/* * Copyright 2016 The WebRTC Project Authors. All rights reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "rtc_base/timestamp_aligner.h" #include #include #include #include "rtc_base/random.h" #include "rtc_base/time_utils.h" #include "test/gtest.h" namespace rtc { namespace { // Computes the difference x_k - mean(x), when x_k is the linear sequence x_k = // k, and the "mean" is plain mean for the first `window_size` samples, followed // by exponential averaging with weight 1 / `window_size` for each new sample. // This is needed to predict the effect of camera clock drift on the timestamp // translation. See the comment on TimestampAligner::UpdateOffset for more // context. double MeanTimeDifference(int nsamples, int window_size) { if (nsamples <= window_size) { // Plain averaging. return nsamples / 2.0; } else { // Exponential convergence towards // interval_error * (window_size - 1) double alpha = 1.0 - 1.0 / window_size; return ((window_size - 1) - (window_size / 2.0 - 1) * pow(alpha, nsamples - window_size)); } } class TimestampAlignerForTest : public TimestampAligner { // Make internal methods accessible to testing. public: using TimestampAligner::ClipTimestamp; using TimestampAligner::UpdateOffset; }; void TestTimestampFilter(double rel_freq_error) { TimestampAlignerForTest timestamp_aligner_for_test; TimestampAligner timestamp_aligner; const int64_t kEpoch = 10000; const int64_t kJitterUs = 5000; const int64_t kIntervalUs = 33333; // 30 FPS const int kWindowSize = 100; const int kNumFrames = 3 * kWindowSize; int64_t interval_error_us = kIntervalUs * rel_freq_error; int64_t system_start_us = rtc::TimeMicros(); webrtc::Random random(17); int64_t prev_translated_time_us = system_start_us; for (int i = 0; i < kNumFrames; i++) { // Camera time subject to drift. int64_t camera_time_us = kEpoch + i * (kIntervalUs + interval_error_us); int64_t system_time_us = system_start_us + i * kIntervalUs; // And system time readings are subject to jitter. int64_t system_measured_us = system_time_us + random.Rand(kJitterUs); int64_t offset_us = timestamp_aligner_for_test.UpdateOffset( camera_time_us, system_measured_us); int64_t filtered_time_us = camera_time_us + offset_us; int64_t translated_time_us = timestamp_aligner_for_test.ClipTimestamp( filtered_time_us, system_measured_us); // Check that we get identical result from the all-in-one helper method. ASSERT_EQ(translated_time_us, timestamp_aligner.TranslateTimestamp( camera_time_us, system_measured_us)); EXPECT_LE(translated_time_us, system_measured_us); EXPECT_GE(translated_time_us, prev_translated_time_us + rtc::kNumMicrosecsPerMillisec); // The relative frequency error contributes to the expected error // by a factor which is the difference between the current time // and the average of earlier sample times. int64_t expected_error_us = kJitterUs / 2 + rel_freq_error * kIntervalUs * MeanTimeDifference(i, kWindowSize); int64_t bias_us = filtered_time_us - translated_time_us; EXPECT_GE(bias_us, 0); if (i == 0) { EXPECT_EQ(translated_time_us, system_measured_us); } else { EXPECT_NEAR(filtered_time_us, system_time_us + expected_error_us, 2.0 * kJitterUs / sqrt(std::max(i, kWindowSize))); } // If the camera clock runs too fast (rel_freq_error > 0.0), The // bias is expected to roughly cancel the expected error from the // clock drift, as this grows. Otherwise, it reflects the // measurement noise. The tolerances here were selected after some // trial and error. if (i < 10 || rel_freq_error <= 0.0) { EXPECT_LE(bias_us, 3000); } else { EXPECT_NEAR(bias_us, expected_error_us, 1500); } prev_translated_time_us = translated_time_us; } } } // Anonymous namespace TEST(TimestampAlignerTest, AttenuateTimestampJitterNoDrift) { TestTimestampFilter(0.0); } // 100 ppm is a worst case for a reasonable crystal. TEST(TimestampAlignerTest, AttenuateTimestampJitterSmallPosDrift) { TestTimestampFilter(0.0001); } TEST(TimestampAlignerTest, AttenuateTimestampJitterSmallNegDrift) { TestTimestampFilter(-0.0001); } // 3000 ppm, 3 ms / s, is the worst observed drift, see // https://bugs.chromium.org/p/webrtc/issues/detail?id=5456 TEST(TimestampAlignerTest, AttenuateTimestampJitterLargePosDrift) { TestTimestampFilter(0.003); } TEST(TimestampAlignerTest, AttenuateTimestampJitterLargeNegDrift) { TestTimestampFilter(-0.003); } // Exhibits a mostly hypothetical problem, where certain inputs to the // TimestampAligner.UpdateOffset filter result in non-monotonous // translated timestamps. This test verifies that the ClipTimestamp // logic handles this case correctly. TEST(TimestampAlignerTest, ClipToMonotonous) { TimestampAlignerForTest timestamp_aligner; // For system time stamps { 0, s1, s1 + s2 }, and camera timestamps // {0, c1, c1 + c2}, we exhibit non-monotonous behaviour if and only // if c1 > s1 + 2 s2 + 4 c2. const int kNumSamples = 3; const int64_t kCaptureTimeUs[kNumSamples] = {0, 80000, 90001}; const int64_t kSystemTimeUs[kNumSamples] = {0, 10000, 20000}; const int64_t expected_offset_us[kNumSamples] = {0, -35000, -46667}; // Non-monotonic translated timestamps can happen when only for // translated timestamps in the future. Which is tolerated if // `timestamp_aligner.clip_bias_us` is large enough. Instead of // changing that private member for this test, just add the bias to // `kSystemTimeUs` when calling ClipTimestamp. const int64_t kClipBiasUs = 100000; bool did_clip = false; int64_t prev_timestamp_us = std::numeric_limits::min(); for (int i = 0; i < kNumSamples; i++) { int64_t offset_us = timestamp_aligner.UpdateOffset(kCaptureTimeUs[i], kSystemTimeUs[i]); EXPECT_EQ(offset_us, expected_offset_us[i]); int64_t translated_timestamp_us = kCaptureTimeUs[i] + offset_us; int64_t clip_timestamp_us = timestamp_aligner.ClipTimestamp( translated_timestamp_us, kSystemTimeUs[i] + kClipBiasUs); if (translated_timestamp_us <= prev_timestamp_us) { did_clip = true; EXPECT_EQ(clip_timestamp_us, prev_timestamp_us + rtc::kNumMicrosecsPerMillisec); } else { // No change from clipping. EXPECT_EQ(clip_timestamp_us, translated_timestamp_us); } prev_timestamp_us = clip_timestamp_us; } EXPECT_TRUE(did_clip); } TEST(TimestampAlignerTest, TranslateTimestampWithoutStateUpdate) { TimestampAligner timestamp_aligner; constexpr int kNumSamples = 4; constexpr int64_t kCaptureTimeUs[kNumSamples] = {0, 80000, 90001, 100000}; constexpr int64_t kSystemTimeUs[kNumSamples] = {0, 10000, 20000, 30000}; constexpr int64_t kQueryCaptureTimeOffsetUs[kNumSamples] = {0, 123, -321, 345}; for (int i = 0; i < kNumSamples; i++) { int64_t reference_timestamp = timestamp_aligner.TranslateTimestamp( kCaptureTimeUs[i], kSystemTimeUs[i]); EXPECT_EQ(reference_timestamp - kQueryCaptureTimeOffsetUs[i], timestamp_aligner.TranslateTimestamp( kCaptureTimeUs[i] - kQueryCaptureTimeOffsetUs[i])); } } } // namespace rtc