", cricket::ICE_CANDIDATE_COMPONENT_RTCP); MakeDtlsSrtpTransports(rtp_dtls1.get(), rtcp_dtls1.get(), rtp_dtls2.get(), rtcp_dtls2.get(), /*rtcp_mux_enabled=*/true); CompleteDtlsHandshake(rtp_dtls1.get(), rtp_dtls2.get()); CompleteDtlsHandshake(rtcp_dtls1.get(), rtcp_dtls2.get()); // Send some RTCP packets, causing the SRTCP index to be incremented. SendRecvRtcpPackets(); // Set RTCP transport to null, which previously would trigger this problem. dtls_srtp_transport1_->SetDtlsTransports(rtp_dtls1.get(), nullptr); // Attempt to send more RTCP packets. If the issue occurred, one side would // reset its context while the other would not, causing replay detection // errors when a packet with a duplicate SRTCP index is received. SendRecvRtcpPackets(); } // Tests that RTCP packets can be sent and received if both sides actively reset // the SRTP parameters with the |active_reset_srtp_params_| flag. TEST_F(DtlsSrtpTransportTest, ActivelyResetSrtpParams) { auto rtp_dtls1 = std::make_unique( "audio", cricket::ICE_CANDIDATE_COMPONENT_RTP); auto rtcp_dtls1 = std::make_unique( "audio", cricket::ICE_CANDIDATE_COMPONENT_RTCP); auto rtp_dtls2 = std::make_unique( "audio", cricket::ICE_CANDIDATE_COMPONENT_RTP); auto rtcp_dtls2 = std::make_unique( "audio", cricket::ICE_CANDIDATE_COMPONENT_RTCP); MakeDtlsSrtpTransports(rtp_dtls1.get(), rtcp_dtls1.get(), rtp_dtls2.get(), rtcp_dtls2.get(), /*rtcp_mux_enabled=*/true); CompleteDtlsHandshake(rtp_dtls1.get(), rtp_dtls2.get()); CompleteDtlsHandshake(rtcp_dtls1.get(), rtcp_dtls2.get()); // Send some RTCP packets, causing the SRTCP index to be incremented. SendRecvRtcpPackets(); // Only set the |active_reset_srtp_params_| flag to be true one side. dtls_srtp_transport1_->SetActiveResetSrtpParams(true); // Set RTCP transport to null to trigger the SRTP parameters update. dtls_srtp_transport1_->SetDtlsTransports(rtp_dtls1.get(), nullptr); dtls_srtp_transport2_->SetDtlsTransports(rtp_dtls2.get(), nullptr); // Sending some RTCP packets. size_t rtcp_len = sizeof(kRtcpReport); size_t packet_size = rtcp_len + 4 + kRtpAuthTagLen; rtc::Buffer rtcp_packet_buffer(packet_size); rtc::CopyOnWriteBuffer rtcp_packet(kRtcpReport, rtcp_len, packet_size); int prev_received_packets = transport_observer2_.rtcp_count(); ASSERT_TRUE(dtls_srtp_transport1_->SendRtcpPacket( &rtcp_packet, rtc::PacketOptions(), cricket::PF_SRTP_BYPASS)); // The RTCP packet is not exepected to be received because the SRTP parameters // are only reset on one side and the SRTCP index is out of sync. EXPECT_EQ(prev_received_packets, transport_observer2_.rtcp_count()); // Set the flag to be true on the other side. dtls_srtp_transport2_->SetActiveResetSrtpParams(true); // Set RTCP transport to null to trigger the SRTP parameters update. dtls_srtp_transport1_->SetDtlsTransports(rtp_dtls1.get(), nullptr); dtls_srtp_transport2_->SetDtlsTransports(rtp_dtls2.get(), nullptr); // RTCP packets flow is expected to work just fine. SendRecvRtcpPackets(); }