/* * libjingle * Copyright 2014 Google Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include "talk/media/base/streamparams.h" #include "talk/media/webrtc/simulcast.h" #include "webrtc/base/common.h" #include "webrtc/base/logging.h" #include "webrtc/system_wrappers/include/field_trial.h" namespace cricket { struct SimulcastFormat { int width; int height; // The maximum number of simulcast layers can be used for // resolutions at |widthxheigh|. size_t max_layers; // The maximum bitrate for encoding stream at |widthxheight|, when we are // not sending the next higher spatial stream. int max_bitrate_kbps; // The target bitrate for encoding stream at |widthxheight|, when this layer // is not the highest layer (i.e., when we are sending another higher spatial // stream). int target_bitrate_kbps; // The minimum bitrate needed for encoding stream at |widthxheight|. int min_bitrate_kbps; }; // These tables describe from which resolution we can use how many // simulcast layers at what bitrates (maximum, target, and minimum). // Important!! Keep this table from high resolution to low resolution. const SimulcastFormat kSimulcastFormats[] = { {1920, 1080, 3, 5000, 4000, 800}, {1280, 720, 3, 2500, 2500, 600}, {960, 540, 3, 900, 900, 450}, {640, 360, 2, 700, 500, 150}, {480, 270, 2, 450, 350, 150}, {320, 180, 1, 200, 150, 30}, {0, 0, 1, 200, 150, 30} }; // Multiway: Number of temporal layers for each simulcast stream, for maximum // possible number of simulcast streams |kMaxSimulcastStreams|. The array // goes from lowest resolution at position 0 to highest resolution. // For example, first three elements correspond to say: QVGA, VGA, WHD. static const int kDefaultConferenceNumberOfTemporalLayers[webrtc::kMaxSimulcastStreams] = {3, 3, 3, 3}; void GetSimulcastSsrcs(const StreamParams& sp, std::vector* ssrcs) { const SsrcGroup* sim_group = sp.get_ssrc_group(kSimSsrcGroupSemantics); if (sim_group) { ssrcs->insert( ssrcs->end(), sim_group->ssrcs.begin(), sim_group->ssrcs.end()); } } void MaybeExchangeWidthHeight(int* width, int* height) { // |kSimulcastFormats| assumes |width| >= |height|. If not, exchange them // before comparing. if (*width < *height) { int temp = *width; *width = *height; *height = temp; } } int FindSimulcastFormatIndex(int width, int height) { MaybeExchangeWidthHeight(&width, &height); for (int i = 0; i < ARRAY_SIZE(kSimulcastFormats); ++i) { if (width >= kSimulcastFormats[i].width && height >= kSimulcastFormats[i].height) { return i; } } return -1; } int FindSimulcastFormatIndex(int width, int height, size_t max_layers) { MaybeExchangeWidthHeight(&width, &height); for (int i = 0; i < ARRAY_SIZE(kSimulcastFormats); ++i) { if (width >= kSimulcastFormats[i].width && height >= kSimulcastFormats[i].height && max_layers == kSimulcastFormats[i].max_layers) { return i; } } return -1; } // Simulcast stream width and height must both be dividable by // |2 ^ simulcast_layers - 1|. int NormalizeSimulcastSize(int size, size_t simulcast_layers) { const int base2_exponent = static_cast(simulcast_layers) - 1; return ((size >> base2_exponent) << base2_exponent); } size_t FindSimulcastMaxLayers(int width, int height) { int index = FindSimulcastFormatIndex(width, height); if (index == -1) { return -1; } return kSimulcastFormats[index].max_layers; } // TODO(marpan): Investigate if we should return 0 instead of -1 in // FindSimulcast[Max/Target/Min]Bitrate functions below, since the // codec struct max/min/targeBitrates are unsigned. int FindSimulcastMaxBitrateBps(int width, int height, size_t max_layers) { const int format_index = FindSimulcastFormatIndex(width, height); if (format_index == -1) { return -1; } return kSimulcastFormats[format_index].max_bitrate_kbps * 1000; } int FindSimulcastTargetBitrateBps(int width, int height, size_t max_layers) { const int format_index = FindSimulcastFormatIndex(width, height); if (format_index == -1) { return -1; } return kSimulcastFormats[format_index].target_bitrate_kbps * 1000; } int FindSimulcastMinBitrateBps(int width, int height, size_t max_layers) { const int format_index = FindSimulcastFormatIndex(width, height); if (format_index == -1) { return -1; } return kSimulcastFormats[format_index].min_bitrate_kbps * 1000; } bool SlotSimulcastMaxResolution(size_t max_layers, int* width, int* height) { int index = FindSimulcastFormatIndex(*width, *height, max_layers); if (index == -1) { LOG(LS_ERROR) << "SlotSimulcastMaxResolution"; return false; } *width = kSimulcastFormats[index].width; *height = kSimulcastFormats[index].height; LOG(LS_INFO) << "SlotSimulcastMaxResolution to width:" << *width << " height:" << *height; return true; } int GetTotalMaxBitrateBps(const std::vector& streams) { int total_max_bitrate_bps = 0; for (size_t s = 0; s < streams.size() - 1; ++s) { total_max_bitrate_bps += streams[s].target_bitrate_bps; } total_max_bitrate_bps += streams.back().max_bitrate_bps; return total_max_bitrate_bps; } std::vector GetSimulcastConfig( size_t max_streams, int width, int height, int max_bitrate_bps, int max_qp, int max_framerate) { size_t simulcast_layers = FindSimulcastMaxLayers(width, height); if (simulcast_layers > max_streams) { // If the number of SSRCs in the group differs from our target // number of simulcast streams for current resolution, switch down // to a resolution that matches our number of SSRCs. if (!SlotSimulcastMaxResolution(max_streams, &width, &height)) { return std::vector(); } simulcast_layers = max_streams; } std::vector streams; streams.resize(simulcast_layers); // Format width and height has to be divisible by |2 ^ number_streams - 1|. width = NormalizeSimulcastSize(width, simulcast_layers); height = NormalizeSimulcastSize(height, simulcast_layers); // Add simulcast sub-streams from lower resolution to higher resolutions. // Add simulcast streams, from highest resolution (|s| = number_streams -1) // to lowest resolution at |s| = 0. for (size_t s = simulcast_layers - 1;; --s) { streams[s].width = width; streams[s].height = height; // TODO(pbos): Fill actual temporal-layer bitrate thresholds. streams[s].temporal_layer_thresholds_bps.resize( kDefaultConferenceNumberOfTemporalLayers[s] - 1); streams[s].max_bitrate_bps = FindSimulcastMaxBitrateBps(width, height, simulcast_layers); streams[s].target_bitrate_bps = FindSimulcastTargetBitrateBps(width, height, simulcast_layers); streams[s].min_bitrate_bps = FindSimulcastMinBitrateBps(width, height, simulcast_layers); streams[s].max_qp = max_qp; streams[s].max_framerate = max_framerate; width /= 2; height /= 2; if (s == 0) { break; } } // Spend additional bits to boost the max stream. int bitrate_left_bps = max_bitrate_bps - GetTotalMaxBitrateBps(streams); if (bitrate_left_bps > 0) { streams.back().max_bitrate_bps += bitrate_left_bps; } return streams; } static const int kScreenshareMinBitrateKbps = 50; static const int kScreenshareMaxBitrateKbps = 6000; static const int kScreenshareDefaultTl0BitrateKbps = 200; static const int kScreenshareDefaultTl1BitrateKbps = 1000; static const char* kScreencastLayerFieldTrialName = "WebRTC-ScreenshareLayerRates"; ScreenshareLayerConfig::ScreenshareLayerConfig(int tl0_bitrate, int tl1_bitrate) : tl0_bitrate_kbps(tl0_bitrate), tl1_bitrate_kbps(tl1_bitrate) { } ScreenshareLayerConfig ScreenshareLayerConfig::GetDefault() { std::string group = webrtc::field_trial::FindFullName(kScreencastLayerFieldTrialName); ScreenshareLayerConfig config(kScreenshareDefaultTl0BitrateKbps, kScreenshareDefaultTl1BitrateKbps); if (!group.empty() && !FromFieldTrialGroup(group, &config)) { LOG(LS_WARNING) << "Unable to parse WebRTC-ScreenshareLayerRates" " field trial group: '" << group << "'."; } return config; } bool ScreenshareLayerConfig::FromFieldTrialGroup( const std::string& group, ScreenshareLayerConfig* config) { // Parse field trial group name, containing bitrates for tl0 and tl1. int tl0_bitrate; int tl1_bitrate; if (sscanf(group.c_str(), "%d-%d", &tl0_bitrate, &tl1_bitrate) != 2) { return false; } // Sanity check. if (tl0_bitrate < kScreenshareMinBitrateKbps || tl0_bitrate > kScreenshareMaxBitrateKbps || tl1_bitrate < kScreenshareMinBitrateKbps || tl1_bitrate > kScreenshareMaxBitrateKbps || tl0_bitrate > tl1_bitrate) { return false; } config->tl0_bitrate_kbps = tl0_bitrate; config->tl1_bitrate_kbps = tl1_bitrate; return true; } } // namespace cricket