/* * libjingle * Copyright 2010 Google Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "talk/media/base/videoadapter.h" #include // For INT_MAX #include #include "talk/media/base/constants.h" #include "talk/media/base/videocommon.h" #include "talk/media/base/videoframe.h" #include "webrtc/base/logging.h" #include "webrtc/base/timeutils.h" namespace cricket { // TODO(fbarchard): Make downgrades settable static const int kMaxCpuDowngrades = 2; // Downgrade at most 2 times for CPU. // The number of cpu samples to require before adapting. This value depends on // the cpu monitor sampling frequency being 2000ms. static const int kCpuLoadMinSamples = 3; // The amount of weight to give to each new cpu load sample. The lower the // value, the slower we'll adapt to changing cpu conditions. static const float kCpuLoadWeightCoefficient = 0.4f; // The seed value for the cpu load moving average. static const float kCpuLoadInitialAverage = 0.5f; // Desktop needs 1/8 scale for HD (1280 x 720) to QQVGA (160 x 90) static const float kScaleFactors[] = { 1.f / 1.f, // Full size. 3.f / 4.f, // 3/4 scale. 1.f / 2.f, // 1/2 scale. 3.f / 8.f, // 3/8 scale. 1.f / 4.f, // 1/4 scale. 3.f / 16.f, // 3/16 scale. 1.f / 8.f, // 1/8 scale. 0.f // End of table. }; // TODO(fbarchard): Use this table (optionally) for CPU and GD as well. static const float kViewScaleFactors[] = { 1.f / 1.f, // Full size. 3.f / 4.f, // 3/4 scale. 2.f / 3.f, // 2/3 scale. // Allow 1080p to 720p. 1.f / 2.f, // 1/2 scale. 3.f / 8.f, // 3/8 scale. 1.f / 3.f, // 1/3 scale. // Allow 1080p to 360p. 1.f / 4.f, // 1/4 scale. 3.f / 16.f, // 3/16 scale. 1.f / 8.f, // 1/8 scale. 0.f // End of table. }; const float* VideoAdapter::GetViewScaleFactors() const { return scale_third_ ? kViewScaleFactors : kScaleFactors; } // For resolutions that would scale down a little instead of up a little, // bias toward scaling up a little. This will tend to choose 3/4 scale instead // of 2/3 scale, when the 2/3 is not an exact match. static const float kUpBias = -0.9f; // Find the scale factor that, when applied to width and height, is closest // to num_pixels. float VideoAdapter::FindScale(const float* scale_factors, const float upbias, int width, int height, int target_num_pixels) { const float kMinNumPixels = 160 * 90; if (!target_num_pixels) { return 0.f; } float best_distance = static_cast(INT_MAX); float best_scale = 1.f; // Default to unscaled if nothing matches. float pixels = static_cast(width * height); for (int i = 0; ; ++i) { float scale = scale_factors[i]; float test_num_pixels = pixels * scale * scale; // Do not consider scale factors that produce too small images. // Scale factor of 0 at end of table will also exit here. if (test_num_pixels < kMinNumPixels) { break; } float diff = target_num_pixels - test_num_pixels; // If resolution is higher than desired, bias the difference based on // preference for slightly larger for nearest, or avoid completely if // looking for lower resolutions only. if (diff < 0) { diff = diff * kUpBias; } if (diff < best_distance) { best_distance = diff; best_scale = scale; if (best_distance == 0) { // Found exact match. break; } } } return best_scale; } // Find the closest scale factor. float VideoAdapter::FindClosestScale(int width, int height, int target_num_pixels) { return FindScale(kScaleFactors, kUpBias, width, height, target_num_pixels); } // Find the closest view scale factor. float VideoAdapter::FindClosestViewScale(int width, int height, int target_num_pixels) { return FindScale(GetViewScaleFactors(), kUpBias, width, height, target_num_pixels); } // Finds the scale factor that, when applied to width and height, produces // fewer than num_pixels. static const float kUpAvoidBias = -1000000000.f; float VideoAdapter::FindLowerScale(int width, int height, int target_num_pixels) { return FindScale(GetViewScaleFactors(), kUpAvoidBias, width, height, target_num_pixels); } // There are several frame sizes used by Adapter. This explains them // input_format - set once by server to frame size expected from the camera. // The input frame size is also updated in AdaptFrameResolution. // output_format - size that output would like to be. Includes framerate. // The output frame size is also updated in AdaptFrameResolution. // output_num_pixels - size that output should be constrained to. Used to // compute output_format from in_frame. // in_frame - actual camera captured frame size, which is typically the same // as input_format. This can also be rotated or cropped for aspect ratio. // out_frame - actual frame output by adapter. Should be a direct scale of // in_frame maintaining rotation and aspect ratio. // OnOutputFormatRequest - server requests you send this resolution based on // view requests. // OnEncoderResolutionRequest - encoder requests you send this resolution based // on bandwidth // OnCpuLoadUpdated - cpu monitor requests you send this resolution based on // cpu load. /////////////////////////////////////////////////////////////////////// // Implementation of VideoAdapter VideoAdapter::VideoAdapter() : output_num_pixels_(INT_MAX), scale_third_(false), frames_in_(0), frames_out_(0), frames_scaled_(0), adaption_changes_(0), previous_width_(0), previous_height_(0), interval_next_frame_(0) { } VideoAdapter::~VideoAdapter() { } void VideoAdapter::SetInputFormat(const VideoFormat& format) { rtc::CritScope cs(&critical_section_); int64 old_input_interval = input_format_.interval; input_format_ = format; output_format_.interval = std::max(output_format_.interval, input_format_.interval); if (old_input_interval != input_format_.interval) { LOG(LS_INFO) << "VAdapt input interval changed from " << old_input_interval << " to " << input_format_.interval; } } void CoordinatedVideoAdapter::SetInputFormat(const VideoFormat& format) { int previous_width = input_format().width; int previous_height = input_format().height; bool is_resolution_change = previous_width > 0 && format.width > 0 && (previous_width != format.width || previous_height != format.height); VideoAdapter::SetInputFormat(format); if (is_resolution_change) { int width, height; // Trigger the adaptation logic again, to potentially reset the adaptation // state for things like view requests that may not longer be capping // output (or may now cap output). AdaptToMinimumFormat(&width, &height); LOG(LS_INFO) << "VAdapt Input Resolution Change: " << "Previous input resolution: " << previous_width << "x" << previous_height << " New input resolution: " << format.width << "x" << format.height << " New output resolution: " << width << "x" << height; } } void CoordinatedVideoAdapter::set_cpu_smoothing(bool enable) { LOG(LS_INFO) << "CPU smoothing is now " << (enable ? "enabled" : "disabled"); cpu_smoothing_ = enable; } void VideoAdapter::SetOutputFormat(const VideoFormat& format) { rtc::CritScope cs(&critical_section_); int64 old_output_interval = output_format_.interval; output_format_ = format; output_num_pixels_ = output_format_.width * output_format_.height; output_format_.interval = std::max(output_format_.interval, input_format_.interval); if (old_output_interval != output_format_.interval) { LOG(LS_INFO) << "VAdapt output interval changed from " << old_output_interval << " to " << output_format_.interval; } } const VideoFormat& VideoAdapter::input_format() { rtc::CritScope cs(&critical_section_); return input_format_; } bool VideoAdapter::drops_all_frames() const { return output_num_pixels_ == 0; } const VideoFormat& VideoAdapter::output_format() { rtc::CritScope cs(&critical_section_); return output_format_; } // Constrain output resolution to this many pixels overall void VideoAdapter::SetOutputNumPixels(int num_pixels) { output_num_pixels_ = num_pixels; } int VideoAdapter::GetOutputNumPixels() const { return output_num_pixels_; } VideoFormat VideoAdapter::AdaptFrameResolution(int in_width, int in_height) { rtc::CritScope cs(&critical_section_); ++frames_in_; SetInputFormat(VideoFormat( in_width, in_height, input_format_.interval, input_format_.fourcc)); // Drop the input frame if necessary. bool should_drop = false; if (!output_num_pixels_) { // Drop all frames as the output format is 0x0. should_drop = true; } else { // Drop some frames based on input fps and output fps. // Normally output fps is less than input fps. // TODO(fbarchard): Consider adjusting interval to reflect the adjusted // interval between frames after dropping some frames. interval_next_frame_ += input_format_.interval; if (output_format_.interval > 0) { if (interval_next_frame_ >= output_format_.interval) { interval_next_frame_ %= output_format_.interval; } else { should_drop = true; } } } if (should_drop) { // Show VAdapt log every 90 frames dropped. (3 seconds) if ((frames_in_ - frames_out_) % 90 == 0) { // TODO(fbarchard): Reduce to LS_VERBOSE when adapter info is not needed // in default calls. LOG(LS_INFO) << "VAdapt Drop Frame: scaled " << frames_scaled_ << " / out " << frames_out_ << " / in " << frames_in_ << " Changes: " << adaption_changes_ << " Input: " << in_width << "x" << in_height << " i" << input_format_.interval << " Output: i" << output_format_.interval; } return VideoFormat(); // Drop frame. } const float scale = VideoAdapter::FindClosestViewScale( in_width, in_height, output_num_pixels_); const int output_width = static_cast(in_width * scale + .5f); const int output_height = static_cast(in_height * scale + .5f); ++frames_out_; if (scale != 1) ++frames_scaled_; // Show VAdapt log every 90 frames output. (3 seconds) // TODO(fbarchard): Consider GetLogSeverity() to change interval to less // for LS_VERBOSE and more for LS_INFO. bool show = (frames_out_) % 90 == 0; // TODO(fbarchard): LOG the previous output resolution and track input // resolution changes as well. Consider dropping the statistics into their // own class which could be queried publically. bool changed = false; if (previous_width_ && (previous_width_ != output_width || previous_height_ != output_height)) { show = true; ++adaption_changes_; changed = true; } if (show) { // TODO(fbarchard): Reduce to LS_VERBOSE when adapter info is not needed // in default calls. LOG(LS_INFO) << "VAdapt Frame: scaled " << frames_scaled_ << " / out " << frames_out_ << " / in " << frames_in_ << " Changes: " << adaption_changes_ << " Input: " << in_width << "x" << in_height << " i" << input_format_.interval << " Scale: " << scale << " Output: " << output_width << "x" << output_height << " i" << output_format_.interval << " Changed: " << (changed ? "true" : "false"); } output_format_.width = output_width; output_format_.height = output_height; previous_width_ = output_width; previous_height_ = output_height; return output_format_; } void VideoAdapter::set_scale_third(bool enable) { LOG(LS_INFO) << "Video Adapter third scaling is now " << (enable ? "enabled" : "disabled"); scale_third_ = enable; } /////////////////////////////////////////////////////////////////////// // Implementation of CoordinatedVideoAdapter CoordinatedVideoAdapter::CoordinatedVideoAdapter() : cpu_adaptation_(true), cpu_smoothing_(false), gd_adaptation_(true), view_adaptation_(true), view_switch_(false), cpu_downgrade_count_(0), cpu_load_min_samples_(kCpuLoadMinSamples), cpu_load_num_samples_(0), high_system_threshold_(kHighSystemCpuThreshold), low_system_threshold_(kLowSystemCpuThreshold), process_threshold_(kProcessCpuThreshold), view_desired_num_pixels_(INT_MAX), view_desired_interval_(0), encoder_desired_num_pixels_(INT_MAX), cpu_desired_num_pixels_(INT_MAX), adapt_reason_(ADAPTREASON_NONE), system_load_average_(kCpuLoadInitialAverage) { } // Helper function to UPGRADE or DOWNGRADE a number of pixels void CoordinatedVideoAdapter::StepPixelCount( CoordinatedVideoAdapter::AdaptRequest request, int* num_pixels) { switch (request) { case CoordinatedVideoAdapter::DOWNGRADE: *num_pixels /= 2; break; case CoordinatedVideoAdapter::UPGRADE: *num_pixels *= 2; break; default: // No change in pixel count break; } return; } // Find the adaptation request of the cpu based on the load. Return UPGRADE if // the load is low, DOWNGRADE if the load is high, and KEEP otherwise. CoordinatedVideoAdapter::AdaptRequest CoordinatedVideoAdapter::FindCpuRequest( int current_cpus, int max_cpus, float process_load, float system_load) { // Downgrade if system is high and plugin is at least more than midrange. if (system_load >= high_system_threshold_ * max_cpus && process_load >= process_threshold_ * current_cpus) { return CoordinatedVideoAdapter::DOWNGRADE; // Upgrade if system is low. } else if (system_load < low_system_threshold_ * max_cpus) { return CoordinatedVideoAdapter::UPGRADE; } return CoordinatedVideoAdapter::KEEP; } // A remote view request for a new resolution. void CoordinatedVideoAdapter::OnOutputFormatRequest(const VideoFormat& format) { rtc::CritScope cs(&request_critical_section_); if (!view_adaptation_) { return; } // Set output for initial aspect ratio in mediachannel unittests. int old_num_pixels = GetOutputNumPixels(); SetOutputFormat(format); SetOutputNumPixels(old_num_pixels); view_desired_num_pixels_ = format.width * format.height; view_desired_interval_ = format.interval; int new_width, new_height; bool changed = AdaptToMinimumFormat(&new_width, &new_height); LOG(LS_INFO) << "VAdapt View Request: " << format.width << "x" << format.height << " Pixels: " << view_desired_num_pixels_ << " Changed: " << (changed ? "true" : "false") << " To: " << new_width << "x" << new_height; } void CoordinatedVideoAdapter::set_cpu_load_min_samples( int cpu_load_min_samples) { if (cpu_load_min_samples_ != cpu_load_min_samples) { LOG(LS_INFO) << "VAdapt Change Cpu Adapt Min Samples from: " << cpu_load_min_samples_ << " to " << cpu_load_min_samples; cpu_load_min_samples_ = cpu_load_min_samples; } } void CoordinatedVideoAdapter::set_high_system_threshold( float high_system_threshold) { ASSERT(high_system_threshold <= 1.0f); ASSERT(high_system_threshold >= 0.0f); if (high_system_threshold_ != high_system_threshold) { LOG(LS_INFO) << "VAdapt Change High System Threshold from: " << high_system_threshold_ << " to " << high_system_threshold; high_system_threshold_ = high_system_threshold; } } void CoordinatedVideoAdapter::set_low_system_threshold( float low_system_threshold) { ASSERT(low_system_threshold <= 1.0f); ASSERT(low_system_threshold >= 0.0f); if (low_system_threshold_ != low_system_threshold) { LOG(LS_INFO) << "VAdapt Change Low System Threshold from: " << low_system_threshold_ << " to " << low_system_threshold; low_system_threshold_ = low_system_threshold; } } void CoordinatedVideoAdapter::set_process_threshold(float process_threshold) { ASSERT(process_threshold <= 1.0f); ASSERT(process_threshold >= 0.0f); if (process_threshold_ != process_threshold) { LOG(LS_INFO) << "VAdapt Change High Process Threshold from: " << process_threshold_ << " to " << process_threshold; process_threshold_ = process_threshold; } } // A Bandwidth GD request for new resolution void CoordinatedVideoAdapter::OnEncoderResolutionRequest( int width, int height, AdaptRequest request) { rtc::CritScope cs(&request_critical_section_); if (!gd_adaptation_) { return; } int old_encoder_desired_num_pixels = encoder_desired_num_pixels_; if (KEEP != request) { int new_encoder_desired_num_pixels = width * height; int old_num_pixels = GetOutputNumPixels(); if (new_encoder_desired_num_pixels != old_num_pixels) { LOG(LS_VERBOSE) << "VAdapt GD resolution stale. Ignored"; } else { // Update the encoder desired format based on the request. encoder_desired_num_pixels_ = new_encoder_desired_num_pixels; StepPixelCount(request, &encoder_desired_num_pixels_); } } int new_width, new_height; bool changed = AdaptToMinimumFormat(&new_width, &new_height); // Ignore up or keep if no change. if (DOWNGRADE != request && view_switch_ && !changed) { encoder_desired_num_pixels_ = old_encoder_desired_num_pixels; LOG(LS_VERBOSE) << "VAdapt ignoring GD request."; } LOG(LS_INFO) << "VAdapt GD Request: " << (DOWNGRADE == request ? "down" : (UPGRADE == request ? "up" : "keep")) << " From: " << width << "x" << height << " Pixels: " << encoder_desired_num_pixels_ << " Changed: " << (changed ? "true" : "false") << " To: " << new_width << "x" << new_height; } // A Bandwidth GD request for new resolution void CoordinatedVideoAdapter::OnCpuResolutionRequest(AdaptRequest request) { rtc::CritScope cs(&request_critical_section_); if (!cpu_adaptation_) { return; } // Update how many times we have downgraded due to the cpu load. switch (request) { case DOWNGRADE: // Ignore downgrades if we have downgraded the maximum times. if (cpu_downgrade_count_ < kMaxCpuDowngrades) { ++cpu_downgrade_count_; } else { LOG(LS_VERBOSE) << "VAdapt CPU load high but do not downgrade " "because maximum downgrades reached"; SignalCpuAdaptationUnable(); } break; case UPGRADE: if (cpu_downgrade_count_ > 0) { bool is_min = IsMinimumFormat(cpu_desired_num_pixels_); if (is_min) { --cpu_downgrade_count_; } else { LOG(LS_VERBOSE) << "VAdapt CPU load low but do not upgrade " "because cpu is not limiting resolution"; } } else { LOG(LS_VERBOSE) << "VAdapt CPU load low but do not upgrade " "because minimum downgrades reached"; } break; case KEEP: default: break; } if (KEEP != request) { // TODO(fbarchard): compute stepping up/down from OutputNumPixels but // clamp to inputpixels / 4 (2 steps) cpu_desired_num_pixels_ = cpu_downgrade_count_ == 0 ? INT_MAX : static_cast(input_format().width * input_format().height >> cpu_downgrade_count_); } int new_width, new_height; bool changed = AdaptToMinimumFormat(&new_width, &new_height); LOG(LS_INFO) << "VAdapt CPU Request: " << (DOWNGRADE == request ? "down" : (UPGRADE == request ? "up" : "keep")) << " Steps: " << cpu_downgrade_count_ << " Changed: " << (changed ? "true" : "false") << " To: " << new_width << "x" << new_height; } // A CPU request for new resolution // TODO(fbarchard): Move outside adapter. void CoordinatedVideoAdapter::OnCpuLoadUpdated( int current_cpus, int max_cpus, float process_load, float system_load) { rtc::CritScope cs(&request_critical_section_); if (!cpu_adaptation_) { return; } // Update the moving average of system load. Even if we aren't smoothing, // we'll still calculate this information, in case smoothing is later enabled. system_load_average_ = kCpuLoadWeightCoefficient * system_load + (1.0f - kCpuLoadWeightCoefficient) * system_load_average_; ++cpu_load_num_samples_; if (cpu_smoothing_) { system_load = system_load_average_; } AdaptRequest request = FindCpuRequest(current_cpus, max_cpus, process_load, system_load); // Make sure we're not adapting too quickly. if (request != KEEP) { if (cpu_load_num_samples_ < cpu_load_min_samples_) { LOG(LS_VERBOSE) << "VAdapt CPU load high/low but do not adapt until " << (cpu_load_min_samples_ - cpu_load_num_samples_) << " more samples"; request = KEEP; } } OnCpuResolutionRequest(request); } // Called by cpu adapter on up requests. bool CoordinatedVideoAdapter::IsMinimumFormat(int pixels) { // Find closest scale factor that matches input resolution to min_num_pixels // and set that for output resolution. This is not needed for VideoAdapter, // but provides feedback to unittests and users on expected resolution. // Actual resolution is based on input frame. VideoFormat new_output = output_format(); VideoFormat input = input_format(); if (input_format().IsSize0x0()) { input = new_output; } float scale = 1.0f; if (!input.IsSize0x0()) { scale = FindClosestScale(input.width, input.height, pixels); } new_output.width = static_cast(input.width * scale + .5f); new_output.height = static_cast(input.height * scale + .5f); int new_pixels = new_output.width * new_output.height; int num_pixels = GetOutputNumPixels(); return new_pixels <= num_pixels; } // Called by all coordinators when there is a change. bool CoordinatedVideoAdapter::AdaptToMinimumFormat(int* new_width, int* new_height) { VideoFormat new_output = output_format(); VideoFormat input = input_format(); if (input_format().IsSize0x0()) { input = new_output; } int old_num_pixels = GetOutputNumPixels(); int min_num_pixels = INT_MAX; adapt_reason_ = ADAPTREASON_NONE; // Reduce resolution based on encoder bandwidth (GD). if (encoder_desired_num_pixels_ && (encoder_desired_num_pixels_ < min_num_pixels)) { adapt_reason_ |= ADAPTREASON_BANDWIDTH; min_num_pixels = encoder_desired_num_pixels_; } // Reduce resolution based on CPU. if (cpu_adaptation_ && cpu_desired_num_pixels_ && (cpu_desired_num_pixels_ <= min_num_pixels)) { if (cpu_desired_num_pixels_ < min_num_pixels) { adapt_reason_ = ADAPTREASON_CPU; } else { adapt_reason_ |= ADAPTREASON_CPU; } min_num_pixels = cpu_desired_num_pixels_; } // Round resolution for GD or CPU to allow 1/2 to map to 9/16. if (!input.IsSize0x0() && min_num_pixels != INT_MAX) { float scale = FindClosestScale(input.width, input.height, min_num_pixels); min_num_pixels = static_cast(input.width * scale + .5f) * static_cast(input.height * scale + .5f); } // Reduce resolution based on View Request. if (view_desired_num_pixels_ <= min_num_pixels) { if (view_desired_num_pixels_ < min_num_pixels) { adapt_reason_ = ADAPTREASON_VIEW; } else { adapt_reason_ |= ADAPTREASON_VIEW; } min_num_pixels = view_desired_num_pixels_; } // Snap to a scale factor. float scale = 1.0f; if (!input.IsSize0x0()) { scale = FindLowerScale(input.width, input.height, min_num_pixels); min_num_pixels = static_cast(input.width * scale + .5f) * static_cast(input.height * scale + .5f); } if (scale == 1.0f) { adapt_reason_ = ADAPTREASON_NONE; } *new_width = new_output.width = static_cast(input.width * scale + .5f); *new_height = new_output.height = static_cast(input.height * scale + .5f); SetOutputNumPixels(min_num_pixels); new_output.interval = view_desired_interval_; SetOutputFormat(new_output); int new_num_pixels = GetOutputNumPixels(); bool changed = new_num_pixels != old_num_pixels; static const char* kReasons[8] = { "None", "CPU", "BANDWIDTH", "CPU+BANDWIDTH", "VIEW", "CPU+VIEW", "BANDWIDTH+VIEW", "CPU+BANDWIDTH+VIEW", }; LOG(LS_VERBOSE) << "VAdapt Status View: " << view_desired_num_pixels_ << " GD: " << encoder_desired_num_pixels_ << " CPU: " << cpu_desired_num_pixels_ << " Pixels: " << min_num_pixels << " Input: " << input.width << "x" << input.height << " Scale: " << scale << " Resolution: " << new_output.width << "x" << new_output.height << " Changed: " << (changed ? "true" : "false") << " Reason: " << kReasons[adapt_reason_]; if (changed) { // When any adaptation occurs, historic CPU load levels are no longer // accurate. Clear out our state so we can re-learn at the new normal. cpu_load_num_samples_ = 0; system_load_average_ = kCpuLoadInitialAverage; } return changed; } } // namespace cricket