/* * Copyright 2016 The WebRTC Project Authors. All rights reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "rtc_base/task_queue_libevent.h" #include #include #include #include #include #include #include #include #include #include #include #include "absl/container/inlined_vector.h" #include "absl/strings/string_view.h" #include "api/task_queue/queued_task.h" #include "api/task_queue/task_queue_base.h" #include "base/third_party/libevent/event.h" #include "rtc_base/checks.h" #include "rtc_base/critical_section.h" #include "rtc_base/logging.h" #include "rtc_base/numerics/safe_conversions.h" #include "rtc_base/platform_thread.h" #include "rtc_base/platform_thread_types.h" #include "rtc_base/thread_annotations.h" #include "rtc_base/time_utils.h" namespace webrtc { namespace { constexpr char kQuit = 1; constexpr char kRunTasks = 2; using Priority = TaskQueueFactory::Priority; // This ignores the SIGPIPE signal on the calling thread. // This signal can be fired when trying to write() to a pipe that's being // closed or while closing a pipe that's being written to. // We can run into that situation so we ignore this signal and continue as // normal. // As a side note for this implementation, it would be great if we could safely // restore the sigmask, but unfortunately the operation of restoring it, can // itself actually cause SIGPIPE to be signaled :-| (e.g. on MacOS) // The SIGPIPE signal by default causes the process to be terminated, so we // don't want to risk that. // An alternative to this approach is to ignore the signal for the whole // process: // signal(SIGPIPE, SIG_IGN); void IgnoreSigPipeSignalOnCurrentThread() { sigset_t sigpipe_mask; sigemptyset(&sigpipe_mask); sigaddset(&sigpipe_mask, SIGPIPE); pthread_sigmask(SIG_BLOCK, &sigpipe_mask, nullptr); } bool SetNonBlocking(int fd) { const int flags = fcntl(fd, F_GETFL); RTC_CHECK(flags != -1); return (flags & O_NONBLOCK) || fcntl(fd, F_SETFL, flags | O_NONBLOCK) != -1; } // TODO(tommi): This is a hack to support two versions of libevent that we're // compatible with. The method we really want to call is event_assign(), // since event_set() has been marked as deprecated (and doesn't accept // passing event_base__ as a parameter). However, the version of libevent // that we have in Chromium, doesn't have event_assign(), so we need to call // event_set() there. void EventAssign(struct event* ev, struct event_base* base, int fd, short events, void (*callback)(int, short, void*), void* arg) { #if defined(_EVENT2_EVENT_H_) RTC_CHECK_EQ(0, event_assign(ev, base, fd, events, callback, arg)); #else event_set(ev, fd, events, callback, arg); RTC_CHECK_EQ(0, event_base_set(base, ev)); #endif } rtc::ThreadPriority TaskQueuePriorityToThreadPriority(Priority priority) { switch (priority) { case Priority::HIGH: return rtc::kRealtimePriority; case Priority::LOW: return rtc::kLowPriority; case Priority::NORMAL: return rtc::kNormalPriority; default: RTC_NOTREACHED(); break; } return rtc::kNormalPriority; } class TaskQueueLibevent final : public TaskQueueBase { public: TaskQueueLibevent(absl::string_view queue_name, rtc::ThreadPriority priority); void Delete() override; void PostTask(std::unique_ptr task) override; void PostDelayedTask(std::unique_ptr task, uint32_t milliseconds) override; private: class SetTimerTask; struct TimerEvent; ~TaskQueueLibevent() override = default; static void ThreadMain(void* context); static void OnWakeup(int socket, short flags, void* context); // NOLINT static void RunTimer(int fd, short flags, void* context); // NOLINT bool is_active_ = true; int wakeup_pipe_in_ = -1; int wakeup_pipe_out_ = -1; event_base* event_base_; event wakeup_event_; rtc::PlatformThread thread_; rtc::CriticalSection pending_lock_; absl::InlinedVector, 4> pending_ RTC_GUARDED_BY(pending_lock_); // Holds a list of events pending timers for cleanup when the loop exits. std::list pending_timers_; }; struct TaskQueueLibevent::TimerEvent { TimerEvent(TaskQueueLibevent* task_queue, std::unique_ptr task) : task_queue(task_queue), task(std::move(task)) {} ~TimerEvent() { event_del(&ev); } event ev; TaskQueueLibevent* task_queue; std::unique_ptr task; }; class TaskQueueLibevent::SetTimerTask : public QueuedTask { public: SetTimerTask(std::unique_ptr task, uint32_t milliseconds) : task_(std::move(task)), milliseconds_(milliseconds), posted_(rtc::Time32()) {} private: bool Run() override { // Compensate for the time that has passed since construction // and until we got here. uint32_t post_time = rtc::Time32() - posted_; TaskQueueLibevent::Current()->PostDelayedTask( std::move(task_), post_time > milliseconds_ ? 0 : milliseconds_ - post_time); return true; } std::unique_ptr task_; const uint32_t milliseconds_; const uint32_t posted_; }; TaskQueueLibevent::TaskQueueLibevent(absl::string_view queue_name, rtc::ThreadPriority priority) : event_base_(event_base_new()), thread_(&TaskQueueLibevent::ThreadMain, this, queue_name, priority) { int fds[2]; RTC_CHECK(pipe(fds) == 0); SetNonBlocking(fds[0]); SetNonBlocking(fds[1]); wakeup_pipe_out_ = fds[0]; wakeup_pipe_in_ = fds[1]; EventAssign(&wakeup_event_, event_base_, wakeup_pipe_out_, EV_READ | EV_PERSIST, OnWakeup, this); event_add(&wakeup_event_, 0); thread_.Start(); } void TaskQueueLibevent::Delete() { RTC_DCHECK(!IsCurrent()); struct timespec ts; char message = kQuit; while (write(wakeup_pipe_in_, &message, sizeof(message)) != sizeof(message)) { // The queue is full, so we have no choice but to wait and retry. RTC_CHECK_EQ(EAGAIN, errno); ts.tv_sec = 0; ts.tv_nsec = 1000000; nanosleep(&ts, nullptr); } thread_.Stop(); event_del(&wakeup_event_); IgnoreSigPipeSignalOnCurrentThread(); close(wakeup_pipe_in_); close(wakeup_pipe_out_); wakeup_pipe_in_ = -1; wakeup_pipe_out_ = -1; event_base_free(event_base_); delete this; } void TaskQueueLibevent::PostTask(std::unique_ptr task) { { rtc::CritScope lock(&pending_lock_); bool had_pending_tasks = !pending_.empty(); pending_.push_back(std::move(task)); // Only write to the pipe if there were no pending tasks before this one // since the thread could be sleeping. If there were already pending tasks // then we know there's either a pending write in the pipe or the thread has // not yet processed the pending tasks. In either case, the thread will // eventually wake up and process all pending tasks including this one. if (had_pending_tasks) { return; } } // Note: This behvior outlined above ensures we never fill up the pipe write // buffer since there will only ever be 1 byte pending. char message = kRunTasks; RTC_CHECK_EQ(write(wakeup_pipe_in_, &message, sizeof(message)), sizeof(message)); } void TaskQueueLibevent::PostDelayedTask(std::unique_ptr task, uint32_t milliseconds) { if (IsCurrent()) { TimerEvent* timer = new TimerEvent(this, std::move(task)); EventAssign(&timer->ev, event_base_, -1, 0, &TaskQueueLibevent::RunTimer, timer); pending_timers_.push_back(timer); timeval tv = {rtc::dchecked_cast(milliseconds / 1000), rtc::dchecked_cast(milliseconds % 1000) * 1000}; event_add(&timer->ev, &tv); } else { PostTask(std::make_unique(std::move(task), milliseconds)); } } // static void TaskQueueLibevent::ThreadMain(void* context) { TaskQueueLibevent* me = static_cast(context); { CurrentTaskQueueSetter set_current(me); while (me->is_active_) event_base_loop(me->event_base_, 0); } for (TimerEvent* timer : me->pending_timers_) delete timer; } // static void TaskQueueLibevent::OnWakeup(int socket, short flags, // NOLINT void* context) { TaskQueueLibevent* me = static_cast(context); RTC_DCHECK(me->wakeup_pipe_out_ == socket); char buf; RTC_CHECK(sizeof(buf) == read(socket, &buf, sizeof(buf))); switch (buf) { case kQuit: me->is_active_ = false; event_base_loopbreak(me->event_base_); break; case kRunTasks: { absl::InlinedVector, 4> tasks; { rtc::CritScope lock(&me->pending_lock_); tasks.swap(me->pending_); } RTC_DCHECK(!tasks.empty()); for (auto& task : tasks) { if (task->Run()) { task.reset(); } else { // |false| means the task should *not* be deleted. task.release(); } } break; } default: RTC_NOTREACHED(); break; } } // static void TaskQueueLibevent::RunTimer(int fd, short flags, // NOLINT void* context) { TimerEvent* timer = static_cast(context); if (!timer->task->Run()) timer->task.release(); timer->task_queue->pending_timers_.remove(timer); delete timer; } class TaskQueueLibeventFactory final : public TaskQueueFactory { public: std::unique_ptr CreateTaskQueue( absl::string_view name, Priority priority) const override { return std::unique_ptr( new TaskQueueLibevent(name, TaskQueuePriorityToThreadPriority(priority))); } }; } // namespace std::unique_ptr CreateTaskQueueLibeventFactory() { return std::make_unique(); } } // namespace webrtc