/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "system_wrappers/include/rtp_to_ntp_estimator.h" #include #include #include #include "api/array_view.h" #include "rtc_base/checks.h" #include "rtc_base/logging.h" namespace webrtc { namespace { // Maximum number of RTCP SR reports to use to map between RTP and NTP. const size_t kNumRtcpReportsToUse = 20; // Don't allow NTP timestamps to jump more than 1 hour. Chosen arbitrary as big // enough to not affect normal use-cases. Yet it is smaller than RTP wrap-around // half-period (90khz RTP clock wrap-arounds every 13.25 hours). After half of // wrap-around period it is impossible to unwrap RTP timestamps correctly. const int kMaxAllowedRtcpNtpIntervalMs = 60 * 60 * 1000; bool Contains(const std::list& measurements, const RtpToNtpEstimator::RtcpMeasurement& other) { for (const auto& measurement : measurements) { if (measurement.IsEqual(other)) return true; } return false; } // Given x[] and y[] writes out such k and b that line y=k*x+b approximates // given points in the best way (Least Squares Method). bool LinearRegression(rtc::ArrayView x, rtc::ArrayView y, double* k, double* b) { size_t n = x.size(); if (n < 2) return false; if (y.size() != n) return false; double avg_x = 0; double avg_y = 0; for (size_t i = 0; i < n; ++i) { avg_x += x[i]; avg_y += y[i]; } avg_x /= n; avg_y /= n; double variance_x = 0; double covariance_xy = 0; for (size_t i = 0; i < n; ++i) { double normalized_x = x[i] - avg_x; double normalized_y = y[i] - avg_y; variance_x += normalized_x * normalized_x; covariance_xy += normalized_x * normalized_y; } if (std::fabs(variance_x) < 1e-8) return false; *k = static_cast(covariance_xy / variance_x); *b = static_cast(avg_y - (*k) * avg_x); return true; } } // namespace RtpToNtpEstimator::RtcpMeasurement::RtcpMeasurement(uint32_t ntp_secs, uint32_t ntp_frac, int64_t unwrapped_timestamp) : ntp_time(ntp_secs, ntp_frac), unwrapped_rtp_timestamp(unwrapped_timestamp) {} bool RtpToNtpEstimator::RtcpMeasurement::IsEqual( const RtcpMeasurement& other) const { // Use || since two equal timestamps will result in zero frequency and in // RtpToNtpMs, |rtp_timestamp_ms| is estimated by dividing by the frequency. return (ntp_time == other.ntp_time) || (unwrapped_rtp_timestamp == other.unwrapped_rtp_timestamp); } // Class for converting an RTP timestamp to the NTP domain. RtpToNtpEstimator::RtpToNtpEstimator() : consecutive_invalid_samples_(0) {} RtpToNtpEstimator::~RtpToNtpEstimator() {} void RtpToNtpEstimator::UpdateParameters() { if (measurements_.size() < 2) return; std::vector x; std::vector y; x.reserve(measurements_.size()); y.reserve(measurements_.size()); for (auto it = measurements_.begin(); it != measurements_.end(); ++it) { x.push_back(it->unwrapped_rtp_timestamp); y.push_back(it->ntp_time.ToMs()); } double slope, offset; if (!LinearRegression(x, y, &slope, &offset)) { return; } params_.emplace(1 / slope, offset); } bool RtpToNtpEstimator::UpdateMeasurements(uint32_t ntp_secs, uint32_t ntp_frac, uint32_t rtp_timestamp, bool* new_rtcp_sr) { *new_rtcp_sr = false; int64_t unwrapped_rtp_timestamp = unwrapper_.Unwrap(rtp_timestamp); RtcpMeasurement new_measurement(ntp_secs, ntp_frac, unwrapped_rtp_timestamp); if (Contains(measurements_, new_measurement)) { // RTCP SR report already added. return true; } if (!new_measurement.ntp_time.Valid()) return false; int64_t ntp_ms_new = new_measurement.ntp_time.ToMs(); bool invalid_sample = false; if (!measurements_.empty()) { int64_t old_rtp_timestamp = measurements_.front().unwrapped_rtp_timestamp; int64_t old_ntp_ms = measurements_.front().ntp_time.ToMs(); if (ntp_ms_new <= old_ntp_ms || ntp_ms_new > old_ntp_ms + kMaxAllowedRtcpNtpIntervalMs) { invalid_sample = true; } else if (unwrapped_rtp_timestamp <= old_rtp_timestamp) { RTC_LOG(LS_WARNING) << "Newer RTCP SR report with older RTP timestamp, dropping"; invalid_sample = true; } else if (unwrapped_rtp_timestamp - old_rtp_timestamp > (1 << 25)) { // Sanity check. No jumps too far into the future in rtp. invalid_sample = true; } } if (invalid_sample) { ++consecutive_invalid_samples_; if (consecutive_invalid_samples_ < kMaxInvalidSamples) { return false; } RTC_LOG(LS_WARNING) << "Multiple consecutively invalid RTCP SR reports, " "clearing measurements."; measurements_.clear(); params_ = absl::nullopt; } consecutive_invalid_samples_ = 0; // Insert new RTCP SR report. if (measurements_.size() == kNumRtcpReportsToUse) measurements_.pop_back(); measurements_.push_front(new_measurement); *new_rtcp_sr = true; // List updated, calculate new parameters. UpdateParameters(); return true; } bool RtpToNtpEstimator::Estimate(int64_t rtp_timestamp, int64_t* ntp_timestamp_ms) const { if (!params_) return false; int64_t rtp_timestamp_unwrapped = unwrapper_.Unwrap(rtp_timestamp); // params_calculated_ should not be true unless ms params.frequency_khz has // been calculated to something non zero. RTC_DCHECK_NE(params_->frequency_khz, 0.0); double rtp_ms = static_cast(rtp_timestamp_unwrapped) / params_->frequency_khz + params_->offset_ms + 0.5f; if (rtp_ms < 0) return false; *ntp_timestamp_ms = rtp_ms; return true; } const absl::optional RtpToNtpEstimator::params() const { return params_; } } // namespace webrtc