/* * Copyright 2008 The WebRTC Project Authors. All rights reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "rtc_base/openssladapter.h" #if defined(WEBRTC_POSIX) #include #endif #if defined(WEBRTC_WIN) // Must be included first before openssl headers. #include "rtc_base/win32.h" // NOLINT #endif // WEBRTC_WIN #include #include #include #include #include #include #include #include "rtc_base/arraysize.h" #include "rtc_base/checks.h" #include "rtc_base/logging.h" #include "rtc_base/numerics/safe_conversions.h" #include "rtc_base/openssl.h" #include "rtc_base/sslroots.h" #include "rtc_base/stringencode.h" #include "rtc_base/stringutils.h" #include "rtc_base/thread.h" #ifndef OPENSSL_IS_BORINGSSL // TODO: Use a nicer abstraction for mutex. #if defined(WEBRTC_WIN) #define MUTEX_TYPE HANDLE #define MUTEX_SETUP(x) (x) = CreateMutex(nullptr, FALSE, nullptr) #define MUTEX_CLEANUP(x) CloseHandle(x) #define MUTEX_LOCK(x) WaitForSingleObject((x), INFINITE) #define MUTEX_UNLOCK(x) ReleaseMutex(x) #define THREAD_ID GetCurrentThreadId() #elif defined(WEBRTC_POSIX) #define MUTEX_TYPE pthread_mutex_t #define MUTEX_SETUP(x) pthread_mutex_init(&(x), nullptr) #define MUTEX_CLEANUP(x) pthread_mutex_destroy(&(x)) #define MUTEX_LOCK(x) pthread_mutex_lock(&(x)) #define MUTEX_UNLOCK(x) pthread_mutex_unlock(&(x)) #define THREAD_ID pthread_self() #else #error You must define mutex operations appropriate for your platform! #endif struct CRYPTO_dynlock_value { MUTEX_TYPE mutex; }; #endif // #ifndef OPENSSL_IS_BORINGSSL ////////////////////////////////////////////////////////////////////// // SocketBIO ////////////////////////////////////////////////////////////////////// static int socket_write(BIO* h, const char* buf, int num); static int socket_read(BIO* h, char* buf, int size); static int socket_puts(BIO* h, const char* str); static long socket_ctrl(BIO* h, int cmd, long arg1, void* arg2); static int socket_new(BIO* h); static int socket_free(BIO* data); static BIO_METHOD* BIO_socket_method() { static BIO_METHOD* methods = [] { BIO_METHOD* methods = BIO_meth_new(BIO_TYPE_BIO, "socket"); BIO_meth_set_write(methods, socket_write); BIO_meth_set_read(methods, socket_read); BIO_meth_set_puts(methods, socket_puts); BIO_meth_set_ctrl(methods, socket_ctrl); BIO_meth_set_create(methods, socket_new); BIO_meth_set_destroy(methods, socket_free); return methods; }(); return methods; } static BIO* BIO_new_socket(rtc::AsyncSocket* socket) { BIO* ret = BIO_new(BIO_socket_method()); if (ret == nullptr) { return nullptr; } BIO_set_data(ret, socket); return ret; } static int socket_new(BIO* b) { BIO_set_shutdown(b, 0); BIO_set_init(b, 1); BIO_set_data(b, 0); return 1; } static int socket_free(BIO* b) { if (b == nullptr) return 0; return 1; } static int socket_read(BIO* b, char* out, int outl) { if (!out) return -1; rtc::AsyncSocket* socket = static_cast(BIO_get_data(b)); BIO_clear_retry_flags(b); int result = socket->Recv(out, outl, nullptr); if (result > 0) { return result; } else if (socket->IsBlocking()) { BIO_set_retry_read(b); } return -1; } static int socket_write(BIO* b, const char* in, int inl) { if (!in) return -1; rtc::AsyncSocket* socket = static_cast(BIO_get_data(b)); BIO_clear_retry_flags(b); int result = socket->Send(in, inl); if (result > 0) { return result; } else if (socket->IsBlocking()) { BIO_set_retry_write(b); } return -1; } static int socket_puts(BIO* b, const char* str) { return socket_write(b, str, rtc::checked_cast(strlen(str))); } static long socket_ctrl(BIO* b, int cmd, long num, void* ptr) { switch (cmd) { case BIO_CTRL_RESET: return 0; case BIO_CTRL_EOF: { rtc::AsyncSocket* socket = static_cast(ptr); // 1 means socket closed. return (socket->GetState() == rtc::AsyncSocket::CS_CLOSED) ? 1 : 0; } case BIO_CTRL_WPENDING: case BIO_CTRL_PENDING: return 0; case BIO_CTRL_FLUSH: return 1; default: return 0; } } static void LogSslError() { // Walk down the error stack to find the SSL error. uint32_t error_code; const char* file; int line; do { error_code = ERR_get_error_line(&file, &line); if (ERR_GET_LIB(error_code) == ERR_LIB_SSL) { RTC_LOG(LS_ERROR) << "ERR_LIB_SSL: " << error_code << ", " << file << ":" << line; break; } } while (error_code != 0); } ///////////////////////////////////////////////////////////////////////////// // OpenSSLAdapter ///////////////////////////////////////////////////////////////////////////// namespace rtc { VerificationCallback OpenSSLAdapter::custom_verify_callback_ = nullptr; bool OpenSSLAdapter::InitializeSSL(VerificationCallback callback) { if (!SSL_library_init()) return false; #if !defined(ADDRESS_SANITIZER) || !defined(WEBRTC_MAC) || defined(WEBRTC_IOS) // Loading the error strings crashes mac_asan. Omit this debugging aid there. SSL_load_error_strings(); #endif ERR_load_BIO_strings(); OpenSSL_add_all_algorithms(); RAND_poll(); custom_verify_callback_ = callback; return true; } bool OpenSSLAdapter::CleanupSSL() { return true; } OpenSSLAdapter::OpenSSLAdapter(AsyncSocket* socket, OpenSSLAdapterFactory* factory) : SSLAdapter(socket), factory_(factory), state_(SSL_NONE), role_(SSL_CLIENT), ssl_read_needs_write_(false), ssl_write_needs_read_(false), restartable_(false), ssl_(nullptr), ssl_ctx_(nullptr), ssl_mode_(SSL_MODE_TLS), ignore_bad_cert_(false), custom_verification_succeeded_(false) { // If a factory is used, take a reference on the factory's SSL_CTX. // Otherwise, we'll create our own later. // Either way, we'll release our reference via SSL_CTX_free() in Cleanup(). if (factory_) { ssl_ctx_ = factory_->ssl_ctx(); RTC_DCHECK(ssl_ctx_); // Note: if using OpenSSL, requires version 1.1.0 or later. SSL_CTX_up_ref(ssl_ctx_); } } OpenSSLAdapter::~OpenSSLAdapter() { Cleanup(); } void OpenSSLAdapter::SetIgnoreBadCert(bool ignore) { ignore_bad_cert_ = ignore; } void OpenSSLAdapter::SetAlpnProtocols(const std::vector& protos) { alpn_protocols_ = protos; } void OpenSSLAdapter::SetEllipticCurves(const std::vector& curves) { elliptic_curves_ = curves; } void OpenSSLAdapter::SetMode(SSLMode mode) { RTC_DCHECK(!ssl_ctx_); RTC_DCHECK(state_ == SSL_NONE); ssl_mode_ = mode; } void OpenSSLAdapter::SetIdentity(SSLIdentity* identity) { RTC_DCHECK(!identity_); identity_.reset(static_cast(identity)); } void OpenSSLAdapter::SetRole(SSLRole role) { role_ = role; } AsyncSocket* OpenSSLAdapter::Accept(SocketAddress* paddr) { RTC_DCHECK(role_ == SSL_SERVER); AsyncSocket* socket = SSLAdapter::Accept(paddr); if (!socket) { return nullptr; } SSLAdapter* adapter = SSLAdapter::Create(socket); adapter->SetIdentity(identity_->GetReference()); adapter->SetRole(rtc::SSL_SERVER); adapter->SetIgnoreBadCert(ignore_bad_cert_); adapter->StartSSL("", false); return adapter; } int OpenSSLAdapter::StartSSL(const char* hostname, bool restartable) { if (state_ != SSL_NONE) return -1; ssl_host_name_ = hostname; restartable_ = restartable; if (socket_->GetState() != Socket::CS_CONNECTED) { state_ = SSL_WAIT; return 0; } state_ = SSL_CONNECTING; if (int err = BeginSSL()) { Error("BeginSSL", err, false); return err; } return 0; } int OpenSSLAdapter::BeginSSL() { RTC_LOG(LS_INFO) << "OpenSSLAdapter::BeginSSL: " << ssl_host_name_; RTC_DCHECK(state_ == SSL_CONNECTING); int err = 0; BIO* bio = nullptr; // First set up the context. We should either have a factory, with its own // pre-existing context, or be running standalone, in which case we will // need to create one, and specify |false| to disable session caching. if (!factory_) { RTC_DCHECK(!ssl_ctx_); ssl_ctx_ = CreateContext(ssl_mode_, false); } if (!ssl_ctx_) { err = -1; goto ssl_error; } if (identity_ && !identity_->ConfigureIdentity(ssl_ctx_)) { SSL_CTX_free(ssl_ctx_); err = -1; goto ssl_error; } bio = BIO_new_socket(socket_); if (!bio) { err = -1; goto ssl_error; } ssl_ = SSL_new(ssl_ctx_); if (!ssl_) { err = -1; goto ssl_error; } SSL_set_app_data(ssl_, this); // SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER allows different buffers to be passed // into SSL_write when a record could only be partially transmitted (and thus // requires another call to SSL_write to finish transmission). This allows us // to copy the data into our own buffer when this occurs, since the original // buffer can't safely be accessed after control exits Send. // TODO(deadbeef): Do we want SSL_MODE_ENABLE_PARTIAL_WRITE? It doesn't // appear Send handles partial writes properly, though maybe we never notice // since we never send more than 16KB at once.. SSL_set_mode(ssl_, SSL_MODE_ENABLE_PARTIAL_WRITE | SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER); // Enable SNI, if a hostname is supplied. if (!ssl_host_name_.empty()) { SSL_set_tlsext_host_name(ssl_, ssl_host_name_.c_str()); // Enable session caching, if configured and a hostname is supplied. if (factory_) { SSL_SESSION* cached = factory_->LookupSession(ssl_host_name_); if (cached) { if (SSL_set_session(ssl_, cached) == 0) { RTC_LOG(LS_WARNING) << "Failed to apply SSL session from cache"; err = -1; goto ssl_error; } RTC_LOG(LS_INFO) << "Attempting to resume SSL session to " << ssl_host_name_; } } } #ifdef OPENSSL_IS_BORINGSSL // Set a couple common TLS extensions; even though we don't use them yet. SSL_enable_ocsp_stapling(ssl_); SSL_enable_signed_cert_timestamps(ssl_); #endif if (!alpn_protocols_.empty()) { std::string tls_alpn_string = TransformAlpnProtocols(alpn_protocols_); if (!tls_alpn_string.empty()) { SSL_set_alpn_protos( ssl_, reinterpret_cast(tls_alpn_string.data()), tls_alpn_string.size()); } } if (!elliptic_curves_.empty()) { SSL_set1_curves_list(ssl_, rtc::join(elliptic_curves_, ':').c_str()); } // Now that the initial config is done, transfer ownership of |bio| to the // SSL object. If ContinueSSL() fails, the bio will be freed in Cleanup(). SSL_set_bio(ssl_, bio, bio); bio = nullptr; // Do the connect. err = ContinueSSL(); if (err != 0) goto ssl_error; return err; ssl_error: Cleanup(); if (bio) BIO_free(bio); return err; } int OpenSSLAdapter::ContinueSSL() { RTC_DCHECK(state_ == SSL_CONNECTING); // Clear the DTLS timer Thread::Current()->Clear(this, MSG_TIMEOUT); int code = (role_ == SSL_CLIENT) ? SSL_connect(ssl_) : SSL_accept(ssl_); switch (SSL_get_error(ssl_, code)) { case SSL_ERROR_NONE: if (!SSLPostConnectionCheck(ssl_, ssl_host_name_.c_str())) { RTC_LOG(LS_ERROR) << "TLS post connection check failed"; // make sure we close the socket Cleanup(); // The connect failed so return -1 to shut down the socket return -1; } state_ = SSL_CONNECTED; AsyncSocketAdapter::OnConnectEvent(this); #if 0 // TODO: worry about this // Don't let ourselves go away during the callbacks PRefPtr lock(this); RTC_LOG(LS_INFO) << " -- onStreamReadable"; AsyncSocketAdapter::OnReadEvent(this); RTC_LOG(LS_INFO) << " -- onStreamWriteable"; AsyncSocketAdapter::OnWriteEvent(this); #endif break; case SSL_ERROR_WANT_READ: RTC_LOG(LS_VERBOSE) << " -- error want read"; struct timeval timeout; if (DTLSv1_get_timeout(ssl_, &timeout)) { int delay = timeout.tv_sec * 1000 + timeout.tv_usec/1000; Thread::Current()->PostDelayed(RTC_FROM_HERE, delay, this, MSG_TIMEOUT, 0); } break; case SSL_ERROR_WANT_WRITE: break; case SSL_ERROR_ZERO_RETURN: default: RTC_LOG(LS_WARNING) << "ContinueSSL -- error " << code; return (code != 0) ? code : -1; } return 0; } void OpenSSLAdapter::Error(const char* context, int err, bool signal) { RTC_LOG(LS_WARNING) << "OpenSSLAdapter::Error(" << context << ", " << err << ")"; state_ = SSL_ERROR; SetError(err); if (signal) AsyncSocketAdapter::OnCloseEvent(this, err); } void OpenSSLAdapter::Cleanup() { RTC_LOG(LS_INFO) << "OpenSSLAdapter::Cleanup"; state_ = SSL_NONE; ssl_read_needs_write_ = false; ssl_write_needs_read_ = false; custom_verification_succeeded_ = false; pending_data_.Clear(); if (ssl_) { SSL_free(ssl_); ssl_ = nullptr; } if (ssl_ctx_) { SSL_CTX_free(ssl_ctx_); ssl_ctx_ = nullptr; } identity_.reset(); // Clear the DTLS timer Thread::Current()->Clear(this, MSG_TIMEOUT); } int OpenSSLAdapter::DoSslWrite(const void* pv, size_t cb, int* error) { // If we have pending data (that was previously only partially written by // SSL_write), we shouldn't be attempting to write anything else. RTC_DCHECK(pending_data_.empty() || pv == pending_data_.data()); RTC_DCHECK(error != nullptr); ssl_write_needs_read_ = false; int ret = SSL_write(ssl_, pv, checked_cast(cb)); *error = SSL_get_error(ssl_, ret); switch (*error) { case SSL_ERROR_NONE: // Success! return ret; case SSL_ERROR_WANT_READ: RTC_LOG(LS_INFO) << " -- error want read"; ssl_write_needs_read_ = true; SetError(EWOULDBLOCK); break; case SSL_ERROR_WANT_WRITE: RTC_LOG(LS_INFO) << " -- error want write"; SetError(EWOULDBLOCK); break; case SSL_ERROR_ZERO_RETURN: SetError(EWOULDBLOCK); // do we need to signal closure? break; case SSL_ERROR_SSL: LogSslError(); Error("SSL_write", ret ? ret : -1, false); break; default: Error("SSL_write", ret ? ret : -1, false); break; } return SOCKET_ERROR; } // // AsyncSocket Implementation // int OpenSSLAdapter::Send(const void* pv, size_t cb) { switch (state_) { case SSL_NONE: return AsyncSocketAdapter::Send(pv, cb); case SSL_WAIT: case SSL_CONNECTING: SetError(ENOTCONN); return SOCKET_ERROR; case SSL_CONNECTED: break; case SSL_ERROR: default: return SOCKET_ERROR; } int ret; int error; if (!pending_data_.empty()) { ret = DoSslWrite(pending_data_.data(), pending_data_.size(), &error); if (ret != static_cast(pending_data_.size())) { // We couldn't finish sending the pending data, so we definitely can't // send any more data. Return with an EWOULDBLOCK error. SetError(EWOULDBLOCK); return SOCKET_ERROR; } // We completed sending the data previously passed into SSL_write! Now // we're allowed to send more data. pending_data_.Clear(); } // OpenSSL will return an error if we try to write zero bytes if (cb == 0) return 0; ret = DoSslWrite(pv, cb, &error); // If SSL_write fails with SSL_ERROR_WANT_READ or SSL_ERROR_WANT_WRITE, this // means the underlying socket is blocked on reading or (more typically) // writing. When this happens, OpenSSL requires that the next call to // SSL_write uses the same arguments (though, with // SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER, the actual buffer pointer may be // different). // // However, after Send exits, we will have lost access to data the user of // this class is trying to send, and there's no guarantee that the user of // this class will call Send with the same arguements when it fails. So, we // buffer the data ourselves. When we know the underlying socket is writable // again from OnWriteEvent (or if Send is called again before that happens), // we'll retry sending this buffered data. if (error == SSL_ERROR_WANT_READ || error == SSL_ERROR_WANT_WRITE) { // Shouldn't be able to get to this point if we already have pending data. RTC_DCHECK(pending_data_.empty()); RTC_LOG(LS_WARNING) << "SSL_write couldn't write to the underlying socket; buffering data."; pending_data_.SetData(static_cast(pv), cb); // Since we're taking responsibility for sending this data, return its full // size. The user of this class can consider it sent. return cb; } return ret; } int OpenSSLAdapter::SendTo(const void* pv, size_t cb, const SocketAddress& addr) { if (socket_->GetState() == Socket::CS_CONNECTED && addr == socket_->GetRemoteAddress()) { return Send(pv, cb); } SetError(ENOTCONN); return SOCKET_ERROR; } int OpenSSLAdapter::Recv(void* pv, size_t cb, int64_t* timestamp) { switch (state_) { case SSL_NONE: return AsyncSocketAdapter::Recv(pv, cb, timestamp); case SSL_WAIT: case SSL_CONNECTING: SetError(ENOTCONN); return SOCKET_ERROR; case SSL_CONNECTED: break; case SSL_ERROR: default: return SOCKET_ERROR; } // Don't trust OpenSSL with zero byte reads if (cb == 0) return 0; ssl_read_needs_write_ = false; int code = SSL_read(ssl_, pv, checked_cast(cb)); int error = SSL_get_error(ssl_, code); switch (error) { case SSL_ERROR_NONE: return code; case SSL_ERROR_WANT_READ: SetError(EWOULDBLOCK); break; case SSL_ERROR_WANT_WRITE: ssl_read_needs_write_ = true; SetError(EWOULDBLOCK); break; case SSL_ERROR_ZERO_RETURN: SetError(EWOULDBLOCK); // do we need to signal closure? break; case SSL_ERROR_SSL: LogSslError(); Error("SSL_read", (code ? code : -1), false); break; default: Error("SSL_read", (code ? code : -1), false); break; } return SOCKET_ERROR; } int OpenSSLAdapter::RecvFrom(void* pv, size_t cb, SocketAddress* paddr, int64_t* timestamp) { if (socket_->GetState() == Socket::CS_CONNECTED) { int ret = Recv(pv, cb, timestamp); *paddr = GetRemoteAddress(); return ret; } SetError(ENOTCONN); return SOCKET_ERROR; } int OpenSSLAdapter::Close() { Cleanup(); state_ = restartable_ ? SSL_WAIT : SSL_NONE; return AsyncSocketAdapter::Close(); } Socket::ConnState OpenSSLAdapter::GetState() const { //if (signal_close_) // return CS_CONNECTED; ConnState state = socket_->GetState(); if ((state == CS_CONNECTED) && ((state_ == SSL_WAIT) || (state_ == SSL_CONNECTING))) state = CS_CONNECTING; return state; } bool OpenSSLAdapter::IsResumedSession() { return (ssl_ && SSL_session_reused(ssl_) == 1); } void OpenSSLAdapter::OnMessage(Message* msg) { if (MSG_TIMEOUT == msg->message_id) { RTC_LOG(LS_INFO) << "DTLS timeout expired"; DTLSv1_handle_timeout(ssl_); ContinueSSL(); } } void OpenSSLAdapter::OnConnectEvent(AsyncSocket* socket) { RTC_LOG(LS_INFO) << "OpenSSLAdapter::OnConnectEvent"; if (state_ != SSL_WAIT) { RTC_DCHECK(state_ == SSL_NONE); AsyncSocketAdapter::OnConnectEvent(socket); return; } state_ = SSL_CONNECTING; if (int err = BeginSSL()) { AsyncSocketAdapter::OnCloseEvent(socket, err); } } void OpenSSLAdapter::OnReadEvent(AsyncSocket* socket) { if (state_ == SSL_NONE) { AsyncSocketAdapter::OnReadEvent(socket); return; } if (state_ == SSL_CONNECTING) { if (int err = ContinueSSL()) { Error("ContinueSSL", err); } return; } if (state_ != SSL_CONNECTED) return; // Don't let ourselves go away during the callbacks //PRefPtr lock(this); // TODO: fix this if (ssl_write_needs_read_) { AsyncSocketAdapter::OnWriteEvent(socket); } AsyncSocketAdapter::OnReadEvent(socket); } void OpenSSLAdapter::OnWriteEvent(AsyncSocket* socket) { if (state_ == SSL_NONE) { AsyncSocketAdapter::OnWriteEvent(socket); return; } if (state_ == SSL_CONNECTING) { if (int err = ContinueSSL()) { Error("ContinueSSL", err); } return; } if (state_ != SSL_CONNECTED) return; // Don't let ourselves go away during the callbacks //PRefPtr lock(this); // TODO: fix this if (ssl_read_needs_write_) { AsyncSocketAdapter::OnReadEvent(socket); } // If a previous SSL_write failed due to the underlying socket being blocked, // this will attempt finishing the write operation. if (!pending_data_.empty()) { int error; if (DoSslWrite(pending_data_.data(), pending_data_.size(), &error) == static_cast(pending_data_.size())) { pending_data_.Clear(); } } AsyncSocketAdapter::OnWriteEvent(socket); } void OpenSSLAdapter::OnCloseEvent(AsyncSocket* socket, int err) { RTC_LOG(LS_INFO) << "OpenSSLAdapter::OnCloseEvent(" << err << ")"; AsyncSocketAdapter::OnCloseEvent(socket, err); } bool OpenSSLAdapter::VerifyServerName(SSL* ssl, const char* host, bool ignore_bad_cert) { if (!host) return false; // Checking the return from SSL_get_peer_certificate here is not strictly // necessary. With our setup, it is not possible for it to return // null. However, it is good form to check the return. X509* certificate = SSL_get_peer_certificate(ssl); if (!certificate) return false; // Logging certificates is extremely verbose. So it is disabled by default. #ifdef LOG_CERTIFICATES { RTC_DLOG(LS_INFO) << "Certificate from server:"; BIO* mem = BIO_new(BIO_s_mem()); X509_print_ex(mem, certificate, XN_FLAG_SEP_CPLUS_SPC, X509_FLAG_NO_HEADER); BIO_write(mem, "\0", 1); char* buffer; BIO_get_mem_data(mem, &buffer); RTC_DLOG(LS_INFO) << buffer; BIO_free(mem); char* cipher_description = SSL_CIPHER_description(SSL_get_current_cipher(ssl), nullptr, 128); RTC_DLOG(LS_INFO) << "Cipher: " << cipher_description; OPENSSL_free(cipher_description); } #endif bool ok = false; GENERAL_NAMES* names = reinterpret_cast( X509_get_ext_d2i(certificate, NID_subject_alt_name, nullptr, nullptr)); if (names) { for (size_t i = 0; i < static_cast(sk_GENERAL_NAME_num(names)); i++) { const GENERAL_NAME* name = sk_GENERAL_NAME_value(names, i); if (name->type != GEN_DNS) continue; std::string value( reinterpret_cast(ASN1_STRING_data(name->d.dNSName)), ASN1_STRING_length(name->d.dNSName)); // string_match takes NUL-terminated strings, so check for embedded NULs. if (value.find('\0') != std::string::npos) continue; if (string_match(host, value.c_str())) { ok = true; break; } } GENERAL_NAMES_free(names); } char data[256]; X509_NAME* subject; if (!ok && ((subject = X509_get_subject_name(certificate)) != nullptr) && (X509_NAME_get_text_by_NID(subject, NID_commonName, data, sizeof(data)) > 0)) { data[sizeof(data)-1] = 0; if (_stricmp(data, host) == 0) ok = true; } X509_free(certificate); // This should only ever be turned on for debugging and development. if (!ok && ignore_bad_cert) { RTC_DLOG(LS_WARNING) << "TLS certificate check FAILED. " << "Allowing connection anyway."; ok = true; } return ok; } bool OpenSSLAdapter::SSLPostConnectionCheck(SSL* ssl, const char* host) { bool ok = VerifyServerName(ssl, host, ignore_bad_cert_); if (ok) { ok = (SSL_get_verify_result(ssl) == X509_V_OK || custom_verification_succeeded_); } if (!ok && ignore_bad_cert_) { RTC_DLOG(LS_INFO) << "Other TLS post connection checks failed."; ok = true; } return ok; } #if !defined(NDEBUG) // We only use this for tracing and so it is only needed in debug mode void OpenSSLAdapter::SSLInfoCallback(const SSL* s, int where, int ret) { const char* str = "undefined"; int w = where & ~SSL_ST_MASK; if (w & SSL_ST_CONNECT) { str = "SSL_connect"; } else if (w & SSL_ST_ACCEPT) { str = "SSL_accept"; } if (where & SSL_CB_LOOP) { RTC_DLOG(LS_INFO) << str << ":" << SSL_state_string_long(s); } else if (where & SSL_CB_ALERT) { str = (where & SSL_CB_READ) ? "read" : "write"; RTC_DLOG(LS_INFO) << "SSL3 alert " << str << ":" << SSL_alert_type_string_long(ret) << ":" << SSL_alert_desc_string_long(ret); } else if (where & SSL_CB_EXIT) { if (ret == 0) { RTC_DLOG(LS_INFO) << str << ":failed in " << SSL_state_string_long(s); } else if (ret < 0) { RTC_DLOG(LS_INFO) << str << ":error in " << SSL_state_string_long(s); } } } #endif int OpenSSLAdapter::SSLVerifyCallback(int ok, X509_STORE_CTX* store) { #if !defined(NDEBUG) if (!ok) { char data[256]; X509* cert = X509_STORE_CTX_get_current_cert(store); int depth = X509_STORE_CTX_get_error_depth(store); int err = X509_STORE_CTX_get_error(store); RTC_DLOG(LS_INFO) << "Error with certificate at depth: " << depth; X509_NAME_oneline(X509_get_issuer_name(cert), data, sizeof(data)); RTC_DLOG(LS_INFO) << " issuer = " << data; X509_NAME_oneline(X509_get_subject_name(cert), data, sizeof(data)); RTC_DLOG(LS_INFO) << " subject = " << data; RTC_DLOG(LS_INFO) << " err = " << err << ":" << X509_verify_cert_error_string(err); } #endif // Get our stream pointer from the store SSL* ssl = reinterpret_cast( X509_STORE_CTX_get_ex_data(store, SSL_get_ex_data_X509_STORE_CTX_idx())); OpenSSLAdapter* stream = reinterpret_cast(SSL_get_app_data(ssl)); if (!ok && custom_verify_callback_) { void* cert = reinterpret_cast(X509_STORE_CTX_get_current_cert(store)); if (custom_verify_callback_(cert)) { stream->custom_verification_succeeded_ = true; RTC_LOG(LS_INFO) << "validated certificate using custom callback"; ok = true; } } // Should only be used for debugging and development. if (!ok && stream->ignore_bad_cert_) { RTC_DLOG(LS_WARNING) << "Ignoring cert error while verifying cert chain"; ok = 1; } return ok; } int OpenSSLAdapter::NewSSLSessionCallback(SSL* ssl, SSL_SESSION* session) { OpenSSLAdapter* stream = reinterpret_cast(SSL_get_app_data(ssl)); RTC_DCHECK(stream->factory_); RTC_LOG(LS_INFO) << "Caching SSL session for " << stream->ssl_host_name_; stream->factory_->AddSession(stream->ssl_host_name_, session); return 1; // We've taken ownership of the session; OpenSSL shouldn't free it. } bool OpenSSLAdapter::ConfigureTrustedRootCertificates(SSL_CTX* ctx) { // Add the root cert that we care about to the SSL context int count_of_added_certs = 0; for (size_t i = 0; i < arraysize(kSSLCertCertificateList); i++) { const unsigned char* cert_buffer = kSSLCertCertificateList[i]; size_t cert_buffer_len = kSSLCertCertificateSizeList[i]; X509* cert = d2i_X509(nullptr, &cert_buffer, checked_cast(cert_buffer_len)); if (cert) { int return_value = X509_STORE_add_cert(SSL_CTX_get_cert_store(ctx), cert); if (return_value == 0) { RTC_LOG(LS_WARNING) << "Unable to add certificate."; } else { count_of_added_certs++; } X509_free(cert); } } return count_of_added_certs > 0; } SSL_CTX* OpenSSLAdapter::CreateContext(SSLMode mode, bool enable_cache) { // Use (D)TLS 1.2. // Note: BoringSSL supports a range of versions by setting max/min version // (Default V1.0 to V1.2). However (D)TLSv1_2_client_method functions used // below in OpenSSL only support V1.2. SSL_CTX* ctx = nullptr; #ifdef OPENSSL_IS_BORINGSSL ctx = SSL_CTX_new(mode == SSL_MODE_DTLS ? DTLS_method() : TLS_method()); #else ctx = SSL_CTX_new(mode == SSL_MODE_DTLS ? DTLSv1_2_client_method() : TLSv1_2_client_method()); #endif // OPENSSL_IS_BORINGSSL if (ctx == nullptr) { unsigned long error = ERR_get_error(); // NOLINT: type used by OpenSSL. RTC_LOG(LS_WARNING) << "SSL_CTX creation failed: " << '"' << ERR_reason_error_string(error) << "\" " << "(error=" << error << ')'; return nullptr; } if (!ConfigureTrustedRootCertificates(ctx)) { SSL_CTX_free(ctx); return nullptr; } #if !defined(NDEBUG) SSL_CTX_set_info_callback(ctx, SSLInfoCallback); #endif SSL_CTX_set_verify(ctx, SSL_VERIFY_PEER, SSLVerifyCallback); SSL_CTX_set_verify_depth(ctx, 4); // Use defaults, but disable HMAC-SHA256 and HMAC-SHA384 ciphers // (note that SHA256 and SHA384 only select legacy CBC ciphers). // Additionally disable HMAC-SHA1 ciphers in ECDSA. These are the remaining // CBC-mode ECDSA ciphers. SSL_CTX_set_cipher_list( ctx, "ALL:!SHA256:!SHA384:!aPSK:!ECDSA+SHA1:!ADH:!LOW:!EXP:!MD5"); if (mode == SSL_MODE_DTLS) { SSL_CTX_set_read_ahead(ctx, 1); } if (enable_cache) { SSL_CTX_set_session_cache_mode(ctx, SSL_SESS_CACHE_CLIENT); SSL_CTX_sess_set_new_cb(ctx, &OpenSSLAdapter::NewSSLSessionCallback); } return ctx; } std::string TransformAlpnProtocols( const std::vector& alpn_protocols) { // Transforms the alpn_protocols list to the format expected by // Open/BoringSSL. This requires joining the protocols into a single string // and prepending a character with the size of the protocol string before // each protocol. std::string transformed_alpn; for (const std::string& proto : alpn_protocols) { if (proto.size() == 0 || proto.size() > 0xFF) { RTC_LOG(LS_ERROR) << "OpenSSLAdapter::Error(" << "TransformAlpnProtocols received proto with size " << proto.size() << ")"; return ""; } transformed_alpn += static_cast(proto.size()); transformed_alpn += proto; RTC_LOG(LS_VERBOSE) << "TransformAlpnProtocols: Adding proto: " << proto; } return transformed_alpn; } ////////////////////////////////////////////////////////////////////// // OpenSSLAdapterFactory ////////////////////////////////////////////////////////////////////// OpenSSLAdapterFactory::OpenSSLAdapterFactory() : ssl_mode_(SSL_MODE_TLS), ssl_ctx_(nullptr) {} OpenSSLAdapterFactory::~OpenSSLAdapterFactory() { for (auto it : sessions_) { SSL_SESSION_free(it.second); } SSL_CTX_free(ssl_ctx_); } void OpenSSLAdapterFactory::SetMode(SSLMode mode) { RTC_DCHECK(!ssl_ctx_); ssl_mode_ = mode; } OpenSSLAdapter* OpenSSLAdapterFactory::CreateAdapter(AsyncSocket* socket) { if (!ssl_ctx_) { bool enable_cache = true; ssl_ctx_ = OpenSSLAdapter::CreateContext(ssl_mode_, enable_cache); if (!ssl_ctx_) { return nullptr; } } return new OpenSSLAdapter(socket, this); } SSL_SESSION* OpenSSLAdapterFactory::LookupSession(const std::string& hostname) { auto it = sessions_.find(hostname); return (it != sessions_.end()) ? it->second : nullptr; } void OpenSSLAdapterFactory::AddSession(const std::string& hostname, SSL_SESSION* new_session) { SSL_SESSION* old_session = LookupSession(hostname); SSL_SESSION_free(old_session); sessions_[hostname] = new_session; } } // namespace rtc