/* * Copyright (c) 2013 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "test/fake_encoder.h" #include #include #include #include #include #include "api/task_queue/queued_task.h" #include "api/video/video_content_type.h" #include "modules/video_coding/codecs/h264/include/h264_globals.h" #include "modules/video_coding/include/video_codec_interface.h" #include "modules/video_coding/include/video_error_codes.h" #include "rtc_base/checks.h" #include "system_wrappers/include/sleep.h" namespace webrtc { namespace test { namespace { const int kKeyframeSizeFactor = 5; // Inverse of proportion of frames assigned to each temporal layer for all // possible temporal layers numbers. const int kTemporalLayerRateFactor[4][4] = { {1, 0, 0, 0}, // 1/1 {2, 2, 0, 0}, // 1/2 + 1/2 {4, 4, 2, 0}, // 1/4 + 1/4 + 1/2 {8, 8, 4, 2}, // 1/8 + 1/8 + 1/4 + 1/2 }; void WriteCounter(unsigned char* payload, uint32_t counter) { payload[0] = (counter & 0x00FF); payload[1] = (counter & 0xFF00) >> 8; payload[2] = (counter & 0xFF0000) >> 16; payload[3] = (counter & 0xFF000000) >> 24; } } // namespace FakeEncoder::FakeEncoder(Clock* clock) : clock_(clock), callback_(nullptr), max_target_bitrate_kbps_(-1), pending_keyframe_(true), counter_(0), debt_bytes_(0) { for (bool& used : used_layers_) { used = false; } } void FakeEncoder::SetFecControllerOverride( FecControllerOverride* fec_controller_override) { // Ignored. } void FakeEncoder::SetMaxBitrate(int max_kbps) { RTC_DCHECK_GE(max_kbps, -1); // max_kbps == -1 disables it. MutexLock lock(&mutex_); max_target_bitrate_kbps_ = max_kbps; SetRatesLocked(current_rate_settings_); } void FakeEncoder::SetQp(int qp) { MutexLock lock(&mutex_); qp_ = qp; } int32_t FakeEncoder::InitEncode(const VideoCodec* config, const Settings& settings) { MutexLock lock(&mutex_); config_ = *config; current_rate_settings_.bitrate.SetBitrate(0, 0, config_.startBitrate * 1000); current_rate_settings_.framerate_fps = config_.maxFramerate; pending_keyframe_ = true; last_frame_info_ = FrameInfo(); return 0; } int32_t FakeEncoder::Encode(const VideoFrame& input_image, const std::vector* frame_types) { unsigned char max_framerate; unsigned char num_simulcast_streams; SimulcastStream simulcast_streams[kMaxSimulcastStreams]; EncodedImageCallback* callback; RateControlParameters rates; VideoCodecMode mode; bool keyframe; uint32_t counter; absl::optional qp; { MutexLock lock(&mutex_); max_framerate = config_.maxFramerate; num_simulcast_streams = config_.numberOfSimulcastStreams; for (int i = 0; i < num_simulcast_streams; ++i) { simulcast_streams[i] = config_.simulcastStream[i]; } callback = callback_; rates = current_rate_settings_; mode = config_.mode; if (rates.framerate_fps <= 0.0) { rates.framerate_fps = max_framerate; } keyframe = pending_keyframe_; pending_keyframe_ = false; counter = counter_++; qp = qp_; } FrameInfo frame_info = NextFrame(frame_types, keyframe, num_simulcast_streams, rates.bitrate, simulcast_streams, static_cast(rates.framerate_fps + 0.5)); for (uint8_t i = 0; i < frame_info.layers.size(); ++i) { constexpr int kMinPayLoadLength = 14; if (frame_info.layers[i].size < kMinPayLoadLength) { // Drop this temporal layer. continue; } EncodedImage encoded; encoded.SetEncodedData( EncodedImageBuffer::Create(frame_info.layers[i].size)); // Fill the buffer with arbitrary data. Write someting to make Asan happy. memset(encoded.data(), 9, frame_info.layers[i].size); // Write a counter to the image to make each frame unique. WriteCounter(encoded.data() + frame_info.layers[i].size - 4, counter); encoded.SetTimestamp(input_image.timestamp()); encoded._frameType = frame_info.keyframe ? VideoFrameType::kVideoFrameKey : VideoFrameType::kVideoFrameDelta; encoded._encodedWidth = simulcast_streams[i].width; encoded._encodedHeight = simulcast_streams[i].height; if (qp) encoded.qp_ = *qp; encoded.SetSpatialIndex(i); CodecSpecificInfo codec_specific; std::unique_ptr fragmentation = EncodeHook(&encoded, &codec_specific); if (callback->OnEncodedImage(encoded, &codec_specific, fragmentation.get()) .error != EncodedImageCallback::Result::OK) { return -1; } } return 0; } std::unique_ptr FakeEncoder::EncodeHook( EncodedImage* encoded_image, CodecSpecificInfo* codec_specific) { codec_specific->codecType = kVideoCodecGeneric; return nullptr; } FakeEncoder::FrameInfo FakeEncoder::NextFrame( const std::vector* frame_types, bool keyframe, uint8_t num_simulcast_streams, const VideoBitrateAllocation& target_bitrate, SimulcastStream simulcast_streams[kMaxSimulcastStreams], int framerate) { FrameInfo frame_info; frame_info.keyframe = keyframe; if (frame_types) { for (VideoFrameType frame_type : *frame_types) { if (frame_type == VideoFrameType::kVideoFrameKey) { frame_info.keyframe = true; break; } } } MutexLock lock(&mutex_); for (uint8_t i = 0; i < num_simulcast_streams; ++i) { if (target_bitrate.GetBitrate(i, 0) > 0) { int temporal_id = last_frame_info_.layers.size() > i ? ++last_frame_info_.layers[i].temporal_id % simulcast_streams[i].numberOfTemporalLayers : 0; frame_info.layers.emplace_back(0, temporal_id); } } if (last_frame_info_.layers.size() < frame_info.layers.size()) { // A new keyframe is needed since a new layer will be added. frame_info.keyframe = true; } for (uint8_t i = 0; i < frame_info.layers.size(); ++i) { FrameInfo::SpatialLayer& layer_info = frame_info.layers[i]; if (frame_info.keyframe) { layer_info.temporal_id = 0; size_t avg_frame_size = (target_bitrate.GetBitrate(i, 0) + 7) * kTemporalLayerRateFactor[frame_info.layers.size() - 1][i] / (8 * framerate); // The first frame is a key frame and should be larger. // Store the overshoot bytes and distribute them over the coming frames, // so that we on average meet the bitrate target. debt_bytes_ += (kKeyframeSizeFactor - 1) * avg_frame_size; layer_info.size = kKeyframeSizeFactor * avg_frame_size; } else { size_t avg_frame_size = (target_bitrate.GetBitrate(i, layer_info.temporal_id) + 7) * kTemporalLayerRateFactor[frame_info.layers.size() - 1][i] / (8 * framerate); layer_info.size = avg_frame_size; if (debt_bytes_ > 0) { // Pay at most half of the frame size for old debts. size_t payment_size = std::min(avg_frame_size / 2, debt_bytes_); debt_bytes_ -= payment_size; layer_info.size -= payment_size; } } } last_frame_info_ = frame_info; return frame_info; } int32_t FakeEncoder::RegisterEncodeCompleteCallback( EncodedImageCallback* callback) { MutexLock lock(&mutex_); callback_ = callback; return 0; } int32_t FakeEncoder::Release() { return 0; } void FakeEncoder::SetRates(const RateControlParameters& parameters) { MutexLock lock(&mutex_); SetRatesLocked(parameters); } void FakeEncoder::SetRatesLocked(const RateControlParameters& parameters) { current_rate_settings_ = parameters; int allocated_bitrate_kbps = parameters.bitrate.get_sum_kbps(); // Scale bitrate allocation to not exceed the given max target bitrate. if (max_target_bitrate_kbps_ > 0 && allocated_bitrate_kbps > max_target_bitrate_kbps_) { for (uint8_t spatial_idx = 0; spatial_idx < kMaxSpatialLayers; ++spatial_idx) { for (uint8_t temporal_idx = 0; temporal_idx < kMaxTemporalStreams; ++temporal_idx) { if (current_rate_settings_.bitrate.HasBitrate(spatial_idx, temporal_idx)) { uint32_t bitrate = current_rate_settings_.bitrate.GetBitrate( spatial_idx, temporal_idx); bitrate = static_cast( (bitrate * int64_t{max_target_bitrate_kbps_}) / allocated_bitrate_kbps); current_rate_settings_.bitrate.SetBitrate(spatial_idx, temporal_idx, bitrate); } } } } } const char* FakeEncoder::kImplementationName = "fake_encoder"; VideoEncoder::EncoderInfo FakeEncoder::GetEncoderInfo() const { EncoderInfo info; info.implementation_name = kImplementationName; return info; } int FakeEncoder::GetConfiguredInputFramerate() const { MutexLock lock(&mutex_); return static_cast(current_rate_settings_.framerate_fps + 0.5); } FakeH264Encoder::FakeH264Encoder(Clock* clock) : FakeEncoder(clock), idr_counter_(0) {} std::unique_ptr FakeH264Encoder::EncodeHook( EncodedImage* encoded_image, CodecSpecificInfo* codec_specific) { static constexpr std::array kStartCode = {0, 0, 1}; const size_t kSpsSize = 8; const size_t kPpsSize = 11; const int kIdrFrequency = 10; int current_idr_counter; { MutexLock lock(&local_mutex_); current_idr_counter = idr_counter_; ++idr_counter_; } for (size_t i = 0; i < encoded_image->size(); ++i) { encoded_image->data()[i] = static_cast(i); } auto fragmentation = std::make_unique(); if (current_idr_counter % kIdrFrequency == 0 && encoded_image->size() > kSpsSize + kPpsSize + 1 + 3 * kStartCode.size()) { const size_t kNumSlices = 3; fragmentation->VerifyAndAllocateFragmentationHeader(kNumSlices); fragmentation->fragmentationOffset[0] = kStartCode.size(); fragmentation->fragmentationLength[0] = kSpsSize; fragmentation->fragmentationOffset[1] = 2 * kStartCode.size() + kSpsSize; fragmentation->fragmentationLength[1] = kPpsSize; fragmentation->fragmentationOffset[2] = 3 * kStartCode.size() + kSpsSize + kPpsSize; fragmentation->fragmentationLength[2] = encoded_image->size() - (3 * kStartCode.size() + kSpsSize + kPpsSize); const size_t kSpsNalHeader = 0x67; const size_t kPpsNalHeader = 0x68; const size_t kIdrNalHeader = 0x65; memcpy(encoded_image->data(), kStartCode.data(), kStartCode.size()); encoded_image->data()[fragmentation->Offset(0)] = kSpsNalHeader; memcpy(encoded_image->data() + fragmentation->Offset(1) - kStartCode.size(), kStartCode.data(), kStartCode.size()); encoded_image->data()[fragmentation->Offset(1)] = kPpsNalHeader; memcpy(encoded_image->data() + fragmentation->Offset(2) - kStartCode.size(), kStartCode.data(), kStartCode.size()); encoded_image->data()[fragmentation->Offset(2)] = kIdrNalHeader; } else { const size_t kNumSlices = 1; fragmentation->VerifyAndAllocateFragmentationHeader(kNumSlices); fragmentation->fragmentationOffset[0] = kStartCode.size(); fragmentation->fragmentationLength[0] = encoded_image->size() - kStartCode.size(); memcpy(encoded_image->data(), kStartCode.data(), kStartCode.size()); const size_t kNalHeader = 0x41; encoded_image->data()[fragmentation->fragmentationOffset[0]] = kNalHeader; } codec_specific->codecType = kVideoCodecH264; codec_specific->codecSpecific.H264.packetization_mode = H264PacketizationMode::NonInterleaved; return fragmentation; } DelayedEncoder::DelayedEncoder(Clock* clock, int delay_ms) : test::FakeEncoder(clock), delay_ms_(delay_ms) { // The encoder could be created on a different thread than // it is being used on. sequence_checker_.Detach(); } void DelayedEncoder::SetDelay(int delay_ms) { RTC_DCHECK_RUN_ON(&sequence_checker_); delay_ms_ = delay_ms; } int32_t DelayedEncoder::Encode(const VideoFrame& input_image, const std::vector* frame_types) { RTC_DCHECK_RUN_ON(&sequence_checker_); SleepMs(delay_ms_); return FakeEncoder::Encode(input_image, frame_types); } MultithreadedFakeH264Encoder::MultithreadedFakeH264Encoder( Clock* clock, TaskQueueFactory* task_queue_factory) : test::FakeH264Encoder(clock), task_queue_factory_(task_queue_factory), current_queue_(0), queue1_(nullptr), queue2_(nullptr) { // The encoder could be created on a different thread than // it is being used on. sequence_checker_.Detach(); } int32_t MultithreadedFakeH264Encoder::InitEncode(const VideoCodec* config, const Settings& settings) { RTC_DCHECK_RUN_ON(&sequence_checker_); queue1_ = task_queue_factory_->CreateTaskQueue( "Queue 1", TaskQueueFactory::Priority::NORMAL); queue2_ = task_queue_factory_->CreateTaskQueue( "Queue 2", TaskQueueFactory::Priority::NORMAL); return FakeH264Encoder::InitEncode(config, settings); } class MultithreadedFakeH264Encoder::EncodeTask : public QueuedTask { public: EncodeTask(MultithreadedFakeH264Encoder* encoder, const VideoFrame& input_image, const std::vector* frame_types) : encoder_(encoder), input_image_(input_image), frame_types_(*frame_types) {} private: bool Run() override { encoder_->EncodeCallback(input_image_, &frame_types_); return true; } MultithreadedFakeH264Encoder* const encoder_; VideoFrame input_image_; std::vector frame_types_; }; int32_t MultithreadedFakeH264Encoder::Encode( const VideoFrame& input_image, const std::vector* frame_types) { RTC_DCHECK_RUN_ON(&sequence_checker_); TaskQueueBase* queue = (current_queue_++ % 2 == 0) ? queue1_.get() : queue2_.get(); if (!queue) { return WEBRTC_VIDEO_CODEC_UNINITIALIZED; } queue->PostTask(std::make_unique(this, input_image, frame_types)); return WEBRTC_VIDEO_CODEC_OK; } int32_t MultithreadedFakeH264Encoder::EncodeCallback( const VideoFrame& input_image, const std::vector* frame_types) { return FakeH264Encoder::Encode(input_image, frame_types); } int32_t MultithreadedFakeH264Encoder::Release() { RTC_DCHECK_RUN_ON(&sequence_checker_); queue1_.reset(); queue2_.reset(); return FakeH264Encoder::Release(); } } // namespace test } // namespace webrtc