/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #ifndef AOM_AV1_COMMON_BLOCKD_H_ #define AOM_AV1_COMMON_BLOCKD_H_ #include "config/aom_config.h" #include "aom_dsp/aom_dsp_common.h" #include "aom_ports/mem.h" #include "aom_scale/yv12config.h" #include "av1/common/common_data.h" #include "av1/common/quant_common.h" #include "av1/common/entropy.h" #include "av1/common/entropymode.h" #include "av1/common/mv.h" #include "av1/common/scale.h" #include "av1/common/seg_common.h" #include "av1/common/tile_common.h" #ifdef __cplusplus extern "C" { #endif #define USE_B_QUANT_NO_TRELLIS 1 #define MAX_MB_PLANE 3 #define MAX_DIFFWTD_MASK_BITS 1 #define INTERINTRA_WEDGE_SIGN 0 /*!\cond */ // DIFFWTD_MASK_TYPES should not surpass 1 << MAX_DIFFWTD_MASK_BITS enum { DIFFWTD_38 = 0, DIFFWTD_38_INV, DIFFWTD_MASK_TYPES, } UENUM1BYTE(DIFFWTD_MASK_TYPE); enum { KEY_FRAME = 0, INTER_FRAME = 1, INTRA_ONLY_FRAME = 2, // replaces intra-only S_FRAME = 3, FRAME_TYPES, } UENUM1BYTE(FRAME_TYPE); static INLINE int is_comp_ref_allowed(BLOCK_SIZE bsize) { return AOMMIN(block_size_wide[bsize], block_size_high[bsize]) >= 8; } static INLINE int is_inter_mode(PREDICTION_MODE mode) { return mode >= INTER_MODE_START && mode < INTER_MODE_END; } typedef struct { uint8_t *plane[MAX_MB_PLANE]; int stride[MAX_MB_PLANE]; } BUFFER_SET; static INLINE int is_inter_singleref_mode(PREDICTION_MODE mode) { return mode >= SINGLE_INTER_MODE_START && mode < SINGLE_INTER_MODE_END; } static INLINE int is_inter_compound_mode(PREDICTION_MODE mode) { return mode >= COMP_INTER_MODE_START && mode < COMP_INTER_MODE_END; } static INLINE PREDICTION_MODE compound_ref0_mode(PREDICTION_MODE mode) { static const PREDICTION_MODE lut[] = { DC_PRED, // DC_PRED V_PRED, // V_PRED H_PRED, // H_PRED D45_PRED, // D45_PRED D135_PRED, // D135_PRED D113_PRED, // D113_PRED D157_PRED, // D157_PRED D203_PRED, // D203_PRED D67_PRED, // D67_PRED SMOOTH_PRED, // SMOOTH_PRED SMOOTH_V_PRED, // SMOOTH_V_PRED SMOOTH_H_PRED, // SMOOTH_H_PRED PAETH_PRED, // PAETH_PRED NEARESTMV, // NEARESTMV NEARMV, // NEARMV GLOBALMV, // GLOBALMV NEWMV, // NEWMV NEARESTMV, // NEAREST_NEARESTMV NEARMV, // NEAR_NEARMV NEARESTMV, // NEAREST_NEWMV NEWMV, // NEW_NEARESTMV NEARMV, // NEAR_NEWMV NEWMV, // NEW_NEARMV GLOBALMV, // GLOBAL_GLOBALMV NEWMV, // NEW_NEWMV }; assert(NELEMENTS(lut) == MB_MODE_COUNT); assert(is_inter_compound_mode(mode) || is_inter_singleref_mode(mode)); return lut[mode]; } static INLINE PREDICTION_MODE compound_ref1_mode(PREDICTION_MODE mode) { static const PREDICTION_MODE lut[] = { MB_MODE_COUNT, // DC_PRED MB_MODE_COUNT, // V_PRED MB_MODE_COUNT, // H_PRED MB_MODE_COUNT, // D45_PRED MB_MODE_COUNT, // D135_PRED MB_MODE_COUNT, // D113_PRED MB_MODE_COUNT, // D157_PRED MB_MODE_COUNT, // D203_PRED MB_MODE_COUNT, // D67_PRED MB_MODE_COUNT, // SMOOTH_PRED MB_MODE_COUNT, // SMOOTH_V_PRED MB_MODE_COUNT, // SMOOTH_H_PRED MB_MODE_COUNT, // PAETH_PRED MB_MODE_COUNT, // NEARESTMV MB_MODE_COUNT, // NEARMV MB_MODE_COUNT, // GLOBALMV MB_MODE_COUNT, // NEWMV NEARESTMV, // NEAREST_NEARESTMV NEARMV, // NEAR_NEARMV NEWMV, // NEAREST_NEWMV NEARESTMV, // NEW_NEARESTMV NEWMV, // NEAR_NEWMV NEARMV, // NEW_NEARMV GLOBALMV, // GLOBAL_GLOBALMV NEWMV, // NEW_NEWMV }; assert(NELEMENTS(lut) == MB_MODE_COUNT); assert(is_inter_compound_mode(mode)); return lut[mode]; } static INLINE int have_nearmv_in_inter_mode(PREDICTION_MODE mode) { return (mode == NEARMV || mode == NEAR_NEARMV || mode == NEAR_NEWMV || mode == NEW_NEARMV); } static INLINE int have_newmv_in_inter_mode(PREDICTION_MODE mode) { return (mode == NEWMV || mode == NEW_NEWMV || mode == NEAREST_NEWMV || mode == NEW_NEARESTMV || mode == NEAR_NEWMV || mode == NEW_NEARMV); } static INLINE int is_masked_compound_type(COMPOUND_TYPE type) { return (type == COMPOUND_WEDGE || type == COMPOUND_DIFFWTD); } /* For keyframes, intra block modes are predicted by the (already decoded) modes for the Y blocks to the left and above us; for interframes, there is a single probability table. */ typedef struct { // Value of base colors for Y, U, and V uint16_t palette_colors[3 * PALETTE_MAX_SIZE]; // Number of base colors for Y (0) and UV (1) uint8_t palette_size[2]; } PALETTE_MODE_INFO; typedef struct { FILTER_INTRA_MODE filter_intra_mode; uint8_t use_filter_intra; } FILTER_INTRA_MODE_INFO; static const PREDICTION_MODE fimode_to_intradir[FILTER_INTRA_MODES] = { DC_PRED, V_PRED, H_PRED, D157_PRED, DC_PRED }; #if CONFIG_RD_DEBUG #define TXB_COEFF_COST_MAP_SIZE (MAX_MIB_SIZE) #endif typedef struct RD_STATS { int rate; int64_t dist; // Please be careful of using rdcost, it's not guaranteed to be set all the // time. // TODO(angiebird): Create a set of functions to manipulate the RD_STATS. In // these functions, make sure rdcost is always up-to-date according to // rate/dist. int64_t rdcost; int64_t sse; int skip_txfm; // sse should equal to dist when skip_txfm == 1 int zero_rate; #if CONFIG_RD_DEBUG int txb_coeff_cost[MAX_MB_PLANE]; // TODO(jingning): Temporary solution to silence stack over-size warning // in handle_inter_mode. This should be fixed after rate-distortion // optimization refactoring. int16_t txb_coeff_cost_map[MAX_MB_PLANE][TXB_COEFF_COST_MAP_SIZE] [TXB_COEFF_COST_MAP_SIZE]; #endif // CONFIG_RD_DEBUG } RD_STATS; // This struct is used to group function args that are commonly // sent together in functions related to interinter compound modes typedef struct { uint8_t *seg_mask; int8_t wedge_index; int8_t wedge_sign; DIFFWTD_MASK_TYPE mask_type; COMPOUND_TYPE type; } INTERINTER_COMPOUND_DATA; #define INTER_TX_SIZE_BUF_LEN 16 #define TXK_TYPE_BUF_LEN 64 /*!\endcond */ /*! \brief Stores the prediction/txfm mode of the current coding block */ typedef struct MB_MODE_INFO { /***************************************************************************** * \name General Info of the Coding Block ****************************************************************************/ /**@{*/ /*! \brief The block size of the current coding block */ BLOCK_SIZE bsize; /*! \brief The partition type of the current coding block. */ PARTITION_TYPE partition; /*! \brief The prediction mode used */ PREDICTION_MODE mode; /*! \brief The UV mode when intra is used */ UV_PREDICTION_MODE uv_mode; /*! \brief The q index for the current coding block. */ int current_qindex; /**@}*/ /***************************************************************************** * \name Inter Mode Info ****************************************************************************/ /**@{*/ /*! \brief The motion vectors used by the current inter mode */ int_mv mv[2]; /*! \brief The reference frames for the MV */ MV_REFERENCE_FRAME ref_frame[2]; /*! \brief Filter used in subpel interpolation. */ int_interpfilters interp_filters; /*! \brief The motion mode used by the inter prediction. */ MOTION_MODE motion_mode; /*! \brief Number of samples used by warp causal */ uint8_t num_proj_ref; /*! \brief The number of overlapped neighbors above/left for obmc/warp motion * mode. */ uint8_t overlappable_neighbors; /*! \brief The parameters used in warp motion mode. */ WarpedMotionParams wm_params; /*! \brief The type of intra mode used by inter-intra */ INTERINTRA_MODE interintra_mode; /*! \brief The type of wedge used in interintra mode. */ int8_t interintra_wedge_index; /*! \brief Struct that stores the data used in interinter compound mode. */ INTERINTER_COMPOUND_DATA interinter_comp; /**@}*/ /***************************************************************************** * \name Intra Mode Info ****************************************************************************/ /**@{*/ /*! \brief Directional mode delta: the angle is base angle + (angle_delta * * step). */ int8_t angle_delta[PLANE_TYPES]; /*! \brief The type of filter intra mode used (if applicable). */ FILTER_INTRA_MODE_INFO filter_intra_mode_info; /*! \brief Chroma from Luma: Joint sign of alpha Cb and alpha Cr */ int8_t cfl_alpha_signs; /*! \brief Chroma from Luma: Index of the alpha Cb and alpha Cr combination */ uint8_t cfl_alpha_idx; /*! \brief Stores the size and colors of palette mode */ PALETTE_MODE_INFO palette_mode_info; /**@}*/ /***************************************************************************** * \name Transform Info ****************************************************************************/ /**@{*/ /*! \brief Whether to skip transforming and sending. */ int8_t skip_txfm; /*! \brief Transform size when fixed size txfm is used (e.g. intra modes). */ TX_SIZE tx_size; /*! \brief Transform size when recursive txfm tree is on. */ TX_SIZE inter_tx_size[INTER_TX_SIZE_BUF_LEN]; /**@}*/ /***************************************************************************** * \name Loop Filter Info ****************************************************************************/ /**@{*/ /*! \copydoc MACROBLOCKD::delta_lf_from_base */ int8_t delta_lf_from_base; /*! \copydoc MACROBLOCKD::delta_lf */ int8_t delta_lf[FRAME_LF_COUNT]; /**@}*/ /***************************************************************************** * \name Bitfield for Memory Reduction ****************************************************************************/ /**@{*/ /*! \brief The segment id */ uint8_t segment_id : 3; /*! \brief Only valid when temporal update if off. */ uint8_t seg_id_predicted : 1; /*! \brief Which ref_mv to use */ uint8_t ref_mv_idx : 2; /*! \brief Inter skip mode */ uint8_t skip_mode : 1; /*! \brief Whether intrabc is used. */ uint8_t use_intrabc : 1; /*! \brief Indicates if masked compound is used(1) or not (0). */ uint8_t comp_group_idx : 1; /*! \brief Indicates whether dist_wtd_comp(0) is used or not (0). */ uint8_t compound_idx : 1; /*! \brief Whether to use interintra wedge */ uint8_t use_wedge_interintra : 1; /*! \brief CDEF strength per BLOCK_64X64 */ int8_t cdef_strength : 4; /**@}*/ #if CONFIG_RD_DEBUG /*! \brief RD info used for debugging */ RD_STATS rd_stats; /*! \brief The current row in unit of 4x4 blocks for debugging */ int mi_row; /*! \brief The current col in unit of 4x4 blocks for debugging */ int mi_col; #endif #if CONFIG_INSPECTION /*! \brief Whether we are skipping the current rows or columns. */ int16_t tx_skip[TXK_TYPE_BUF_LEN]; #endif } MB_MODE_INFO; /*!\cond */ static INLINE int is_intrabc_block(const MB_MODE_INFO *mbmi) { return mbmi->use_intrabc; } static INLINE PREDICTION_MODE get_uv_mode(UV_PREDICTION_MODE mode) { assert(mode < UV_INTRA_MODES); static const PREDICTION_MODE uv2y[] = { DC_PRED, // UV_DC_PRED V_PRED, // UV_V_PRED H_PRED, // UV_H_PRED D45_PRED, // UV_D45_PRED D135_PRED, // UV_D135_PRED D113_PRED, // UV_D113_PRED D157_PRED, // UV_D157_PRED D203_PRED, // UV_D203_PRED D67_PRED, // UV_D67_PRED SMOOTH_PRED, // UV_SMOOTH_PRED SMOOTH_V_PRED, // UV_SMOOTH_V_PRED SMOOTH_H_PRED, // UV_SMOOTH_H_PRED PAETH_PRED, // UV_PAETH_PRED DC_PRED, // UV_CFL_PRED INTRA_INVALID, // UV_INTRA_MODES INTRA_INVALID, // UV_MODE_INVALID }; return uv2y[mode]; } static INLINE int is_inter_block(const MB_MODE_INFO *mbmi) { return is_intrabc_block(mbmi) || mbmi->ref_frame[0] > INTRA_FRAME; } static INLINE int has_second_ref(const MB_MODE_INFO *mbmi) { return mbmi->ref_frame[1] > INTRA_FRAME; } static INLINE int has_uni_comp_refs(const MB_MODE_INFO *mbmi) { return has_second_ref(mbmi) && (!((mbmi->ref_frame[0] >= BWDREF_FRAME) ^ (mbmi->ref_frame[1] >= BWDREF_FRAME))); } static INLINE MV_REFERENCE_FRAME comp_ref0(int ref_idx) { static const MV_REFERENCE_FRAME lut[] = { LAST_FRAME, // LAST_LAST2_FRAMES, LAST_FRAME, // LAST_LAST3_FRAMES, LAST_FRAME, // LAST_GOLDEN_FRAMES, BWDREF_FRAME, // BWDREF_ALTREF_FRAMES, LAST2_FRAME, // LAST2_LAST3_FRAMES LAST2_FRAME, // LAST2_GOLDEN_FRAMES, LAST3_FRAME, // LAST3_GOLDEN_FRAMES, BWDREF_FRAME, // BWDREF_ALTREF2_FRAMES, ALTREF2_FRAME, // ALTREF2_ALTREF_FRAMES, }; assert(NELEMENTS(lut) == TOTAL_UNIDIR_COMP_REFS); return lut[ref_idx]; } static INLINE MV_REFERENCE_FRAME comp_ref1(int ref_idx) { static const MV_REFERENCE_FRAME lut[] = { LAST2_FRAME, // LAST_LAST2_FRAMES, LAST3_FRAME, // LAST_LAST3_FRAMES, GOLDEN_FRAME, // LAST_GOLDEN_FRAMES, ALTREF_FRAME, // BWDREF_ALTREF_FRAMES, LAST3_FRAME, // LAST2_LAST3_FRAMES GOLDEN_FRAME, // LAST2_GOLDEN_FRAMES, GOLDEN_FRAME, // LAST3_GOLDEN_FRAMES, ALTREF2_FRAME, // BWDREF_ALTREF2_FRAMES, ALTREF_FRAME, // ALTREF2_ALTREF_FRAMES, }; assert(NELEMENTS(lut) == TOTAL_UNIDIR_COMP_REFS); return lut[ref_idx]; } PREDICTION_MODE av1_left_block_mode(const MB_MODE_INFO *left_mi); PREDICTION_MODE av1_above_block_mode(const MB_MODE_INFO *above_mi); static INLINE int is_global_mv_block(const MB_MODE_INFO *const mbmi, TransformationType type) { const PREDICTION_MODE mode = mbmi->mode; const BLOCK_SIZE bsize = mbmi->bsize; const int block_size_allowed = AOMMIN(block_size_wide[bsize], block_size_high[bsize]) >= 8; return (mode == GLOBALMV || mode == GLOBAL_GLOBALMV) && type > TRANSLATION && block_size_allowed; } #if CONFIG_MISMATCH_DEBUG static INLINE void mi_to_pixel_loc(int *pixel_c, int *pixel_r, int mi_col, int mi_row, int tx_blk_col, int tx_blk_row, int subsampling_x, int subsampling_y) { *pixel_c = ((mi_col >> subsampling_x) << MI_SIZE_LOG2) + (tx_blk_col << MI_SIZE_LOG2); *pixel_r = ((mi_row >> subsampling_y) << MI_SIZE_LOG2) + (tx_blk_row << MI_SIZE_LOG2); } #endif enum { MV_PRECISION_Q3, MV_PRECISION_Q4 } UENUM1BYTE(mv_precision); struct buf_2d { uint8_t *buf; uint8_t *buf0; int width; int height; int stride; }; typedef struct eob_info { uint16_t eob; uint16_t max_scan_line; } eob_info; typedef struct { DECLARE_ALIGNED(32, tran_low_t, dqcoeff[MAX_MB_PLANE][MAX_SB_SQUARE]); eob_info eob_data[MAX_MB_PLANE] [MAX_SB_SQUARE / (TX_SIZE_W_MIN * TX_SIZE_H_MIN)]; DECLARE_ALIGNED(16, uint8_t, color_index_map[2][MAX_SB_SQUARE]); } CB_BUFFER; typedef struct macroblockd_plane { PLANE_TYPE plane_type; int subsampling_x; int subsampling_y; struct buf_2d dst; struct buf_2d pre[2]; ENTROPY_CONTEXT *above_entropy_context; ENTROPY_CONTEXT *left_entropy_context; // The dequantizers below are true dequantizers used only in the // dequantization process. They have the same coefficient // shift/scale as TX. int16_t seg_dequant_QTX[MAX_SEGMENTS][2]; // Pointer to color index map of: // - Current coding block, on encoder side. // - Current superblock, on decoder side. uint8_t *color_index_map; // block size in pixels uint8_t width, height; qm_val_t *seg_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL]; qm_val_t *seg_qmatrix[MAX_SEGMENTS][TX_SIZES_ALL]; } MACROBLOCKD_PLANE; #define BLOCK_OFFSET(i) ((i) << 4) /*!\endcond */ /*!\brief Parameters related to Wiener Filter */ typedef struct { /*! * Vertical filter kernel. */ DECLARE_ALIGNED(16, InterpKernel, vfilter); /*! * Horizontal filter kernel. */ DECLARE_ALIGNED(16, InterpKernel, hfilter); } WienerInfo; /*!\brief Parameters related to Sgrproj Filter */ typedef struct { /*! * Parameter index. */ int ep; /*! * Weights for linear combination of filtered versions */ int xqd[2]; } SgrprojInfo; /*!\cond */ #if CONFIG_DEBUG #define CFL_SUB8X8_VAL_MI_SIZE (4) #define CFL_SUB8X8_VAL_MI_SQUARE \ (CFL_SUB8X8_VAL_MI_SIZE * CFL_SUB8X8_VAL_MI_SIZE) #endif // CONFIG_DEBUG #define CFL_MAX_BLOCK_SIZE (BLOCK_32X32) #define CFL_BUF_LINE (32) #define CFL_BUF_LINE_I128 (CFL_BUF_LINE >> 3) #define CFL_BUF_LINE_I256 (CFL_BUF_LINE >> 4) #define CFL_BUF_SQUARE (CFL_BUF_LINE * CFL_BUF_LINE) typedef struct cfl_ctx { // Q3 reconstructed luma pixels (only Q2 is required, but Q3 is used to avoid // shifts) uint16_t recon_buf_q3[CFL_BUF_SQUARE]; // Q3 AC contributions (reconstructed luma pixels - tx block avg) int16_t ac_buf_q3[CFL_BUF_SQUARE]; // Cache the DC_PRED when performing RDO, so it does not have to be recomputed // for every scaling parameter int dc_pred_is_cached[CFL_PRED_PLANES]; // The DC_PRED cache is disable when decoding int use_dc_pred_cache; // Only cache the first row of the DC_PRED int16_t dc_pred_cache[CFL_PRED_PLANES][CFL_BUF_LINE]; // Height and width currently used in the CfL prediction buffer. int buf_height, buf_width; int are_parameters_computed; // Chroma subsampling int subsampling_x, subsampling_y; // Whether the reconstructed luma pixels need to be stored int store_y; #if CONFIG_DEBUG int rate; #endif // CONFIG_DEBUG } CFL_CTX; typedef struct dist_wtd_comp_params { int use_dist_wtd_comp_avg; int fwd_offset; int bck_offset; } DIST_WTD_COMP_PARAMS; struct scale_factors; /*!\endcond */ /*! \brief Variables related to current coding block. * * This is a common set of variables used by both encoder and decoder. * Most/all of the pointers are mere pointers to actual arrays are allocated * elsewhere. This is mostly for coding convenience. */ typedef struct macroblockd { /** * \name Position of current macroblock in mi units */ /**@{*/ int mi_row; /*!< Row position in mi units. */ int mi_col; /*!< Column position in mi units. */ /**@}*/ /*! * Same as cm->mi_params.mi_stride, copied here for convenience. */ int mi_stride; /*! * True if current block transmits chroma information. * More detail: * Smallest supported block size for both luma and chroma plane is 4x4. Hence, * in case of subsampled chroma plane (YUV 4:2:0 or YUV 4:2:2), multiple luma * blocks smaller than 8x8 maybe combined into one chroma block. * For example, for YUV 4:2:0, let's say an 8x8 area is split into four 4x4 * luma blocks. Then, a single chroma block of size 4x4 will cover the area of * these four luma blocks. This is implemented in bitstream as follows: * - There are four MB_MODE_INFO structs for the four luma blocks. * - First 3 MB_MODE_INFO have is_chroma_ref = false, and so do not transmit * any information for chroma planes. * - Last block will have is_chroma_ref = true and transmits chroma * information for the 4x4 chroma block that covers whole 8x8 area covered by * four luma blocks. * Similar logic applies for chroma blocks that cover 2 or 3 luma blocks. */ bool is_chroma_ref; /*! * Info specific to each plane. */ struct macroblockd_plane plane[MAX_MB_PLANE]; /*! * Tile related info. */ TileInfo tile; /*! * Appropriate offset inside cm->mi_params.mi_grid_base based on current * mi_row and mi_col. */ MB_MODE_INFO **mi; /*! * True if 4x4 block above the current block is available. */ bool up_available; /*! * True if 4x4 block to the left of the current block is available. */ bool left_available; /*! * True if the above chrome reference block is available. */ bool chroma_up_available; /*! * True if the left chrome reference block is available. */ bool chroma_left_available; /*! * MB_MODE_INFO for 4x4 block to the left of the current block, if * left_available == true; otherwise NULL. */ MB_MODE_INFO *left_mbmi; /*! * MB_MODE_INFO for 4x4 block above the current block, if * up_available == true; otherwise NULL. */ MB_MODE_INFO *above_mbmi; /*! * Above chroma reference block if is_chroma_ref == true for the current block * and chroma_up_available == true; otherwise NULL. * See also: the special case logic when current chroma block covers more than * one luma blocks in set_mi_row_col(). */ MB_MODE_INFO *chroma_left_mbmi; /*! * Left chroma reference block if is_chroma_ref == true for the current block * and chroma_left_available == true; otherwise NULL. * See also: the special case logic when current chroma block covers more than * one luma blocks in set_mi_row_col(). */ MB_MODE_INFO *chroma_above_mbmi; /*! * Appropriate offset based on current 'mi_row' and 'mi_col', inside * 'tx_type_map' in one of 'CommonModeInfoParams', 'PICK_MODE_CONTEXT' or * 'MACROBLOCK' structs. */ uint8_t *tx_type_map; /*! * Stride for 'tx_type_map'. Note that this may / may not be same as * 'mi_stride', depending on which actual array 'tx_type_map' points to. */ int tx_type_map_stride; /** * \name Distance of this macroblock from frame edges in 1/8th pixel units. */ /**@{*/ int mb_to_left_edge; /*!< Distance from left edge */ int mb_to_right_edge; /*!< Distance from right edge */ int mb_to_top_edge; /*!< Distance from top edge */ int mb_to_bottom_edge; /*!< Distance from bottom edge */ /**@}*/ /*! * Scale factors for reference frames of the current block. * These are pointers into 'cm->ref_scale_factors'. */ const struct scale_factors *block_ref_scale_factors[2]; /*! * - On encoder side: points to cpi->source, which is the buffer containing * the current *source* frame (maybe filtered). * - On decoder side: points to cm->cur_frame->buf, which is the buffer into * which current frame is being *decoded*. */ const YV12_BUFFER_CONFIG *cur_buf; /*! * Entropy contexts for the above blocks. * above_entropy_context[i][j] corresponds to above entropy context for ith * plane and jth mi column of this *frame*, wrt current 'mi_row'. * These are pointers into 'cm->above_contexts.entropy'. */ ENTROPY_CONTEXT *above_entropy_context[MAX_MB_PLANE]; /*! * Entropy contexts for the left blocks. * left_entropy_context[i][j] corresponds to left entropy context for ith * plane and jth mi row of this *superblock*, wrt current 'mi_col'. * Note: These contain actual data, NOT pointers. */ ENTROPY_CONTEXT left_entropy_context[MAX_MB_PLANE][MAX_MIB_SIZE]; /*! * Partition contexts for the above blocks. * above_partition_context[i] corresponds to above partition context for ith * mi column of this *frame*, wrt current 'mi_row'. * This is a pointer into 'cm->above_contexts.partition'. */ PARTITION_CONTEXT *above_partition_context; /*! * Partition contexts for the left blocks. * left_partition_context[i] corresponds to left partition context for ith * mi row of this *superblock*, wrt current 'mi_col'. * Note: These contain actual data, NOT pointers. */ PARTITION_CONTEXT left_partition_context[MAX_MIB_SIZE]; /*! * Transform contexts for the above blocks. * above_txfm_context[i] corresponds to above transform context for ith mi col * from the current position (mi row and mi column) for this *frame*. * This is a pointer into 'cm->above_contexts.txfm'. */ TXFM_CONTEXT *above_txfm_context; /*! * Transform contexts for the left blocks. * left_txfm_context[i] corresponds to left transform context for ith mi row * from the current position (mi_row and mi_col) for this *superblock*. * This is a pointer into 'left_txfm_context_buffer'. */ TXFM_CONTEXT *left_txfm_context; /*! * left_txfm_context_buffer[i] is the left transform context for ith mi_row * in this *superblock*. * Behaves like an internal actual buffer which 'left_txt_context' points to, * and never accessed directly except to fill in initial default values. */ TXFM_CONTEXT left_txfm_context_buffer[MAX_MIB_SIZE]; /** * \name Default values for the two restoration filters for each plane. * Default values for the two restoration filters for each plane. * These values are used as reference values when writing the bitstream. That * is, we transmit the delta between the actual values in * cm->rst_info[plane].unit_info[unit_idx] and these reference values. */ /**@{*/ WienerInfo wiener_info[MAX_MB_PLANE]; /*!< Defaults for Wiener filter*/ SgrprojInfo sgrproj_info[MAX_MB_PLANE]; /*!< Defaults for SGR filter */ /**@}*/ /** * \name Block dimensions in MB_MODE_INFO units. */ /**@{*/ uint8_t width; /*!< Block width in MB_MODE_INFO units */ uint8_t height; /*!< Block height in MB_MODE_INFO units */ /**@}*/ /*! * Contains the motion vector candidates found during motion vector prediction * process. ref_mv_stack[i] contains the candidates for ith type of * reference frame (single/compound). The actual number of candidates found in * ref_mv_stack[i] is stored in either dcb->ref_mv_count[i] (decoder side) * or mbmi_ext->ref_mv_count[i] (encoder side). */ CANDIDATE_MV ref_mv_stack[MODE_CTX_REF_FRAMES][MAX_REF_MV_STACK_SIZE]; /*! * weight[i][j] is the weight for ref_mv_stack[i][j] and used to compute the * DRL (dynamic reference list) mode contexts. */ uint16_t weight[MODE_CTX_REF_FRAMES][MAX_REF_MV_STACK_SIZE]; /*! * True if this is the last vertical rectangular block in a VERTICAL or * VERTICAL_4 partition. */ bool is_last_vertical_rect; /*! * True if this is the 1st horizontal rectangular block in a HORIZONTAL or * HORIZONTAL_4 partition. */ bool is_first_horizontal_rect; /*! * Counts of each reference frame in the above and left neighboring blocks. * NOTE: Take into account both single and comp references. */ uint8_t neighbors_ref_counts[REF_FRAMES]; /*! * Current CDFs of all the symbols for the current tile. */ FRAME_CONTEXT *tile_ctx; /*! * Bit depth: copied from cm->seq_params.bit_depth for convenience. */ int bd; /*! * Quantizer index for each segment (base qindex + delta for each segment). */ int qindex[MAX_SEGMENTS]; /*! * lossless[s] is true if segment 's' is coded losslessly. */ int lossless[MAX_SEGMENTS]; /*! * Q index for the coding blocks in this superblock will be stored in * mbmi->current_qindex. Now, when cm->delta_q_info.delta_q_present_flag is * true, mbmi->current_qindex is computed by taking 'current_base_qindex' as * the base, and adding any transmitted delta qindex on top of it. * Precisely, this is the latest qindex used by the first coding block of a * non-skip superblock in the current tile; OR * same as cm->quant_params.base_qindex (if not explicitly set yet). * Note: This is 'CurrentQIndex' in the AV1 spec. */ int current_base_qindex; /*! * Same as cm->features.cur_frame_force_integer_mv. */ int cur_frame_force_integer_mv; /*! * Pointer to cm->error. */ struct aom_internal_error_info *error_info; /*! * Same as cm->global_motion. */ const WarpedMotionParams *global_motion; /*! * Since actual frame level loop filtering level value is not available * at the beginning of the tile (only available during actual filtering) * at encoder side.we record the delta_lf (against the frame level loop * filtering level) and code the delta between previous superblock's delta * lf and current delta lf. It is equivalent to the delta between previous * superblock's actual lf and current lf. */ int8_t delta_lf_from_base; /*! * We have four frame filter levels for different plane and direction. So, to * support the per superblock update, we need to add a few more params: * 0. delta loop filter level for y plane vertical * 1. delta loop filter level for y plane horizontal * 2. delta loop filter level for u plane * 3. delta loop filter level for v plane * To make it consistent with the reference to each filter level in segment, * we need to -1, since * - SEG_LVL_ALT_LF_Y_V = 1; * - SEG_LVL_ALT_LF_Y_H = 2; * - SEG_LVL_ALT_LF_U = 3; * - SEG_LVL_ALT_LF_V = 4; */ int8_t delta_lf[FRAME_LF_COUNT]; /*! * cdef_transmitted[i] is true if CDEF strength for ith CDEF unit in the * current superblock has already been read from (decoder) / written to * (encoder) the bitstream; and false otherwise. * More detail: * 1. CDEF strength is transmitted only once per CDEF unit, in the 1st * non-skip coding block. So, we need this array to keep track of whether CDEF * strengths for the given CDEF units have been transmitted yet or not. * 2. Superblock size can be either 128x128 or 64x64, but CDEF unit size is * fixed to be 64x64. So, there may be 4 CDEF units within a superblock (if * superblock size is 128x128). Hence the array size is 4. * 3. In the current implementation, CDEF strength for this CDEF unit is * stored in the MB_MODE_INFO of the 1st block in this CDEF unit (inside * cm->mi_params.mi_grid_base). */ bool cdef_transmitted[4]; /*! * Mask for this block used for compound prediction. */ DECLARE_ALIGNED(16, uint8_t, seg_mask[2 * MAX_SB_SQUARE]); /*! * CFL (chroma from luma) related parameters. */ CFL_CTX cfl; /*! * Offset to plane[p].color_index_map. * Currently: * - On encoder side, this is always 0 as 'color_index_map' is allocated per * *coding block* there. * - On decoder side, this may be non-zero, as 'color_index_map' is a (static) * memory pointing to the base of a *superblock* there, and we need an offset * to it to get the color index map for current coding block. */ uint16_t color_index_map_offset[2]; /*! * Temporary buffer used for convolution in case of compound reference only * for (weighted or uniform) averaging operation. * There are pointers to actual buffers allocated elsewhere: e.g. * - In decoder, 'pbi->td.tmp_conv_dst' or * 'pbi->thread_data[t].td->xd.tmp_conv_dst' and * - In encoder, 'x->tmp_conv_dst' or * 'cpi->tile_thr_data[t].td->mb.tmp_conv_dst'. */ CONV_BUF_TYPE *tmp_conv_dst; /*! * Temporary buffers used to build OBMC prediction by above (index 0) and left * (index 1) predictors respectively. * tmp_obmc_bufs[i][p * MAX_SB_SQUARE] is the buffer used for plane 'p'. * There are pointers to actual buffers allocated elsewhere: e.g. * - In decoder, 'pbi->td.tmp_obmc_bufs' or * 'pbi->thread_data[t].td->xd.tmp_conv_dst' and * -In encoder, 'x->tmp_pred_bufs' or * 'cpi->tile_thr_data[t].td->mb.tmp_pred_bufs'. */ uint8_t *tmp_obmc_bufs[2]; } MACROBLOCKD; /*!\cond */ static INLINE int is_cur_buf_hbd(const MACROBLOCKD *xd) { return xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH ? 1 : 0; } static INLINE uint8_t *get_buf_by_bd(const MACROBLOCKD *xd, uint8_t *buf16) { return (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? CONVERT_TO_BYTEPTR(buf16) : buf16; } static INLINE int get_sqr_bsize_idx(BLOCK_SIZE bsize) { switch (bsize) { case BLOCK_4X4: return 0; case BLOCK_8X8: return 1; case BLOCK_16X16: return 2; case BLOCK_32X32: return 3; case BLOCK_64X64: return 4; case BLOCK_128X128: return 5; default: return SQR_BLOCK_SIZES; } } // For a square block size 'bsize', returns the size of the sub-blocks used by // the given partition type. If the partition produces sub-blocks of different // sizes, then the function returns the largest sub-block size. // Implements the Partition_Subsize lookup table in the spec (Section 9.3. // Conversion tables). // Note: the input block size should be square. // Otherwise it's considered invalid. static INLINE BLOCK_SIZE get_partition_subsize(BLOCK_SIZE bsize, PARTITION_TYPE partition) { if (partition == PARTITION_INVALID) { return BLOCK_INVALID; } else { const int sqr_bsize_idx = get_sqr_bsize_idx(bsize); return sqr_bsize_idx >= SQR_BLOCK_SIZES ? BLOCK_INVALID : subsize_lookup[partition][sqr_bsize_idx]; } } static TX_TYPE intra_mode_to_tx_type(const MB_MODE_INFO *mbmi, PLANE_TYPE plane_type) { static const TX_TYPE _intra_mode_to_tx_type[INTRA_MODES] = { DCT_DCT, // DC_PRED ADST_DCT, // V_PRED DCT_ADST, // H_PRED DCT_DCT, // D45_PRED ADST_ADST, // D135_PRED ADST_DCT, // D113_PRED DCT_ADST, // D157_PRED DCT_ADST, // D203_PRED ADST_DCT, // D67_PRED ADST_ADST, // SMOOTH_PRED ADST_DCT, // SMOOTH_V_PRED DCT_ADST, // SMOOTH_H_PRED ADST_ADST, // PAETH_PRED }; const PREDICTION_MODE mode = (plane_type == PLANE_TYPE_Y) ? mbmi->mode : get_uv_mode(mbmi->uv_mode); assert(mode < INTRA_MODES); return _intra_mode_to_tx_type[mode]; } static INLINE int is_rect_tx(TX_SIZE tx_size) { return tx_size >= TX_SIZES; } static INLINE int block_signals_txsize(BLOCK_SIZE bsize) { return bsize > BLOCK_4X4; } // Number of transform types in each set type static const int av1_num_ext_tx_set[EXT_TX_SET_TYPES] = { 1, 2, 5, 7, 12, 16, }; static const int av1_ext_tx_used[EXT_TX_SET_TYPES][TX_TYPES] = { { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 }, { 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 }, { 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0 }, { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0 }, { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, }; // The bitmask corresponds to the transform types as defined in // enums.h TX_TYPE enumeration type. Setting the bit 0 means to disable // the use of the corresponding transform type in that table. // The av1_derived_intra_tx_used_flag table is used when // use_reduced_intra_txset is set to 2, where one only searches // the transform types derived from residual statistics. static const uint16_t av1_derived_intra_tx_used_flag[INTRA_MODES] = { 0x0209, // DC_PRED: 0000 0010 0000 1001 0x0403, // V_PRED: 0000 0100 0000 0011 0x0805, // H_PRED: 0000 1000 0000 0101 0x020F, // D45_PRED: 0000 0010 0000 1111 0x0009, // D135_PRED: 0000 0000 0000 1001 0x0009, // D113_PRED: 0000 0000 0000 1001 0x0009, // D157_PRED: 0000 0000 0000 1001 0x0805, // D203_PRED: 0000 1000 0000 0101 0x0403, // D67_PRED: 0000 0100 0000 0011 0x0205, // SMOOTH_PRED: 0000 0010 0000 1001 0x0403, // SMOOTH_V_PRED: 0000 0100 0000 0011 0x0805, // SMOOTH_H_PRED: 0000 1000 0000 0101 0x0209, // PAETH_PRED: 0000 0010 0000 1001 }; static const uint16_t av1_reduced_intra_tx_used_flag[INTRA_MODES] = { 0x080F, // DC_PRED: 0000 1000 0000 1111 0x040F, // V_PRED: 0000 0100 0000 1111 0x080F, // H_PRED: 0000 1000 0000 1111 0x020F, // D45_PRED: 0000 0010 0000 1111 0x080F, // D135_PRED: 0000 1000 0000 1111 0x040F, // D113_PRED: 0000 0100 0000 1111 0x080F, // D157_PRED: 0000 1000 0000 1111 0x080F, // D203_PRED: 0000 1000 0000 1111 0x040F, // D67_PRED: 0000 0100 0000 1111 0x080F, // SMOOTH_PRED: 0000 1000 0000 1111 0x040F, // SMOOTH_V_PRED: 0000 0100 0000 1111 0x080F, // SMOOTH_H_PRED: 0000 1000 0000 1111 0x0C0E, // PAETH_PRED: 0000 1100 0000 1110 }; static const uint16_t av1_ext_tx_used_flag[EXT_TX_SET_TYPES] = { 0x0001, // 0000 0000 0000 0001 0x0201, // 0000 0010 0000 0001 0x020F, // 0000 0010 0000 1111 0x0E0F, // 0000 1110 0000 1111 0x0FFF, // 0000 1111 1111 1111 0xFFFF, // 1111 1111 1111 1111 }; static const TxSetType av1_ext_tx_set_lookup[2][2] = { { EXT_TX_SET_DTT4_IDTX_1DDCT, EXT_TX_SET_DTT4_IDTX }, { EXT_TX_SET_ALL16, EXT_TX_SET_DTT9_IDTX_1DDCT }, }; static INLINE TxSetType av1_get_ext_tx_set_type(TX_SIZE tx_size, int is_inter, int use_reduced_set) { const TX_SIZE tx_size_sqr_up = txsize_sqr_up_map[tx_size]; if (tx_size_sqr_up > TX_32X32) return EXT_TX_SET_DCTONLY; if (tx_size_sqr_up == TX_32X32) return is_inter ? EXT_TX_SET_DCT_IDTX : EXT_TX_SET_DCTONLY; if (use_reduced_set) return is_inter ? EXT_TX_SET_DCT_IDTX : EXT_TX_SET_DTT4_IDTX; const TX_SIZE tx_size_sqr = txsize_sqr_map[tx_size]; return av1_ext_tx_set_lookup[is_inter][tx_size_sqr == TX_16X16]; } // Maps tx set types to the indices. static const int ext_tx_set_index[2][EXT_TX_SET_TYPES] = { { // Intra 0, -1, 2, 1, -1, -1 }, { // Inter 0, 3, -1, -1, 2, 1 }, }; static INLINE int get_ext_tx_set(TX_SIZE tx_size, int is_inter, int use_reduced_set) { const TxSetType set_type = av1_get_ext_tx_set_type(tx_size, is_inter, use_reduced_set); return ext_tx_set_index[is_inter][set_type]; } static INLINE int get_ext_tx_types(TX_SIZE tx_size, int is_inter, int use_reduced_set) { const int set_type = av1_get_ext_tx_set_type(tx_size, is_inter, use_reduced_set); return av1_num_ext_tx_set[set_type]; } #define TXSIZEMAX(t1, t2) (tx_size_2d[(t1)] >= tx_size_2d[(t2)] ? (t1) : (t2)) #define TXSIZEMIN(t1, t2) (tx_size_2d[(t1)] <= tx_size_2d[(t2)] ? (t1) : (t2)) static INLINE TX_SIZE tx_size_from_tx_mode(BLOCK_SIZE bsize, TX_MODE tx_mode) { const TX_SIZE largest_tx_size = tx_mode_to_biggest_tx_size[tx_mode]; const TX_SIZE max_rect_tx_size = max_txsize_rect_lookup[bsize]; if (bsize == BLOCK_4X4) return AOMMIN(max_txsize_lookup[bsize], largest_tx_size); if (txsize_sqr_map[max_rect_tx_size] <= largest_tx_size) return max_rect_tx_size; else return largest_tx_size; } static const uint8_t mode_to_angle_map[] = { 0, 90, 180, 45, 135, 113, 157, 203, 67, 0, 0, 0, 0, }; // Converts block_index for given transform size to index of the block in raster // order. static INLINE int av1_block_index_to_raster_order(TX_SIZE tx_size, int block_idx) { // For transform size 4x8, the possible block_idx values are 0 & 2, because // block_idx values are incremented in steps of size 'tx_width_unit x // tx_height_unit'. But, for this transform size, block_idx = 2 corresponds to // block number 1 in raster order, inside an 8x8 MI block. // For any other transform size, the two indices are equivalent. return (tx_size == TX_4X8 && block_idx == 2) ? 1 : block_idx; } // Inverse of above function. // Note: only implemented for transform sizes 4x4, 4x8 and 8x4 right now. static INLINE int av1_raster_order_to_block_index(TX_SIZE tx_size, int raster_order) { assert(tx_size == TX_4X4 || tx_size == TX_4X8 || tx_size == TX_8X4); // We ensure that block indices are 0 & 2 if tx size is 4x8 or 8x4. return (tx_size == TX_4X4) ? raster_order : (raster_order > 0) ? 2 : 0; } static INLINE TX_TYPE get_default_tx_type(PLANE_TYPE plane_type, const MACROBLOCKD *xd, TX_SIZE tx_size, int use_screen_content_tools) { const MB_MODE_INFO *const mbmi = xd->mi[0]; if (is_inter_block(mbmi) || plane_type != PLANE_TYPE_Y || xd->lossless[mbmi->segment_id] || tx_size >= TX_32X32 || use_screen_content_tools) return DCT_DCT; return intra_mode_to_tx_type(mbmi, plane_type); } // Implements the get_plane_residual_size() function in the spec (Section // 5.11.38. Get plane residual size function). static INLINE BLOCK_SIZE get_plane_block_size(BLOCK_SIZE bsize, int subsampling_x, int subsampling_y) { assert(bsize < BLOCK_SIZES_ALL); assert(subsampling_x >= 0 && subsampling_x < 2); assert(subsampling_y >= 0 && subsampling_y < 2); return ss_size_lookup[bsize][subsampling_x][subsampling_y]; } /* * Logic to generate the lookup tables: * * TX_SIZE txs = max_txsize_rect_lookup[bsize]; * for (int level = 0; level < MAX_VARTX_DEPTH - 1; ++level) * txs = sub_tx_size_map[txs]; * const int tx_w_log2 = tx_size_wide_log2[txs] - MI_SIZE_LOG2; * const int tx_h_log2 = tx_size_high_log2[txs] - MI_SIZE_LOG2; * const int bw_uint_log2 = mi_size_wide_log2[bsize]; * const int stride_log2 = bw_uint_log2 - tx_w_log2; */ static INLINE int av1_get_txb_size_index(BLOCK_SIZE bsize, int blk_row, int blk_col) { static const uint8_t tw_w_log2_table[BLOCK_SIZES_ALL] = { 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 0, 1, 1, 2, 2, 3, }; static const uint8_t tw_h_log2_table[BLOCK_SIZES_ALL] = { 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 1, 0, 2, 1, 3, 2, }; static const uint8_t stride_log2_table[BLOCK_SIZES_ALL] = { 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 2, 2, 0, 1, 0, 1, 0, 1, }; const int index = ((blk_row >> tw_h_log2_table[bsize]) << stride_log2_table[bsize]) + (blk_col >> tw_w_log2_table[bsize]); assert(index < INTER_TX_SIZE_BUF_LEN); return index; } #if CONFIG_INSPECTION /* * Here is the logic to generate the lookup tables: * * TX_SIZE txs = max_txsize_rect_lookup[bsize]; * for (int level = 0; level < MAX_VARTX_DEPTH; ++level) * txs = sub_tx_size_map[txs]; * const int tx_w_log2 = tx_size_wide_log2[txs] - MI_SIZE_LOG2; * const int tx_h_log2 = tx_size_high_log2[txs] - MI_SIZE_LOG2; * const int bw_uint_log2 = mi_size_wide_log2[bsize]; * const int stride_log2 = bw_uint_log2 - tx_w_log2; */ static INLINE int av1_get_txk_type_index(BLOCK_SIZE bsize, int blk_row, int blk_col) { static const uint8_t tw_w_log2_table[BLOCK_SIZES_ALL] = { 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 0, 0, 1, 1, 2, 2, }; static const uint8_t tw_h_log2_table[BLOCK_SIZES_ALL] = { 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 0, 0, 1, 1, 2, 2, }; static const uint8_t stride_log2_table[BLOCK_SIZES_ALL] = { 0, 0, 1, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 3, 3, 0, 2, 0, 2, 0, 2, }; const int index = ((blk_row >> tw_h_log2_table[bsize]) << stride_log2_table[bsize]) + (blk_col >> tw_w_log2_table[bsize]); assert(index < TXK_TYPE_BUF_LEN); return index; } #endif // CONFIG_INSPECTION static INLINE void update_txk_array(MACROBLOCKD *const xd, int blk_row, int blk_col, TX_SIZE tx_size, TX_TYPE tx_type) { const int stride = xd->tx_type_map_stride; xd->tx_type_map[blk_row * stride + blk_col] = tx_type; const int txw = tx_size_wide_unit[tx_size]; const int txh = tx_size_high_unit[tx_size]; // The 16x16 unit is due to the constraint from tx_64x64 which sets the // maximum tx size for chroma as 32x32. Coupled with 4x1 transform block // size, the constraint takes effect in 32x16 / 16x32 size too. To solve // the intricacy, cover all the 16x16 units inside a 64 level transform. if (txw == tx_size_wide_unit[TX_64X64] || txh == tx_size_high_unit[TX_64X64]) { const int tx_unit = tx_size_wide_unit[TX_16X16]; for (int idy = 0; idy < txh; idy += tx_unit) { for (int idx = 0; idx < txw; idx += tx_unit) { xd->tx_type_map[(blk_row + idy) * stride + blk_col + idx] = tx_type; } } } } static INLINE TX_TYPE av1_get_tx_type(const MACROBLOCKD *xd, PLANE_TYPE plane_type, int blk_row, int blk_col, TX_SIZE tx_size, int reduced_tx_set) { const MB_MODE_INFO *const mbmi = xd->mi[0]; if (xd->lossless[mbmi->segment_id] || txsize_sqr_up_map[tx_size] > TX_32X32) { return DCT_DCT; } TX_TYPE tx_type; if (plane_type == PLANE_TYPE_Y) { tx_type = xd->tx_type_map[blk_row * xd->tx_type_map_stride + blk_col]; } else { if (is_inter_block(mbmi)) { // scale back to y plane's coordinate const struct macroblockd_plane *const pd = &xd->plane[plane_type]; blk_row <<= pd->subsampling_y; blk_col <<= pd->subsampling_x; tx_type = xd->tx_type_map[blk_row * xd->tx_type_map_stride + blk_col]; } else { // In intra mode, uv planes don't share the same prediction mode as y // plane, so the tx_type should not be shared tx_type = intra_mode_to_tx_type(mbmi, PLANE_TYPE_UV); } const TxSetType tx_set_type = av1_get_ext_tx_set_type(tx_size, is_inter_block(mbmi), reduced_tx_set); if (!av1_ext_tx_used[tx_set_type][tx_type]) tx_type = DCT_DCT; } assert(tx_type < TX_TYPES); assert(av1_ext_tx_used[av1_get_ext_tx_set_type(tx_size, is_inter_block(mbmi), reduced_tx_set)][tx_type]); return tx_type; } void av1_setup_block_planes(MACROBLOCKD *xd, int ss_x, int ss_y, const int num_planes); /* * Logic to generate the lookup table: * * TX_SIZE tx_size = max_txsize_rect_lookup[bsize]; * int depth = 0; * while (depth < MAX_TX_DEPTH && tx_size != TX_4X4) { * depth++; * tx_size = sub_tx_size_map[tx_size]; * } */ static INLINE int bsize_to_max_depth(BLOCK_SIZE bsize) { static const uint8_t bsize_to_max_depth_table[BLOCK_SIZES_ALL] = { 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, }; return bsize_to_max_depth_table[bsize]; } /* * Logic to generate the lookup table: * * TX_SIZE tx_size = max_txsize_rect_lookup[bsize]; * assert(tx_size != TX_4X4); * int depth = 0; * while (tx_size != TX_4X4) { * depth++; * tx_size = sub_tx_size_map[tx_size]; * } * assert(depth < 10); */ static INLINE int bsize_to_tx_size_cat(BLOCK_SIZE bsize) { assert(bsize < BLOCK_SIZES_ALL); static const uint8_t bsize_to_tx_size_depth_table[BLOCK_SIZES_ALL] = { 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 2, 2, 3, 3, 4, 4, }; const int depth = bsize_to_tx_size_depth_table[bsize]; assert(depth <= MAX_TX_CATS); return depth - 1; } static INLINE TX_SIZE depth_to_tx_size(int depth, BLOCK_SIZE bsize) { TX_SIZE max_tx_size = max_txsize_rect_lookup[bsize]; TX_SIZE tx_size = max_tx_size; for (int d = 0; d < depth; ++d) tx_size = sub_tx_size_map[tx_size]; return tx_size; } static INLINE TX_SIZE av1_get_adjusted_tx_size(TX_SIZE tx_size) { switch (tx_size) { case TX_64X64: case TX_64X32: case TX_32X64: return TX_32X32; case TX_64X16: return TX_32X16; case TX_16X64: return TX_16X32; default: return tx_size; } } static INLINE TX_SIZE av1_get_max_uv_txsize(BLOCK_SIZE bsize, int subsampling_x, int subsampling_y) { const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, subsampling_x, subsampling_y); assert(plane_bsize < BLOCK_SIZES_ALL); const TX_SIZE uv_tx = max_txsize_rect_lookup[plane_bsize]; return av1_get_adjusted_tx_size(uv_tx); } static INLINE TX_SIZE av1_get_tx_size(int plane, const MACROBLOCKD *xd) { const MB_MODE_INFO *mbmi = xd->mi[0]; if (xd->lossless[mbmi->segment_id]) return TX_4X4; if (plane == 0) return mbmi->tx_size; const MACROBLOCKD_PLANE *pd = &xd->plane[plane]; return av1_get_max_uv_txsize(mbmi->bsize, pd->subsampling_x, pd->subsampling_y); } void av1_reset_entropy_context(MACROBLOCKD *xd, BLOCK_SIZE bsize, const int num_planes); void av1_reset_loop_filter_delta(MACROBLOCKD *xd, int num_planes); void av1_reset_loop_restoration(MACROBLOCKD *xd, const int num_planes); typedef void (*foreach_transformed_block_visitor)(int plane, int block, int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg); void av1_set_entropy_contexts(const MACROBLOCKD *xd, struct macroblockd_plane *pd, int plane, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, int has_eob, int aoff, int loff); #define MAX_INTERINTRA_SB_SQUARE 32 * 32 static INLINE int is_interintra_mode(const MB_MODE_INFO *mbmi) { return (mbmi->ref_frame[0] > INTRA_FRAME && mbmi->ref_frame[1] == INTRA_FRAME); } static INLINE int is_interintra_allowed_bsize(const BLOCK_SIZE bsize) { return (bsize >= BLOCK_8X8) && (bsize <= BLOCK_32X32); } static INLINE int is_interintra_allowed_mode(const PREDICTION_MODE mode) { return (mode >= SINGLE_INTER_MODE_START) && (mode < SINGLE_INTER_MODE_END); } static INLINE int is_interintra_allowed_ref(const MV_REFERENCE_FRAME rf[2]) { return (rf[0] > INTRA_FRAME) && (rf[1] <= INTRA_FRAME); } static INLINE int is_interintra_allowed(const MB_MODE_INFO *mbmi) { return is_interintra_allowed_bsize(mbmi->bsize) && is_interintra_allowed_mode(mbmi->mode) && is_interintra_allowed_ref(mbmi->ref_frame); } static INLINE int is_interintra_allowed_bsize_group(int group) { int i; for (i = 0; i < BLOCK_SIZES_ALL; i++) { if (size_group_lookup[i] == group && is_interintra_allowed_bsize((BLOCK_SIZE)i)) { return 1; } } return 0; } static INLINE int is_interintra_pred(const MB_MODE_INFO *mbmi) { return mbmi->ref_frame[0] > INTRA_FRAME && mbmi->ref_frame[1] == INTRA_FRAME && is_interintra_allowed(mbmi); } static INLINE int get_vartx_max_txsize(const MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane) { if (xd->lossless[xd->mi[0]->segment_id]) return TX_4X4; const TX_SIZE max_txsize = max_txsize_rect_lookup[bsize]; if (plane == 0) return max_txsize; // luma return av1_get_adjusted_tx_size(max_txsize); // chroma } static INLINE int is_motion_variation_allowed_bsize(BLOCK_SIZE bsize) { assert(bsize < BLOCK_SIZES_ALL); return AOMMIN(block_size_wide[bsize], block_size_high[bsize]) >= 8; } static INLINE int is_motion_variation_allowed_compound( const MB_MODE_INFO *mbmi) { return !has_second_ref(mbmi); } // input: log2 of length, 0(4), 1(8), ... static const int max_neighbor_obmc[6] = { 0, 1, 2, 3, 4, 4 }; static INLINE int check_num_overlappable_neighbors(const MB_MODE_INFO *mbmi) { return mbmi->overlappable_neighbors != 0; } static INLINE MOTION_MODE motion_mode_allowed(const WarpedMotionParams *gm_params, const MACROBLOCKD *xd, const MB_MODE_INFO *mbmi, int allow_warped_motion) { if (!check_num_overlappable_neighbors(mbmi)) return SIMPLE_TRANSLATION; if (xd->cur_frame_force_integer_mv == 0) { const TransformationType gm_type = gm_params[mbmi->ref_frame[0]].wmtype; if (is_global_mv_block(mbmi, gm_type)) return SIMPLE_TRANSLATION; } if (is_motion_variation_allowed_bsize(mbmi->bsize) && is_inter_mode(mbmi->mode) && mbmi->ref_frame[1] != INTRA_FRAME && is_motion_variation_allowed_compound(mbmi)) { assert(!has_second_ref(mbmi)); if (mbmi->num_proj_ref >= 1 && allow_warped_motion && !xd->cur_frame_force_integer_mv && !av1_is_scaled(xd->block_ref_scale_factors[0])) { return WARPED_CAUSAL; } return OBMC_CAUSAL; } return SIMPLE_TRANSLATION; } static INLINE int is_neighbor_overlappable(const MB_MODE_INFO *mbmi) { return (is_inter_block(mbmi)); } static INLINE int av1_allow_palette(int allow_screen_content_tools, BLOCK_SIZE sb_type) { assert(sb_type < BLOCK_SIZES_ALL); return allow_screen_content_tools && block_size_wide[sb_type] <= 64 && block_size_high[sb_type] <= 64 && sb_type >= BLOCK_8X8; } // Returns sub-sampled dimensions of the given block. // The output values for 'rows_within_bounds' and 'cols_within_bounds' will // differ from 'height' and 'width' when part of the block is outside the // right // and/or bottom image boundary. static INLINE void av1_get_block_dimensions(BLOCK_SIZE bsize, int plane, const MACROBLOCKD *xd, int *width, int *height, int *rows_within_bounds, int *cols_within_bounds) { const int block_height = block_size_high[bsize]; const int block_width = block_size_wide[bsize]; const int block_rows = (xd->mb_to_bottom_edge >= 0) ? block_height : (xd->mb_to_bottom_edge >> 3) + block_height; const int block_cols = (xd->mb_to_right_edge >= 0) ? block_width : (xd->mb_to_right_edge >> 3) + block_width; const struct macroblockd_plane *const pd = &xd->plane[plane]; assert(IMPLIES(plane == PLANE_TYPE_Y, pd->subsampling_x == 0)); assert(IMPLIES(plane == PLANE_TYPE_Y, pd->subsampling_y == 0)); assert(block_width >= block_cols); assert(block_height >= block_rows); const int plane_block_width = block_width >> pd->subsampling_x; const int plane_block_height = block_height >> pd->subsampling_y; // Special handling for chroma sub8x8. const int is_chroma_sub8_x = plane > 0 && plane_block_width < 4; const int is_chroma_sub8_y = plane > 0 && plane_block_height < 4; if (width) { *width = plane_block_width + 2 * is_chroma_sub8_x; assert(*width >= 0); } if (height) { *height = plane_block_height + 2 * is_chroma_sub8_y; assert(*height >= 0); } if (rows_within_bounds) { *rows_within_bounds = (block_rows >> pd->subsampling_y) + 2 * is_chroma_sub8_y; assert(*rows_within_bounds >= 0); } if (cols_within_bounds) { *cols_within_bounds = (block_cols >> pd->subsampling_x) + 2 * is_chroma_sub8_x; assert(*cols_within_bounds >= 0); } } /* clang-format off */ // Pointer to a three-dimensional array whose first dimension is PALETTE_SIZES. typedef aom_cdf_prob (*MapCdf)[PALETTE_COLOR_INDEX_CONTEXTS] [CDF_SIZE(PALETTE_COLORS)]; // Pointer to a const three-dimensional array whose first dimension is // PALETTE_SIZES. typedef const int (*ColorCost)[PALETTE_COLOR_INDEX_CONTEXTS][PALETTE_COLORS]; /* clang-format on */ typedef struct { int rows; int cols; int n_colors; int plane_width; int plane_height; uint8_t *color_map; MapCdf map_cdf; ColorCost color_cost; } Av1ColorMapParam; static INLINE int is_nontrans_global_motion(const MACROBLOCKD *xd, const MB_MODE_INFO *mbmi) { int ref; // First check if all modes are GLOBALMV if (mbmi->mode != GLOBALMV && mbmi->mode != GLOBAL_GLOBALMV) return 0; if (AOMMIN(mi_size_wide[mbmi->bsize], mi_size_high[mbmi->bsize]) < 2) return 0; // Now check if all global motion is non translational for (ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) { if (xd->global_motion[mbmi->ref_frame[ref]].wmtype == TRANSLATION) return 0; } return 1; } static INLINE PLANE_TYPE get_plane_type(int plane) { return (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV; } static INLINE int av1_get_max_eob(TX_SIZE tx_size) { if (tx_size == TX_64X64 || tx_size == TX_64X32 || tx_size == TX_32X64) { return 1024; } if (tx_size == TX_16X64 || tx_size == TX_64X16) { return 512; } return tx_size_2d[tx_size]; } /*!\endcond */ #ifdef __cplusplus } // extern "C" #endif #endif // AOM_AV1_COMMON_BLOCKD_H_