/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include #include #include #include #include "config/aom_config.h" #include "aom_dsp/aom_dsp_common.h" #include "aom_ports/mem.h" #include "aom_scale/aom_scale.h" #include "av1/common/common.h" #include "av1/common/resize.h" #include "config/aom_dsp_rtcd.h" #include "config/aom_scale_rtcd.h" // Filters for interpolation (0.5-band) - note this also filters integer pels. static const InterpKernel filteredinterp_filters500[(1 << RS_SUBPEL_BITS)] = { { -3, 0, 35, 64, 35, 0, -3, 0 }, { -3, 0, 34, 64, 36, 0, -3, 0 }, { -3, -1, 34, 64, 36, 1, -3, 0 }, { -3, -1, 33, 64, 37, 1, -3, 0 }, { -3, -1, 32, 64, 38, 1, -3, 0 }, { -3, -1, 31, 64, 39, 1, -3, 0 }, { -3, -1, 31, 63, 39, 2, -3, 0 }, { -2, -2, 30, 63, 40, 2, -3, 0 }, { -2, -2, 29, 63, 41, 2, -3, 0 }, { -2, -2, 29, 63, 41, 3, -4, 0 }, { -2, -2, 28, 63, 42, 3, -4, 0 }, { -2, -2, 27, 63, 43, 3, -4, 0 }, { -2, -3, 27, 63, 43, 4, -4, 0 }, { -2, -3, 26, 62, 44, 5, -4, 0 }, { -2, -3, 25, 62, 45, 5, -4, 0 }, { -2, -3, 25, 62, 45, 5, -4, 0 }, { -2, -3, 24, 62, 46, 5, -4, 0 }, { -2, -3, 23, 61, 47, 6, -4, 0 }, { -2, -3, 23, 61, 47, 6, -4, 0 }, { -2, -3, 22, 61, 48, 7, -4, -1 }, { -2, -3, 21, 60, 49, 7, -4, 0 }, { -1, -4, 20, 60, 49, 8, -4, 0 }, { -1, -4, 20, 60, 50, 8, -4, -1 }, { -1, -4, 19, 59, 51, 9, -4, -1 }, { -1, -4, 19, 59, 51, 9, -4, -1 }, { -1, -4, 18, 58, 52, 10, -4, -1 }, { -1, -4, 17, 58, 52, 11, -4, -1 }, { -1, -4, 16, 58, 53, 11, -4, -1 }, { -1, -4, 16, 57, 53, 12, -4, -1 }, { -1, -4, 15, 57, 54, 12, -4, -1 }, { -1, -4, 15, 56, 54, 13, -4, -1 }, { -1, -4, 14, 56, 55, 13, -4, -1 }, { -1, -4, 14, 55, 55, 14, -4, -1 }, { -1, -4, 13, 55, 56, 14, -4, -1 }, { -1, -4, 13, 54, 56, 15, -4, -1 }, { -1, -4, 12, 54, 57, 15, -4, -1 }, { -1, -4, 12, 53, 57, 16, -4, -1 }, { -1, -4, 11, 53, 58, 16, -4, -1 }, { -1, -4, 11, 52, 58, 17, -4, -1 }, { -1, -4, 10, 52, 58, 18, -4, -1 }, { -1, -4, 9, 51, 59, 19, -4, -1 }, { -1, -4, 9, 51, 59, 19, -4, -1 }, { -1, -4, 8, 50, 60, 20, -4, -1 }, { 0, -4, 8, 49, 60, 20, -4, -1 }, { 0, -4, 7, 49, 60, 21, -3, -2 }, { -1, -4, 7, 48, 61, 22, -3, -2 }, { 0, -4, 6, 47, 61, 23, -3, -2 }, { 0, -4, 6, 47, 61, 23, -3, -2 }, { 0, -4, 5, 46, 62, 24, -3, -2 }, { 0, -4, 5, 45, 62, 25, -3, -2 }, { 0, -4, 5, 45, 62, 25, -3, -2 }, { 0, -4, 5, 44, 62, 26, -3, -2 }, { 0, -4, 4, 43, 63, 27, -3, -2 }, { 0, -4, 3, 43, 63, 27, -2, -2 }, { 0, -4, 3, 42, 63, 28, -2, -2 }, { 0, -4, 3, 41, 63, 29, -2, -2 }, { 0, -3, 2, 41, 63, 29, -2, -2 }, { 0, -3, 2, 40, 63, 30, -2, -2 }, { 0, -3, 2, 39, 63, 31, -1, -3 }, { 0, -3, 1, 39, 64, 31, -1, -3 }, { 0, -3, 1, 38, 64, 32, -1, -3 }, { 0, -3, 1, 37, 64, 33, -1, -3 }, { 0, -3, 1, 36, 64, 34, -1, -3 }, { 0, -3, 0, 36, 64, 34, 0, -3 }, }; // Filters for interpolation (0.625-band) - note this also filters integer pels. static const InterpKernel filteredinterp_filters625[(1 << RS_SUBPEL_BITS)] = { { -1, -8, 33, 80, 33, -8, -1, 0 }, { -1, -8, 31, 80, 34, -8, -1, 1 }, { -1, -8, 30, 80, 35, -8, -1, 1 }, { -1, -8, 29, 80, 36, -7, -2, 1 }, { -1, -8, 28, 80, 37, -7, -2, 1 }, { -1, -8, 27, 80, 38, -7, -2, 1 }, { 0, -8, 26, 79, 39, -7, -2, 1 }, { 0, -8, 25, 79, 40, -7, -2, 1 }, { 0, -8, 24, 79, 41, -7, -2, 1 }, { 0, -8, 23, 78, 42, -6, -2, 1 }, { 0, -8, 22, 78, 43, -6, -2, 1 }, { 0, -8, 21, 78, 44, -6, -2, 1 }, { 0, -8, 20, 78, 45, -5, -3, 1 }, { 0, -8, 19, 77, 47, -5, -3, 1 }, { 0, -8, 18, 77, 48, -5, -3, 1 }, { 0, -8, 17, 77, 49, -5, -3, 1 }, { 0, -8, 16, 76, 50, -4, -3, 1 }, { 0, -8, 15, 76, 51, -4, -3, 1 }, { 0, -8, 15, 75, 52, -3, -4, 1 }, { 0, -7, 14, 74, 53, -3, -4, 1 }, { 0, -7, 13, 74, 54, -3, -4, 1 }, { 0, -7, 12, 73, 55, -2, -4, 1 }, { 0, -7, 11, 73, 56, -2, -4, 1 }, { 0, -7, 10, 72, 57, -1, -4, 1 }, { 1, -7, 10, 71, 58, -1, -5, 1 }, { 0, -7, 9, 71, 59, 0, -5, 1 }, { 1, -7, 8, 70, 60, 0, -5, 1 }, { 1, -7, 7, 69, 61, 1, -5, 1 }, { 1, -6, 6, 68, 62, 1, -5, 1 }, { 0, -6, 6, 68, 62, 2, -5, 1 }, { 1, -6, 5, 67, 63, 2, -5, 1 }, { 1, -6, 5, 66, 64, 3, -6, 1 }, { 1, -6, 4, 65, 65, 4, -6, 1 }, { 1, -6, 3, 64, 66, 5, -6, 1 }, { 1, -5, 2, 63, 67, 5, -6, 1 }, { 1, -5, 2, 62, 68, 6, -6, 0 }, { 1, -5, 1, 62, 68, 6, -6, 1 }, { 1, -5, 1, 61, 69, 7, -7, 1 }, { 1, -5, 0, 60, 70, 8, -7, 1 }, { 1, -5, 0, 59, 71, 9, -7, 0 }, { 1, -5, -1, 58, 71, 10, -7, 1 }, { 1, -4, -1, 57, 72, 10, -7, 0 }, { 1, -4, -2, 56, 73, 11, -7, 0 }, { 1, -4, -2, 55, 73, 12, -7, 0 }, { 1, -4, -3, 54, 74, 13, -7, 0 }, { 1, -4, -3, 53, 74, 14, -7, 0 }, { 1, -4, -3, 52, 75, 15, -8, 0 }, { 1, -3, -4, 51, 76, 15, -8, 0 }, { 1, -3, -4, 50, 76, 16, -8, 0 }, { 1, -3, -5, 49, 77, 17, -8, 0 }, { 1, -3, -5, 48, 77, 18, -8, 0 }, { 1, -3, -5, 47, 77, 19, -8, 0 }, { 1, -3, -5, 45, 78, 20, -8, 0 }, { 1, -2, -6, 44, 78, 21, -8, 0 }, { 1, -2, -6, 43, 78, 22, -8, 0 }, { 1, -2, -6, 42, 78, 23, -8, 0 }, { 1, -2, -7, 41, 79, 24, -8, 0 }, { 1, -2, -7, 40, 79, 25, -8, 0 }, { 1, -2, -7, 39, 79, 26, -8, 0 }, { 1, -2, -7, 38, 80, 27, -8, -1 }, { 1, -2, -7, 37, 80, 28, -8, -1 }, { 1, -2, -7, 36, 80, 29, -8, -1 }, { 1, -1, -8, 35, 80, 30, -8, -1 }, { 1, -1, -8, 34, 80, 31, -8, -1 }, }; // Filters for interpolation (0.75-band) - note this also filters integer pels. static const InterpKernel filteredinterp_filters750[(1 << RS_SUBPEL_BITS)] = { { 2, -11, 25, 96, 25, -11, 2, 0 }, { 2, -11, 24, 96, 26, -11, 2, 0 }, { 2, -11, 22, 96, 28, -11, 2, 0 }, { 2, -10, 21, 96, 29, -12, 2, 0 }, { 2, -10, 19, 96, 31, -12, 2, 0 }, { 2, -10, 18, 95, 32, -11, 2, 0 }, { 2, -10, 17, 95, 34, -12, 2, 0 }, { 2, -9, 15, 95, 35, -12, 2, 0 }, { 2, -9, 14, 94, 37, -12, 2, 0 }, { 2, -9, 13, 94, 38, -12, 2, 0 }, { 2, -8, 12, 93, 40, -12, 1, 0 }, { 2, -8, 11, 93, 41, -12, 1, 0 }, { 2, -8, 9, 92, 43, -12, 1, 1 }, { 2, -8, 8, 92, 44, -12, 1, 1 }, { 2, -7, 7, 91, 46, -12, 1, 0 }, { 2, -7, 6, 90, 47, -12, 1, 1 }, { 2, -7, 5, 90, 49, -12, 1, 0 }, { 2, -6, 4, 89, 50, -12, 1, 0 }, { 2, -6, 3, 88, 52, -12, 0, 1 }, { 2, -6, 2, 87, 54, -12, 0, 1 }, { 2, -5, 1, 86, 55, -12, 0, 1 }, { 2, -5, 0, 85, 57, -12, 0, 1 }, { 2, -5, -1, 84, 58, -11, 0, 1 }, { 2, -5, -2, 83, 60, -11, 0, 1 }, { 2, -4, -2, 82, 61, -11, -1, 1 }, { 1, -4, -3, 81, 63, -10, -1, 1 }, { 2, -4, -4, 80, 64, -10, -1, 1 }, { 1, -4, -4, 79, 66, -10, -1, 1 }, { 1, -3, -5, 77, 67, -9, -1, 1 }, { 1, -3, -6, 76, 69, -9, -1, 1 }, { 1, -3, -6, 75, 70, -8, -2, 1 }, { 1, -2, -7, 74, 71, -8, -2, 1 }, { 1, -2, -7, 72, 72, -7, -2, 1 }, { 1, -2, -8, 71, 74, -7, -2, 1 }, { 1, -2, -8, 70, 75, -6, -3, 1 }, { 1, -1, -9, 69, 76, -6, -3, 1 }, { 1, -1, -9, 67, 77, -5, -3, 1 }, { 1, -1, -10, 66, 79, -4, -4, 1 }, { 1, -1, -10, 64, 80, -4, -4, 2 }, { 1, -1, -10, 63, 81, -3, -4, 1 }, { 1, -1, -11, 61, 82, -2, -4, 2 }, { 1, 0, -11, 60, 83, -2, -5, 2 }, { 1, 0, -11, 58, 84, -1, -5, 2 }, { 1, 0, -12, 57, 85, 0, -5, 2 }, { 1, 0, -12, 55, 86, 1, -5, 2 }, { 1, 0, -12, 54, 87, 2, -6, 2 }, { 1, 0, -12, 52, 88, 3, -6, 2 }, { 0, 1, -12, 50, 89, 4, -6, 2 }, { 0, 1, -12, 49, 90, 5, -7, 2 }, { 1, 1, -12, 47, 90, 6, -7, 2 }, { 0, 1, -12, 46, 91, 7, -7, 2 }, { 1, 1, -12, 44, 92, 8, -8, 2 }, { 1, 1, -12, 43, 92, 9, -8, 2 }, { 0, 1, -12, 41, 93, 11, -8, 2 }, { 0, 1, -12, 40, 93, 12, -8, 2 }, { 0, 2, -12, 38, 94, 13, -9, 2 }, { 0, 2, -12, 37, 94, 14, -9, 2 }, { 0, 2, -12, 35, 95, 15, -9, 2 }, { 0, 2, -12, 34, 95, 17, -10, 2 }, { 0, 2, -11, 32, 95, 18, -10, 2 }, { 0, 2, -12, 31, 96, 19, -10, 2 }, { 0, 2, -12, 29, 96, 21, -10, 2 }, { 0, 2, -11, 28, 96, 22, -11, 2 }, { 0, 2, -11, 26, 96, 24, -11, 2 }, }; // Filters for interpolation (0.875-band) - note this also filters integer pels. static const InterpKernel filteredinterp_filters875[(1 << RS_SUBPEL_BITS)] = { { 3, -8, 13, 112, 13, -8, 3, 0 }, { 2, -7, 12, 112, 15, -8, 3, -1 }, { 3, -7, 10, 112, 17, -9, 3, -1 }, { 2, -6, 8, 112, 19, -9, 3, -1 }, { 2, -6, 7, 112, 21, -10, 3, -1 }, { 2, -5, 6, 111, 22, -10, 3, -1 }, { 2, -5, 4, 111, 24, -10, 3, -1 }, { 2, -4, 3, 110, 26, -11, 3, -1 }, { 2, -4, 1, 110, 28, -11, 3, -1 }, { 2, -4, 0, 109, 30, -12, 4, -1 }, { 1, -3, -1, 108, 32, -12, 4, -1 }, { 1, -3, -2, 108, 34, -13, 4, -1 }, { 1, -2, -4, 107, 36, -13, 4, -1 }, { 1, -2, -5, 106, 38, -13, 4, -1 }, { 1, -1, -6, 105, 40, -14, 4, -1 }, { 1, -1, -7, 104, 42, -14, 4, -1 }, { 1, -1, -7, 103, 44, -15, 4, -1 }, { 1, 0, -8, 101, 46, -15, 4, -1 }, { 1, 0, -9, 100, 48, -15, 4, -1 }, { 1, 0, -10, 99, 50, -15, 4, -1 }, { 1, 1, -11, 97, 53, -16, 4, -1 }, { 0, 1, -11, 96, 55, -16, 4, -1 }, { 0, 1, -12, 95, 57, -16, 4, -1 }, { 0, 2, -13, 93, 59, -16, 4, -1 }, { 0, 2, -13, 91, 61, -16, 4, -1 }, { 0, 2, -14, 90, 63, -16, 4, -1 }, { 0, 2, -14, 88, 65, -16, 4, -1 }, { 0, 2, -15, 86, 67, -16, 4, 0 }, { 0, 3, -15, 84, 69, -17, 4, 0 }, { 0, 3, -16, 83, 71, -17, 4, 0 }, { 0, 3, -16, 81, 73, -16, 3, 0 }, { 0, 3, -16, 79, 75, -16, 3, 0 }, { 0, 3, -16, 77, 77, -16, 3, 0 }, { 0, 3, -16, 75, 79, -16, 3, 0 }, { 0, 3, -16, 73, 81, -16, 3, 0 }, { 0, 4, -17, 71, 83, -16, 3, 0 }, { 0, 4, -17, 69, 84, -15, 3, 0 }, { 0, 4, -16, 67, 86, -15, 2, 0 }, { -1, 4, -16, 65, 88, -14, 2, 0 }, { -1, 4, -16, 63, 90, -14, 2, 0 }, { -1, 4, -16, 61, 91, -13, 2, 0 }, { -1, 4, -16, 59, 93, -13, 2, 0 }, { -1, 4, -16, 57, 95, -12, 1, 0 }, { -1, 4, -16, 55, 96, -11, 1, 0 }, { -1, 4, -16, 53, 97, -11, 1, 1 }, { -1, 4, -15, 50, 99, -10, 0, 1 }, { -1, 4, -15, 48, 100, -9, 0, 1 }, { -1, 4, -15, 46, 101, -8, 0, 1 }, { -1, 4, -15, 44, 103, -7, -1, 1 }, { -1, 4, -14, 42, 104, -7, -1, 1 }, { -1, 4, -14, 40, 105, -6, -1, 1 }, { -1, 4, -13, 38, 106, -5, -2, 1 }, { -1, 4, -13, 36, 107, -4, -2, 1 }, { -1, 4, -13, 34, 108, -2, -3, 1 }, { -1, 4, -12, 32, 108, -1, -3, 1 }, { -1, 4, -12, 30, 109, 0, -4, 2 }, { -1, 3, -11, 28, 110, 1, -4, 2 }, { -1, 3, -11, 26, 110, 3, -4, 2 }, { -1, 3, -10, 24, 111, 4, -5, 2 }, { -1, 3, -10, 22, 111, 6, -5, 2 }, { -1, 3, -10, 21, 112, 7, -6, 2 }, { -1, 3, -9, 19, 112, 8, -6, 2 }, { -1, 3, -9, 17, 112, 10, -7, 3 }, { -1, 3, -8, 15, 112, 12, -7, 2 }, }; const int16_t av1_resize_filter_normative[( 1 << RS_SUBPEL_BITS)][UPSCALE_NORMATIVE_TAPS] = { #if UPSCALE_NORMATIVE_TAPS == 8 { 0, 0, 0, 128, 0, 0, 0, 0 }, { 0, 0, -1, 128, 2, -1, 0, 0 }, { 0, 1, -3, 127, 4, -2, 1, 0 }, { 0, 1, -4, 127, 6, -3, 1, 0 }, { 0, 2, -6, 126, 8, -3, 1, 0 }, { 0, 2, -7, 125, 11, -4, 1, 0 }, { -1, 2, -8, 125, 13, -5, 2, 0 }, { -1, 3, -9, 124, 15, -6, 2, 0 }, { -1, 3, -10, 123, 18, -6, 2, -1 }, { -1, 3, -11, 122, 20, -7, 3, -1 }, { -1, 4, -12, 121, 22, -8, 3, -1 }, { -1, 4, -13, 120, 25, -9, 3, -1 }, { -1, 4, -14, 118, 28, -9, 3, -1 }, { -1, 4, -15, 117, 30, -10, 4, -1 }, { -1, 5, -16, 116, 32, -11, 4, -1 }, { -1, 5, -16, 114, 35, -12, 4, -1 }, { -1, 5, -17, 112, 38, -12, 4, -1 }, { -1, 5, -18, 111, 40, -13, 5, -1 }, { -1, 5, -18, 109, 43, -14, 5, -1 }, { -1, 6, -19, 107, 45, -14, 5, -1 }, { -1, 6, -19, 105, 48, -15, 5, -1 }, { -1, 6, -19, 103, 51, -16, 5, -1 }, { -1, 6, -20, 101, 53, -16, 6, -1 }, { -1, 6, -20, 99, 56, -17, 6, -1 }, { -1, 6, -20, 97, 58, -17, 6, -1 }, { -1, 6, -20, 95, 61, -18, 6, -1 }, { -2, 7, -20, 93, 64, -18, 6, -2 }, { -2, 7, -20, 91, 66, -19, 6, -1 }, { -2, 7, -20, 88, 69, -19, 6, -1 }, { -2, 7, -20, 86, 71, -19, 6, -1 }, { -2, 7, -20, 84, 74, -20, 7, -2 }, { -2, 7, -20, 81, 76, -20, 7, -1 }, { -2, 7, -20, 79, 79, -20, 7, -2 }, { -1, 7, -20, 76, 81, -20, 7, -2 }, { -2, 7, -20, 74, 84, -20, 7, -2 }, { -1, 6, -19, 71, 86, -20, 7, -2 }, { -1, 6, -19, 69, 88, -20, 7, -2 }, { -1, 6, -19, 66, 91, -20, 7, -2 }, { -2, 6, -18, 64, 93, -20, 7, -2 }, { -1, 6, -18, 61, 95, -20, 6, -1 }, { -1, 6, -17, 58, 97, -20, 6, -1 }, { -1, 6, -17, 56, 99, -20, 6, -1 }, { -1, 6, -16, 53, 101, -20, 6, -1 }, { -1, 5, -16, 51, 103, -19, 6, -1 }, { -1, 5, -15, 48, 105, -19, 6, -1 }, { -1, 5, -14, 45, 107, -19, 6, -1 }, { -1, 5, -14, 43, 109, -18, 5, -1 }, { -1, 5, -13, 40, 111, -18, 5, -1 }, { -1, 4, -12, 38, 112, -17, 5, -1 }, { -1, 4, -12, 35, 114, -16, 5, -1 }, { -1, 4, -11, 32, 116, -16, 5, -1 }, { -1, 4, -10, 30, 117, -15, 4, -1 }, { -1, 3, -9, 28, 118, -14, 4, -1 }, { -1, 3, -9, 25, 120, -13, 4, -1 }, { -1, 3, -8, 22, 121, -12, 4, -1 }, { -1, 3, -7, 20, 122, -11, 3, -1 }, { -1, 2, -6, 18, 123, -10, 3, -1 }, { 0, 2, -6, 15, 124, -9, 3, -1 }, { 0, 2, -5, 13, 125, -8, 2, -1 }, { 0, 1, -4, 11, 125, -7, 2, 0 }, { 0, 1, -3, 8, 126, -6, 2, 0 }, { 0, 1, -3, 6, 127, -4, 1, 0 }, { 0, 1, -2, 4, 127, -3, 1, 0 }, { 0, 0, -1, 2, 128, -1, 0, 0 }, #else #error "Invalid value of UPSCALE_NORMATIVE_TAPS" #endif // UPSCALE_NORMATIVE_TAPS == 8 }; // Filters for interpolation (full-band) - no filtering for integer pixels #define filteredinterp_filters1000 av1_resize_filter_normative // Filters for factor of 2 downsampling. static const int16_t av1_down2_symeven_half_filter[] = { 56, 12, -3, -1 }; static const int16_t av1_down2_symodd_half_filter[] = { 64, 35, 0, -3 }; static const InterpKernel *choose_interp_filter(int in_length, int out_length) { int out_length16 = out_length * 16; if (out_length16 >= in_length * 16) return filteredinterp_filters1000; else if (out_length16 >= in_length * 13) return filteredinterp_filters875; else if (out_length16 >= in_length * 11) return filteredinterp_filters750; else if (out_length16 >= in_length * 9) return filteredinterp_filters625; else return filteredinterp_filters500; } static void interpolate_core(const uint8_t *const input, int in_length, uint8_t *output, int out_length, const int16_t *interp_filters, int interp_taps) { const int32_t delta = (((uint32_t)in_length << RS_SCALE_SUBPEL_BITS) + out_length / 2) / out_length; const int32_t offset = in_length > out_length ? (((int32_t)(in_length - out_length) << (RS_SCALE_SUBPEL_BITS - 1)) + out_length / 2) / out_length : -(((int32_t)(out_length - in_length) << (RS_SCALE_SUBPEL_BITS - 1)) + out_length / 2) / out_length; uint8_t *optr = output; int x, x1, x2, sum, k, int_pel, sub_pel; int32_t y; x = 0; y = offset + RS_SCALE_EXTRA_OFF; while ((y >> RS_SCALE_SUBPEL_BITS) < (interp_taps / 2 - 1)) { x++; y += delta; } x1 = x; x = out_length - 1; y = delta * x + offset + RS_SCALE_EXTRA_OFF; while ((y >> RS_SCALE_SUBPEL_BITS) + (int32_t)(interp_taps / 2) >= in_length) { x--; y -= delta; } x2 = x; if (x1 > x2) { for (x = 0, y = offset + RS_SCALE_EXTRA_OFF; x < out_length; ++x, y += delta) { int_pel = y >> RS_SCALE_SUBPEL_BITS; sub_pel = (y >> RS_SCALE_EXTRA_BITS) & RS_SUBPEL_MASK; const int16_t *filter = &interp_filters[sub_pel * interp_taps]; sum = 0; for (k = 0; k < interp_taps; ++k) { const int pk = int_pel - interp_taps / 2 + 1 + k; sum += filter[k] * input[AOMMAX(AOMMIN(pk, in_length - 1), 0)]; } *optr++ = clip_pixel(ROUND_POWER_OF_TWO(sum, FILTER_BITS)); } } else { // Initial part. for (x = 0, y = offset + RS_SCALE_EXTRA_OFF; x < x1; ++x, y += delta) { int_pel = y >> RS_SCALE_SUBPEL_BITS; sub_pel = (y >> RS_SCALE_EXTRA_BITS) & RS_SUBPEL_MASK; const int16_t *filter = &interp_filters[sub_pel * interp_taps]; sum = 0; for (k = 0; k < interp_taps; ++k) sum += filter[k] * input[AOMMAX(int_pel - interp_taps / 2 + 1 + k, 0)]; *optr++ = clip_pixel(ROUND_POWER_OF_TWO(sum, FILTER_BITS)); } // Middle part. for (; x <= x2; ++x, y += delta) { int_pel = y >> RS_SCALE_SUBPEL_BITS; sub_pel = (y >> RS_SCALE_EXTRA_BITS) & RS_SUBPEL_MASK; const int16_t *filter = &interp_filters[sub_pel * interp_taps]; sum = 0; for (k = 0; k < interp_taps; ++k) sum += filter[k] * input[int_pel - interp_taps / 2 + 1 + k]; *optr++ = clip_pixel(ROUND_POWER_OF_TWO(sum, FILTER_BITS)); } // End part. for (; x < out_length; ++x, y += delta) { int_pel = y >> RS_SCALE_SUBPEL_BITS; sub_pel = (y >> RS_SCALE_EXTRA_BITS) & RS_SUBPEL_MASK; const int16_t *filter = &interp_filters[sub_pel * interp_taps]; sum = 0; for (k = 0; k < interp_taps; ++k) sum += filter[k] * input[AOMMIN(int_pel - interp_taps / 2 + 1 + k, in_length - 1)]; *optr++ = clip_pixel(ROUND_POWER_OF_TWO(sum, FILTER_BITS)); } } } static void interpolate_core_double_prec(const double *const input, int in_length, double *output, int out_length, const int16_t *interp_filters, int interp_taps) { const int32_t delta = (((uint32_t)in_length << RS_SCALE_SUBPEL_BITS) + out_length / 2) / out_length; const int32_t offset = in_length > out_length ? (((int32_t)(in_length - out_length) << (RS_SCALE_SUBPEL_BITS - 1)) + out_length / 2) / out_length : -(((int32_t)(out_length - in_length) << (RS_SCALE_SUBPEL_BITS - 1)) + out_length / 2) / out_length; double *optr = output; int x, x1, x2, k, int_pel, sub_pel; double sum; int32_t y; x = 0; y = offset + RS_SCALE_EXTRA_OFF; while ((y >> RS_SCALE_SUBPEL_BITS) < (interp_taps / 2 - 1)) { x++; y += delta; } x1 = x; x = out_length - 1; y = delta * x + offset + RS_SCALE_EXTRA_OFF; while ((y >> RS_SCALE_SUBPEL_BITS) + (int32_t)(interp_taps / 2) >= in_length) { x--; y -= delta; } x2 = x; if (x1 > x2) { for (x = 0, y = offset + RS_SCALE_EXTRA_OFF; x < out_length; ++x, y += delta) { int_pel = y >> RS_SCALE_SUBPEL_BITS; sub_pel = (y >> RS_SCALE_EXTRA_BITS) & RS_SUBPEL_MASK; const int16_t *filter = &interp_filters[sub_pel * interp_taps]; sum = 0; for (k = 0; k < interp_taps; ++k) { const int pk = int_pel - interp_taps / 2 + 1 + k; sum += filter[k] * input[AOMMAX(AOMMIN(pk, in_length - 1), 0)]; } *optr++ = sum / (1 << FILTER_BITS); } } else { // Initial part. for (x = 0, y = offset + RS_SCALE_EXTRA_OFF; x < x1; ++x, y += delta) { int_pel = y >> RS_SCALE_SUBPEL_BITS; sub_pel = (y >> RS_SCALE_EXTRA_BITS) & RS_SUBPEL_MASK; const int16_t *filter = &interp_filters[sub_pel * interp_taps]; sum = 0; for (k = 0; k < interp_taps; ++k) sum += filter[k] * input[AOMMAX(int_pel - interp_taps / 2 + 1 + k, 0)]; *optr++ = sum / (1 << FILTER_BITS); } // Middle part. for (; x <= x2; ++x, y += delta) { int_pel = y >> RS_SCALE_SUBPEL_BITS; sub_pel = (y >> RS_SCALE_EXTRA_BITS) & RS_SUBPEL_MASK; const int16_t *filter = &interp_filters[sub_pel * interp_taps]; sum = 0; for (k = 0; k < interp_taps; ++k) sum += filter[k] * input[int_pel - interp_taps / 2 + 1 + k]; *optr++ = sum / (1 << FILTER_BITS); } // End part. for (; x < out_length; ++x, y += delta) { int_pel = y >> RS_SCALE_SUBPEL_BITS; sub_pel = (y >> RS_SCALE_EXTRA_BITS) & RS_SUBPEL_MASK; const int16_t *filter = &interp_filters[sub_pel * interp_taps]; sum = 0; for (k = 0; k < interp_taps; ++k) sum += filter[k] * input[AOMMIN(int_pel - interp_taps / 2 + 1 + k, in_length - 1)]; *optr++ = sum / (1 << FILTER_BITS); } } } static void interpolate(const uint8_t *const input, int in_length, uint8_t *output, int out_length) { const InterpKernel *interp_filters = choose_interp_filter(in_length, out_length); interpolate_core(input, in_length, output, out_length, &interp_filters[0][0], SUBPEL_TAPS); } static void interpolate_double_prec(const double *const input, int in_length, double *output, int out_length) { const InterpKernel *interp_filters = choose_interp_filter(in_length, out_length); interpolate_core_double_prec(input, in_length, output, out_length, &interp_filters[0][0], SUBPEL_TAPS); } int32_t av1_get_upscale_convolve_step(int in_length, int out_length) { return ((in_length << RS_SCALE_SUBPEL_BITS) + out_length / 2) / out_length; } static int32_t get_upscale_convolve_x0(int in_length, int out_length, int32_t x_step_qn) { const int err = out_length * x_step_qn - (in_length << RS_SCALE_SUBPEL_BITS); const int32_t x0 = (-((out_length - in_length) << (RS_SCALE_SUBPEL_BITS - 1)) + out_length / 2) / out_length + RS_SCALE_EXTRA_OFF - err / 2; return (int32_t)((uint32_t)x0 & RS_SCALE_SUBPEL_MASK); } static void down2_symeven(const uint8_t *const input, int length, uint8_t *output) { // Actual filter len = 2 * filter_len_half. const int16_t *filter = av1_down2_symeven_half_filter; const int filter_len_half = sizeof(av1_down2_symeven_half_filter) / 2; int i, j; uint8_t *optr = output; int l1 = filter_len_half; int l2 = (length - filter_len_half); l1 += (l1 & 1); l2 += (l2 & 1); if (l1 > l2) { // Short input length. for (i = 0; i < length; i += 2) { int sum = (1 << (FILTER_BITS - 1)); for (j = 0; j < filter_len_half; ++j) { sum += (input[AOMMAX(i - j, 0)] + input[AOMMIN(i + 1 + j, length - 1)]) * filter[j]; } sum >>= FILTER_BITS; *optr++ = clip_pixel(sum); } } else { // Initial part. for (i = 0; i < l1; i += 2) { int sum = (1 << (FILTER_BITS - 1)); for (j = 0; j < filter_len_half; ++j) { sum += (input[AOMMAX(i - j, 0)] + input[i + 1 + j]) * filter[j]; } sum >>= FILTER_BITS; *optr++ = clip_pixel(sum); } // Middle part. for (; i < l2; i += 2) { int sum = (1 << (FILTER_BITS - 1)); for (j = 0; j < filter_len_half; ++j) { sum += (input[i - j] + input[i + 1 + j]) * filter[j]; } sum >>= FILTER_BITS; *optr++ = clip_pixel(sum); } // End part. for (; i < length; i += 2) { int sum = (1 << (FILTER_BITS - 1)); for (j = 0; j < filter_len_half; ++j) { sum += (input[i - j] + input[AOMMIN(i + 1 + j, length - 1)]) * filter[j]; } sum >>= FILTER_BITS; *optr++ = clip_pixel(sum); } } } static void down2_symodd(const uint8_t *const input, int length, uint8_t *output) { // Actual filter len = 2 * filter_len_half - 1. const int16_t *filter = av1_down2_symodd_half_filter; const int filter_len_half = sizeof(av1_down2_symodd_half_filter) / 2; int i, j; uint8_t *optr = output; int l1 = filter_len_half - 1; int l2 = (length - filter_len_half + 1); l1 += (l1 & 1); l2 += (l2 & 1); if (l1 > l2) { // Short input length. for (i = 0; i < length; i += 2) { int sum = (1 << (FILTER_BITS - 1)) + input[i] * filter[0]; for (j = 1; j < filter_len_half; ++j) { sum += (input[(i - j < 0 ? 0 : i - j)] + input[(i + j >= length ? length - 1 : i + j)]) * filter[j]; } sum >>= FILTER_BITS; *optr++ = clip_pixel(sum); } } else { // Initial part. for (i = 0; i < l1; i += 2) { int sum = (1 << (FILTER_BITS - 1)) + input[i] * filter[0]; for (j = 1; j < filter_len_half; ++j) { sum += (input[(i - j < 0 ? 0 : i - j)] + input[i + j]) * filter[j]; } sum >>= FILTER_BITS; *optr++ = clip_pixel(sum); } // Middle part. for (; i < l2; i += 2) { int sum = (1 << (FILTER_BITS - 1)) + input[i] * filter[0]; for (j = 1; j < filter_len_half; ++j) { sum += (input[i - j] + input[i + j]) * filter[j]; } sum >>= FILTER_BITS; *optr++ = clip_pixel(sum); } // End part. for (; i < length; i += 2) { int sum = (1 << (FILTER_BITS - 1)) + input[i] * filter[0]; for (j = 1; j < filter_len_half; ++j) { sum += (input[i - j] + input[(i + j >= length ? length - 1 : i + j)]) * filter[j]; } sum >>= FILTER_BITS; *optr++ = clip_pixel(sum); } } } static int get_down2_length(int length, int steps) { for (int s = 0; s < steps; ++s) length = (length + 1) >> 1; return length; } static int get_down2_steps(int in_length, int out_length) { int steps = 0; int proj_in_length; while ((proj_in_length = get_down2_length(in_length, 1)) >= out_length) { ++steps; in_length = proj_in_length; if (in_length == 1) { // Special case: we break because any further calls to get_down2_length() // with be with length == 1, which return 1, resulting in an infinite // loop. break; } } return steps; } static void resize_multistep(const uint8_t *const input, int length, uint8_t *output, int olength, uint8_t *otmp) { if (length == olength) { memcpy(output, input, sizeof(output[0]) * length); return; } const int steps = get_down2_steps(length, olength); if (steps > 0) { uint8_t *out = NULL; int filteredlength = length; assert(otmp != NULL); uint8_t *otmp2 = otmp + get_down2_length(length, 1); for (int s = 0; s < steps; ++s) { const int proj_filteredlength = get_down2_length(filteredlength, 1); const uint8_t *const in = (s == 0 ? input : out); if (s == steps - 1 && proj_filteredlength == olength) out = output; else out = (s & 1 ? otmp2 : otmp); if (filteredlength & 1) down2_symodd(in, filteredlength, out); else down2_symeven(in, filteredlength, out); filteredlength = proj_filteredlength; } if (filteredlength != olength) { interpolate(out, filteredlength, output, olength); } } else { interpolate(input, length, output, olength); } } static void upscale_multistep_double_prec(const double *const input, int length, double *output, int olength) { assert(length < olength); interpolate_double_prec(input, length, output, olength); } static void fill_col_to_arr(uint8_t *img, int stride, int len, uint8_t *arr) { int i; uint8_t *iptr = img; uint8_t *aptr = arr; for (i = 0; i < len; ++i, iptr += stride) { *aptr++ = *iptr; } } static void fill_arr_to_col(uint8_t *img, int stride, int len, uint8_t *arr) { int i; uint8_t *iptr = img; uint8_t *aptr = arr; for (i = 0; i < len; ++i, iptr += stride) { *iptr = *aptr++; } } static void fill_col_to_arr_double_prec(double *img, int stride, int len, double *arr) { int i; double *iptr = img; double *aptr = arr; for (i = 0; i < len; ++i, iptr += stride) { *aptr++ = *iptr; } } static void fill_arr_to_col_double_prec(double *img, int stride, int len, double *arr) { int i; double *iptr = img; double *aptr = arr; for (i = 0; i < len; ++i, iptr += stride) { *iptr = *aptr++; } } void av1_resize_plane(const uint8_t *const input, int height, int width, int in_stride, uint8_t *output, int height2, int width2, int out_stride) { int i; uint8_t *intbuf = (uint8_t *)aom_malloc(sizeof(uint8_t) * width2 * height); uint8_t *tmpbuf = (uint8_t *)aom_malloc(sizeof(uint8_t) * AOMMAX(width, height)); uint8_t *arrbuf = (uint8_t *)aom_malloc(sizeof(uint8_t) * height); uint8_t *arrbuf2 = (uint8_t *)aom_malloc(sizeof(uint8_t) * height2); if (intbuf == NULL || tmpbuf == NULL || arrbuf == NULL || arrbuf2 == NULL) goto Error; assert(width > 0); assert(height > 0); assert(width2 > 0); assert(height2 > 0); for (i = 0; i < height; ++i) resize_multistep(input + in_stride * i, width, intbuf + width2 * i, width2, tmpbuf); for (i = 0; i < width2; ++i) { fill_col_to_arr(intbuf + i, width2, height, arrbuf); resize_multistep(arrbuf, height, arrbuf2, height2, tmpbuf); fill_arr_to_col(output + i, out_stride, height2, arrbuf2); } Error: aom_free(intbuf); aom_free(tmpbuf); aom_free(arrbuf); aom_free(arrbuf2); } void av1_upscale_plane_double_prec(const double *const input, int height, int width, int in_stride, double *output, int height2, int width2, int out_stride) { int i; double *intbuf = (double *)aom_malloc(sizeof(double) * width2 * height); double *arrbuf = (double *)aom_malloc(sizeof(double) * height); double *arrbuf2 = (double *)aom_malloc(sizeof(double) * height2); if (intbuf == NULL || arrbuf == NULL || arrbuf2 == NULL) goto Error; assert(width > 0); assert(height > 0); assert(width2 > 0); assert(height2 > 0); for (i = 0; i < height; ++i) upscale_multistep_double_prec(input + in_stride * i, width, intbuf + width2 * i, width2); for (i = 0; i < width2; ++i) { fill_col_to_arr_double_prec(intbuf + i, width2, height, arrbuf); upscale_multistep_double_prec(arrbuf, height, arrbuf2, height2); fill_arr_to_col_double_prec(output + i, out_stride, height2, arrbuf2); } Error: aom_free(intbuf); aom_free(arrbuf); aom_free(arrbuf2); } static void upscale_normative_rect(const uint8_t *const input, int height, int width, int in_stride, uint8_t *output, int height2, int width2, int out_stride, int x_step_qn, int x0_qn, int pad_left, int pad_right) { assert(width > 0); assert(height > 0); assert(width2 > 0); assert(height2 > 0); assert(height2 == height); // Extend the left/right pixels of the tile column if needed // (either because we can't sample from other tiles, or because we're at // a frame edge). // Save the overwritten pixels into tmp_left and tmp_right. // Note: Because we pass input-1 to av1_convolve_horiz_rs, we need one extra // column of border pixels compared to what we'd naively think. const int border_cols = UPSCALE_NORMATIVE_TAPS / 2 + 1; uint8_t *tmp_left = NULL; // Silence spurious "may be used uninitialized" warnings uint8_t *tmp_right = NULL; uint8_t *const in_tl = (uint8_t *)(input - border_cols); // Cast off 'const' uint8_t *const in_tr = (uint8_t *)(input + width); if (pad_left) { tmp_left = (uint8_t *)aom_malloc(sizeof(*tmp_left) * border_cols * height); for (int i = 0; i < height; i++) { memcpy(tmp_left + i * border_cols, in_tl + i * in_stride, border_cols); memset(in_tl + i * in_stride, input[i * in_stride], border_cols); } } if (pad_right) { tmp_right = (uint8_t *)aom_malloc(sizeof(*tmp_right) * border_cols * height); for (int i = 0; i < height; i++) { memcpy(tmp_right + i * border_cols, in_tr + i * in_stride, border_cols); memset(in_tr + i * in_stride, input[i * in_stride + width - 1], border_cols); } } av1_convolve_horiz_rs(input - 1, in_stride, output, out_stride, width2, height2, &av1_resize_filter_normative[0][0], x0_qn, x_step_qn); // Restore the left/right border pixels if (pad_left) { for (int i = 0; i < height; i++) { memcpy(in_tl + i * in_stride, tmp_left + i * border_cols, border_cols); } aom_free(tmp_left); } if (pad_right) { for (int i = 0; i < height; i++) { memcpy(in_tr + i * in_stride, tmp_right + i * border_cols, border_cols); } aom_free(tmp_right); } } #if CONFIG_AV1_HIGHBITDEPTH static void highbd_interpolate_core(const uint16_t *const input, int in_length, uint16_t *output, int out_length, int bd, const int16_t *interp_filters, int interp_taps) { const int32_t delta = (((uint32_t)in_length << RS_SCALE_SUBPEL_BITS) + out_length / 2) / out_length; const int32_t offset = in_length > out_length ? (((int32_t)(in_length - out_length) << (RS_SCALE_SUBPEL_BITS - 1)) + out_length / 2) / out_length : -(((int32_t)(out_length - in_length) << (RS_SCALE_SUBPEL_BITS - 1)) + out_length / 2) / out_length; uint16_t *optr = output; int x, x1, x2, sum, k, int_pel, sub_pel; int32_t y; x = 0; y = offset + RS_SCALE_EXTRA_OFF; while ((y >> RS_SCALE_SUBPEL_BITS) < (interp_taps / 2 - 1)) { x++; y += delta; } x1 = x; x = out_length - 1; y = delta * x + offset + RS_SCALE_EXTRA_OFF; while ((y >> RS_SCALE_SUBPEL_BITS) + (int32_t)(interp_taps / 2) >= in_length) { x--; y -= delta; } x2 = x; if (x1 > x2) { for (x = 0, y = offset + RS_SCALE_EXTRA_OFF; x < out_length; ++x, y += delta) { int_pel = y >> RS_SCALE_SUBPEL_BITS; sub_pel = (y >> RS_SCALE_EXTRA_BITS) & RS_SUBPEL_MASK; const int16_t *filter = &interp_filters[sub_pel * interp_taps]; sum = 0; for (k = 0; k < interp_taps; ++k) { const int pk = int_pel - interp_taps / 2 + 1 + k; sum += filter[k] * input[AOMMAX(AOMMIN(pk, in_length - 1), 0)]; } *optr++ = clip_pixel_highbd(ROUND_POWER_OF_TWO(sum, FILTER_BITS), bd); } } else { // Initial part. for (x = 0, y = offset + RS_SCALE_EXTRA_OFF; x < x1; ++x, y += delta) { int_pel = y >> RS_SCALE_SUBPEL_BITS; sub_pel = (y >> RS_SCALE_EXTRA_BITS) & RS_SUBPEL_MASK; const int16_t *filter = &interp_filters[sub_pel * interp_taps]; sum = 0; for (k = 0; k < interp_taps; ++k) sum += filter[k] * input[AOMMAX(int_pel - interp_taps / 2 + 1 + k, 0)]; *optr++ = clip_pixel_highbd(ROUND_POWER_OF_TWO(sum, FILTER_BITS), bd); } // Middle part. for (; x <= x2; ++x, y += delta) { int_pel = y >> RS_SCALE_SUBPEL_BITS; sub_pel = (y >> RS_SCALE_EXTRA_BITS) & RS_SUBPEL_MASK; const int16_t *filter = &interp_filters[sub_pel * interp_taps]; sum = 0; for (k = 0; k < interp_taps; ++k) sum += filter[k] * input[int_pel - interp_taps / 2 + 1 + k]; *optr++ = clip_pixel_highbd(ROUND_POWER_OF_TWO(sum, FILTER_BITS), bd); } // End part. for (; x < out_length; ++x, y += delta) { int_pel = y >> RS_SCALE_SUBPEL_BITS; sub_pel = (y >> RS_SCALE_EXTRA_BITS) & RS_SUBPEL_MASK; const int16_t *filter = &interp_filters[sub_pel * interp_taps]; sum = 0; for (k = 0; k < interp_taps; ++k) sum += filter[k] * input[AOMMIN(int_pel - interp_taps / 2 + 1 + k, in_length - 1)]; *optr++ = clip_pixel_highbd(ROUND_POWER_OF_TWO(sum, FILTER_BITS), bd); } } } static void highbd_interpolate(const uint16_t *const input, int in_length, uint16_t *output, int out_length, int bd) { const InterpKernel *interp_filters = choose_interp_filter(in_length, out_length); highbd_interpolate_core(input, in_length, output, out_length, bd, &interp_filters[0][0], SUBPEL_TAPS); } static void highbd_down2_symeven(const uint16_t *const input, int length, uint16_t *output, int bd) { // Actual filter len = 2 * filter_len_half. static const int16_t *filter = av1_down2_symeven_half_filter; const int filter_len_half = sizeof(av1_down2_symeven_half_filter) / 2; int i, j; uint16_t *optr = output; int l1 = filter_len_half; int l2 = (length - filter_len_half); l1 += (l1 & 1); l2 += (l2 & 1); if (l1 > l2) { // Short input length. for (i = 0; i < length; i += 2) { int sum = (1 << (FILTER_BITS - 1)); for (j = 0; j < filter_len_half; ++j) { sum += (input[AOMMAX(0, i - j)] + input[AOMMIN(i + 1 + j, length - 1)]) * filter[j]; } sum >>= FILTER_BITS; *optr++ = clip_pixel_highbd(sum, bd); } } else { // Initial part. for (i = 0; i < l1; i += 2) { int sum = (1 << (FILTER_BITS - 1)); for (j = 0; j < filter_len_half; ++j) { sum += (input[AOMMAX(0, i - j)] + input[i + 1 + j]) * filter[j]; } sum >>= FILTER_BITS; *optr++ = clip_pixel_highbd(sum, bd); } // Middle part. for (; i < l2; i += 2) { int sum = (1 << (FILTER_BITS - 1)); for (j = 0; j < filter_len_half; ++j) { sum += (input[i - j] + input[i + 1 + j]) * filter[j]; } sum >>= FILTER_BITS; *optr++ = clip_pixel_highbd(sum, bd); } // End part. for (; i < length; i += 2) { int sum = (1 << (FILTER_BITS - 1)); for (j = 0; j < filter_len_half; ++j) { sum += (input[i - j] + input[AOMMIN(i + 1 + j, length - 1)]) * filter[j]; } sum >>= FILTER_BITS; *optr++ = clip_pixel_highbd(sum, bd); } } } static void highbd_down2_symodd(const uint16_t *const input, int length, uint16_t *output, int bd) { // Actual filter len = 2 * filter_len_half - 1. static const int16_t *filter = av1_down2_symodd_half_filter; const int filter_len_half = sizeof(av1_down2_symodd_half_filter) / 2; int i, j; uint16_t *optr = output; int l1 = filter_len_half - 1; int l2 = (length - filter_len_half + 1); l1 += (l1 & 1); l2 += (l2 & 1); if (l1 > l2) { // Short input length. for (i = 0; i < length; i += 2) { int sum = (1 << (FILTER_BITS - 1)) + input[i] * filter[0]; for (j = 1; j < filter_len_half; ++j) { sum += (input[AOMMAX(i - j, 0)] + input[AOMMIN(i + j, length - 1)]) * filter[j]; } sum >>= FILTER_BITS; *optr++ = clip_pixel_highbd(sum, bd); } } else { // Initial part. for (i = 0; i < l1; i += 2) { int sum = (1 << (FILTER_BITS - 1)) + input[i] * filter[0]; for (j = 1; j < filter_len_half; ++j) { sum += (input[AOMMAX(i - j, 0)] + input[i + j]) * filter[j]; } sum >>= FILTER_BITS; *optr++ = clip_pixel_highbd(sum, bd); } // Middle part. for (; i < l2; i += 2) { int sum = (1 << (FILTER_BITS - 1)) + input[i] * filter[0]; for (j = 1; j < filter_len_half; ++j) { sum += (input[i - j] + input[i + j]) * filter[j]; } sum >>= FILTER_BITS; *optr++ = clip_pixel_highbd(sum, bd); } // End part. for (; i < length; i += 2) { int sum = (1 << (FILTER_BITS - 1)) + input[i] * filter[0]; for (j = 1; j < filter_len_half; ++j) { sum += (input[i - j] + input[AOMMIN(i + j, length - 1)]) * filter[j]; } sum >>= FILTER_BITS; *optr++ = clip_pixel_highbd(sum, bd); } } } static void highbd_resize_multistep(const uint16_t *const input, int length, uint16_t *output, int olength, uint16_t *otmp, int bd) { if (length == olength) { memcpy(output, input, sizeof(output[0]) * length); return; } const int steps = get_down2_steps(length, olength); if (steps > 0) { uint16_t *out = NULL; int filteredlength = length; assert(otmp != NULL); uint16_t *otmp2 = otmp + get_down2_length(length, 1); for (int s = 0; s < steps; ++s) { const int proj_filteredlength = get_down2_length(filteredlength, 1); const uint16_t *const in = (s == 0 ? input : out); if (s == steps - 1 && proj_filteredlength == olength) out = output; else out = (s & 1 ? otmp2 : otmp); if (filteredlength & 1) highbd_down2_symodd(in, filteredlength, out, bd); else highbd_down2_symeven(in, filteredlength, out, bd); filteredlength = proj_filteredlength; } if (filteredlength != olength) { highbd_interpolate(out, filteredlength, output, olength, bd); } } else { highbd_interpolate(input, length, output, olength, bd); } } static void highbd_fill_col_to_arr(uint16_t *img, int stride, int len, uint16_t *arr) { int i; uint16_t *iptr = img; uint16_t *aptr = arr; for (i = 0; i < len; ++i, iptr += stride) { *aptr++ = *iptr; } } static void highbd_fill_arr_to_col(uint16_t *img, int stride, int len, uint16_t *arr) { int i; uint16_t *iptr = img; uint16_t *aptr = arr; for (i = 0; i < len; ++i, iptr += stride) { *iptr = *aptr++; } } void av1_highbd_resize_plane(const uint8_t *const input, int height, int width, int in_stride, uint8_t *output, int height2, int width2, int out_stride, int bd) { int i; uint16_t *intbuf = (uint16_t *)aom_malloc(sizeof(uint16_t) * width2 * height); uint16_t *tmpbuf = (uint16_t *)aom_malloc(sizeof(uint16_t) * AOMMAX(width, height)); uint16_t *arrbuf = (uint16_t *)aom_malloc(sizeof(uint16_t) * height); uint16_t *arrbuf2 = (uint16_t *)aom_malloc(sizeof(uint16_t) * height2); if (intbuf == NULL || tmpbuf == NULL || arrbuf == NULL || arrbuf2 == NULL) goto Error; for (i = 0; i < height; ++i) { highbd_resize_multistep(CONVERT_TO_SHORTPTR(input + in_stride * i), width, intbuf + width2 * i, width2, tmpbuf, bd); } for (i = 0; i < width2; ++i) { highbd_fill_col_to_arr(intbuf + i, width2, height, arrbuf); highbd_resize_multistep(arrbuf, height, arrbuf2, height2, tmpbuf, bd); highbd_fill_arr_to_col(CONVERT_TO_SHORTPTR(output + i), out_stride, height2, arrbuf2); } Error: aom_free(intbuf); aom_free(tmpbuf); aom_free(arrbuf); aom_free(arrbuf2); } static void highbd_upscale_normative_rect(const uint8_t *const input, int height, int width, int in_stride, uint8_t *output, int height2, int width2, int out_stride, int x_step_qn, int x0_qn, int pad_left, int pad_right, int bd) { assert(width > 0); assert(height > 0); assert(width2 > 0); assert(height2 > 0); assert(height2 == height); // Extend the left/right pixels of the tile column if needed // (either because we can't sample from other tiles, or because we're at // a frame edge). // Save the overwritten pixels into tmp_left and tmp_right. // Note: Because we pass input-1 to av1_convolve_horiz_rs, we need one extra // column of border pixels compared to what we'd naively think. const int border_cols = UPSCALE_NORMATIVE_TAPS / 2 + 1; const int border_size = border_cols * sizeof(uint16_t); uint16_t *tmp_left = NULL; // Silence spurious "may be used uninitialized" warnings uint16_t *tmp_right = NULL; uint16_t *const input16 = CONVERT_TO_SHORTPTR(input); uint16_t *const in_tl = input16 - border_cols; uint16_t *const in_tr = input16 + width; if (pad_left) { tmp_left = (uint16_t *)aom_malloc(sizeof(*tmp_left) * border_cols * height); for (int i = 0; i < height; i++) { memcpy(tmp_left + i * border_cols, in_tl + i * in_stride, border_size); aom_memset16(in_tl + i * in_stride, input16[i * in_stride], border_cols); } } if (pad_right) { tmp_right = (uint16_t *)aom_malloc(sizeof(*tmp_right) * border_cols * height); for (int i = 0; i < height; i++) { memcpy(tmp_right + i * border_cols, in_tr + i * in_stride, border_size); aom_memset16(in_tr + i * in_stride, input16[i * in_stride + width - 1], border_cols); } } av1_highbd_convolve_horiz_rs(CONVERT_TO_SHORTPTR(input - 1), in_stride, CONVERT_TO_SHORTPTR(output), out_stride, width2, height2, &av1_resize_filter_normative[0][0], x0_qn, x_step_qn, bd); // Restore the left/right border pixels if (pad_left) { for (int i = 0; i < height; i++) { memcpy(in_tl + i * in_stride, tmp_left + i * border_cols, border_size); } aom_free(tmp_left); } if (pad_right) { for (int i = 0; i < height; i++) { memcpy(in_tr + i * in_stride, tmp_right + i * border_cols, border_size); } aom_free(tmp_right); } } #endif // CONFIG_AV1_HIGHBITDEPTH void av1_resize_frame420(const uint8_t *const y, int y_stride, const uint8_t *const u, const uint8_t *const v, int uv_stride, int height, int width, uint8_t *oy, int oy_stride, uint8_t *ou, uint8_t *ov, int ouv_stride, int oheight, int owidth) { av1_resize_plane(y, height, width, y_stride, oy, oheight, owidth, oy_stride); av1_resize_plane(u, height / 2, width / 2, uv_stride, ou, oheight / 2, owidth / 2, ouv_stride); av1_resize_plane(v, height / 2, width / 2, uv_stride, ov, oheight / 2, owidth / 2, ouv_stride); } void av1_resize_frame422(const uint8_t *const y, int y_stride, const uint8_t *const u, const uint8_t *const v, int uv_stride, int height, int width, uint8_t *oy, int oy_stride, uint8_t *ou, uint8_t *ov, int ouv_stride, int oheight, int owidth) { av1_resize_plane(y, height, width, y_stride, oy, oheight, owidth, oy_stride); av1_resize_plane(u, height, width / 2, uv_stride, ou, oheight, owidth / 2, ouv_stride); av1_resize_plane(v, height, width / 2, uv_stride, ov, oheight, owidth / 2, ouv_stride); } void av1_resize_frame444(const uint8_t *const y, int y_stride, const uint8_t *const u, const uint8_t *const v, int uv_stride, int height, int width, uint8_t *oy, int oy_stride, uint8_t *ou, uint8_t *ov, int ouv_stride, int oheight, int owidth) { av1_resize_plane(y, height, width, y_stride, oy, oheight, owidth, oy_stride); av1_resize_plane(u, height, width, uv_stride, ou, oheight, owidth, ouv_stride); av1_resize_plane(v, height, width, uv_stride, ov, oheight, owidth, ouv_stride); } #if CONFIG_AV1_HIGHBITDEPTH void av1_highbd_resize_frame420(const uint8_t *const y, int y_stride, const uint8_t *const u, const uint8_t *const v, int uv_stride, int height, int width, uint8_t *oy, int oy_stride, uint8_t *ou, uint8_t *ov, int ouv_stride, int oheight, int owidth, int bd) { av1_highbd_resize_plane(y, height, width, y_stride, oy, oheight, owidth, oy_stride, bd); av1_highbd_resize_plane(u, height / 2, width / 2, uv_stride, ou, oheight / 2, owidth / 2, ouv_stride, bd); av1_highbd_resize_plane(v, height / 2, width / 2, uv_stride, ov, oheight / 2, owidth / 2, ouv_stride, bd); } void av1_highbd_resize_frame422(const uint8_t *const y, int y_stride, const uint8_t *const u, const uint8_t *const v, int uv_stride, int height, int width, uint8_t *oy, int oy_stride, uint8_t *ou, uint8_t *ov, int ouv_stride, int oheight, int owidth, int bd) { av1_highbd_resize_plane(y, height, width, y_stride, oy, oheight, owidth, oy_stride, bd); av1_highbd_resize_plane(u, height, width / 2, uv_stride, ou, oheight, owidth / 2, ouv_stride, bd); av1_highbd_resize_plane(v, height, width / 2, uv_stride, ov, oheight, owidth / 2, ouv_stride, bd); } void av1_highbd_resize_frame444(const uint8_t *const y, int y_stride, const uint8_t *const u, const uint8_t *const v, int uv_stride, int height, int width, uint8_t *oy, int oy_stride, uint8_t *ou, uint8_t *ov, int ouv_stride, int oheight, int owidth, int bd) { av1_highbd_resize_plane(y, height, width, y_stride, oy, oheight, owidth, oy_stride, bd); av1_highbd_resize_plane(u, height, width, uv_stride, ou, oheight, owidth, ouv_stride, bd); av1_highbd_resize_plane(v, height, width, uv_stride, ov, oheight, owidth, ouv_stride, bd); } #endif // CONFIG_AV1_HIGHBITDEPTH void av1_resize_and_extend_frame_c(const YV12_BUFFER_CONFIG *src, YV12_BUFFER_CONFIG *dst, const InterpFilter filter, const int phase_scaler, const int num_planes) { const int src_w = src->y_crop_width; const int src_h = src->y_crop_height; const uint8_t *const srcs[3] = { src->y_buffer, src->u_buffer, src->v_buffer }; const int src_strides[3] = { src->y_stride, src->uv_stride, src->uv_stride }; uint8_t *const dsts[3] = { dst->y_buffer, dst->u_buffer, dst->v_buffer }; const int dst_strides[3] = { dst->y_stride, dst->uv_stride, dst->uv_stride }; assert(filter == BILINEAR || filter == EIGHTTAP_SMOOTH || filter == EIGHTTAP_REGULAR); const InterpKernel *const kernel = filter == BILINEAR ? av1_bilinear_filters : av1_sub_pel_filters_8smooth; const int dst_w = dst->y_crop_width; const int dst_h = dst->y_crop_height; for (int i = 0; i < AOMMIN(num_planes, MAX_MB_PLANE); ++i) { const int factor = (i == 0 || i == 3 ? 1 : 2); const int src_stride = src_strides[i]; const int dst_stride = dst_strides[i]; for (int y = 0; y < dst_h; y += 16) { const int y_q4 = y * (16 / factor) * src_h / dst_h + phase_scaler; for (int x = 0; x < dst_w; x += 16) { const int x_q4 = x * (16 / factor) * src_w / dst_w + phase_scaler; const uint8_t *src_ptr = srcs[i] + (y / factor) * src_h / dst_h * src_stride + (x / factor) * src_w / dst_w; uint8_t *dst_ptr = dsts[i] + (y / factor) * dst_stride + (x / factor); aom_scaled_2d(src_ptr, src_stride, dst_ptr, dst_stride, kernel, x_q4 & 0xf, 16 * src_w / dst_w, y_q4 & 0xf, 16 * src_h / dst_h, 16 / factor, 16 / factor); } } } } void av1_resize_and_extend_frame_nonnormative(const YV12_BUFFER_CONFIG *src, YV12_BUFFER_CONFIG *dst, int bd, const int num_planes) { // TODO(dkovalev): replace YV12_BUFFER_CONFIG with aom_image_t // We use AOMMIN(num_planes, MAX_MB_PLANE) instead of num_planes to quiet // the static analysis warnings. for (int i = 0; i < AOMMIN(num_planes, MAX_MB_PLANE); ++i) { const int is_uv = i > 0; #if CONFIG_AV1_HIGHBITDEPTH if (src->flags & YV12_FLAG_HIGHBITDEPTH) av1_highbd_resize_plane(src->buffers[i], src->crop_heights[is_uv], src->crop_widths[is_uv], src->strides[is_uv], dst->buffers[i], dst->crop_heights[is_uv], dst->crop_widths[is_uv], dst->strides[is_uv], bd); else av1_resize_plane(src->buffers[i], src->crop_heights[is_uv], src->crop_widths[is_uv], src->strides[is_uv], dst->buffers[i], dst->crop_heights[is_uv], dst->crop_widths[is_uv], dst->strides[is_uv]); #else (void)bd; av1_resize_plane(src->buffers[i], src->crop_heights[is_uv], src->crop_widths[is_uv], src->strides[is_uv], dst->buffers[i], dst->crop_heights[is_uv], dst->crop_widths[is_uv], dst->strides[is_uv]); #endif } aom_extend_frame_borders(dst, num_planes); } void av1_upscale_normative_rows(const AV1_COMMON *cm, const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, int plane, int rows) { const int is_uv = (plane > 0); const int ss_x = is_uv && cm->seq_params.subsampling_x; const int downscaled_plane_width = ROUND_POWER_OF_TWO(cm->width, ss_x); const int upscaled_plane_width = ROUND_POWER_OF_TWO(cm->superres_upscaled_width, ss_x); const int superres_denom = cm->superres_scale_denominator; TileInfo tile_col; const int32_t x_step_qn = av1_get_upscale_convolve_step( downscaled_plane_width, upscaled_plane_width); int32_t x0_qn = get_upscale_convolve_x0(downscaled_plane_width, upscaled_plane_width, x_step_qn); for (int j = 0; j < cm->tiles.cols; j++) { av1_tile_set_col(&tile_col, cm, j); // Determine the limits of this tile column in both the source // and destination images. // Note: The actual location which we start sampling from is // (downscaled_x0 - 1 + (x0_qn/2^14)), and this quantity increases // by exactly dst_width * (x_step_qn/2^14) pixels each iteration. const int downscaled_x0 = tile_col.mi_col_start << (MI_SIZE_LOG2 - ss_x); const int downscaled_x1 = tile_col.mi_col_end << (MI_SIZE_LOG2 - ss_x); const int src_width = downscaled_x1 - downscaled_x0; const int upscaled_x0 = (downscaled_x0 * superres_denom) / SCALE_NUMERATOR; int upscaled_x1; if (j == cm->tiles.cols - 1) { // Note that we can't just use AOMMIN here - due to rounding, // (downscaled_x1 * superres_denom) / SCALE_NUMERATOR may be less than // upscaled_plane_width. upscaled_x1 = upscaled_plane_width; } else { upscaled_x1 = (downscaled_x1 * superres_denom) / SCALE_NUMERATOR; } const uint8_t *const src_ptr = src + downscaled_x0; uint8_t *const dst_ptr = dst + upscaled_x0; const int dst_width = upscaled_x1 - upscaled_x0; const int pad_left = (j == 0); const int pad_right = (j == cm->tiles.cols - 1); #if CONFIG_AV1_HIGHBITDEPTH if (cm->seq_params.use_highbitdepth) highbd_upscale_normative_rect(src_ptr, rows, src_width, src_stride, dst_ptr, rows, dst_width, dst_stride, x_step_qn, x0_qn, pad_left, pad_right, cm->seq_params.bit_depth); else upscale_normative_rect(src_ptr, rows, src_width, src_stride, dst_ptr, rows, dst_width, dst_stride, x_step_qn, x0_qn, pad_left, pad_right); #else upscale_normative_rect(src_ptr, rows, src_width, src_stride, dst_ptr, rows, dst_width, dst_stride, x_step_qn, x0_qn, pad_left, pad_right); #endif // Update the fractional pixel offset to prepare for the next tile column. x0_qn += (dst_width * x_step_qn) - (src_width << RS_SCALE_SUBPEL_BITS); } } void av1_upscale_normative_and_extend_frame(const AV1_COMMON *cm, const YV12_BUFFER_CONFIG *src, YV12_BUFFER_CONFIG *dst) { const int num_planes = av1_num_planes(cm); for (int i = 0; i < num_planes; ++i) { const int is_uv = (i > 0); av1_upscale_normative_rows(cm, src->buffers[i], src->strides[is_uv], dst->buffers[i], dst->strides[is_uv], i, src->crop_heights[is_uv]); } aom_extend_frame_borders(dst, num_planes); } YV12_BUFFER_CONFIG *av1_scale_if_required( AV1_COMMON *cm, YV12_BUFFER_CONFIG *unscaled, YV12_BUFFER_CONFIG *scaled, const InterpFilter filter, const int phase, const bool use_optimized_scaler, const bool for_psnr) { // If scaling is performed for the sole purpose of calculating PSNR, then our // target dimensions are superres upscaled width/height. Otherwise our target // dimensions are coded width/height. const bool scaling_required = for_psnr ? (cm->superres_upscaled_width != unscaled->y_crop_width || cm->superres_upscaled_height != unscaled->y_crop_height) : (cm->width != unscaled->y_crop_width || cm->height != unscaled->y_crop_height); if (scaling_required) { const int num_planes = av1_num_planes(cm); #if CONFIG_AV1_HIGHBITDEPTH if (use_optimized_scaler && cm->seq_params.bit_depth == AOM_BITS_8) { av1_resize_and_extend_frame(unscaled, scaled, filter, phase, num_planes); } else { av1_resize_and_extend_frame_nonnormative( unscaled, scaled, (int)cm->seq_params.bit_depth, num_planes); } #else if (use_optimized_scaler) { av1_resize_and_extend_frame(unscaled, scaled, filter, phase, num_planes); } else { av1_resize_and_extend_frame_nonnormative( unscaled, scaled, (int)cm->seq_params.bit_depth, num_planes); } #endif return scaled; } else { return unscaled; } } // Calculates the scaled dimension given the original dimension and the scale // denominator. static void calculate_scaled_size_helper(int *dim, int denom) { if (denom != SCALE_NUMERATOR) { // We need to ensure the constraint in "Appendix A" of the spec: // * FrameWidth is greater than or equal to 16 // * FrameHeight is greater than or equal to 16 // For this, we clamp the downscaled dimension to at least 16. One // exception: if original dimension itself was < 16, then we keep the // downscaled dimension to be same as the original, to ensure that resizing // is valid. const int min_dim = AOMMIN(16, *dim); // Use this version if we need *dim to be even // *width = (*width * SCALE_NUMERATOR + denom) / (2 * denom); // *width <<= 1; *dim = (*dim * SCALE_NUMERATOR + denom / 2) / (denom); *dim = AOMMAX(*dim, min_dim); } } void av1_calculate_scaled_size(int *width, int *height, int resize_denom) { calculate_scaled_size_helper(width, resize_denom); calculate_scaled_size_helper(height, resize_denom); } void av1_calculate_scaled_superres_size(int *width, int *height, int superres_denom) { (void)height; calculate_scaled_size_helper(width, superres_denom); } void av1_calculate_unscaled_superres_size(int *width, int *height, int denom) { if (denom != SCALE_NUMERATOR) { // Note: av1_calculate_scaled_superres_size() rounds *up* after division // when the resulting dimensions are odd. So here, we round *down*. *width = *width * denom / SCALE_NUMERATOR; (void)height; } } // Copy only the config data from 'src' to 'dst'. static void copy_buffer_config(const YV12_BUFFER_CONFIG *const src, YV12_BUFFER_CONFIG *const dst) { dst->bit_depth = src->bit_depth; dst->color_primaries = src->color_primaries; dst->transfer_characteristics = src->transfer_characteristics; dst->matrix_coefficients = src->matrix_coefficients; dst->monochrome = src->monochrome; dst->chroma_sample_position = src->chroma_sample_position; dst->color_range = src->color_range; } // TODO(afergs): Look for in-place upscaling // TODO(afergs): aom_ vs av1_ functions? Which can I use? // Upscale decoded image. void av1_superres_upscale(AV1_COMMON *cm, BufferPool *const pool) { const int num_planes = av1_num_planes(cm); if (!av1_superres_scaled(cm)) return; const SequenceHeader *const seq_params = &cm->seq_params; const int byte_alignment = cm->features.byte_alignment; YV12_BUFFER_CONFIG copy_buffer; memset(©_buffer, 0, sizeof(copy_buffer)); YV12_BUFFER_CONFIG *const frame_to_show = &cm->cur_frame->buf; const int aligned_width = ALIGN_POWER_OF_TWO(cm->width, 3); if (aom_alloc_frame_buffer( ©_buffer, aligned_width, cm->height, seq_params->subsampling_x, seq_params->subsampling_y, seq_params->use_highbitdepth, AOM_BORDER_IN_PIXELS, byte_alignment)) aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, "Failed to allocate copy buffer for superres upscaling"); // Copy function assumes the frames are the same size. // Note that it does not copy YV12_BUFFER_CONFIG config data. aom_yv12_copy_frame(frame_to_show, ©_buffer, num_planes); assert(copy_buffer.y_crop_width == aligned_width); assert(copy_buffer.y_crop_height == cm->height); // Realloc the current frame buffer at a higher resolution in place. if (pool != NULL) { // Use callbacks if on the decoder. aom_codec_frame_buffer_t *fb = &cm->cur_frame->raw_frame_buffer; aom_release_frame_buffer_cb_fn_t release_fb_cb = pool->release_fb_cb; aom_get_frame_buffer_cb_fn_t cb = pool->get_fb_cb; void *cb_priv = pool->cb_priv; lock_buffer_pool(pool); // Realloc with callback does not release the frame buffer - release first. if (release_fb_cb(cb_priv, fb)) { unlock_buffer_pool(pool); aom_internal_error( &cm->error, AOM_CODEC_MEM_ERROR, "Failed to free current frame buffer before superres upscaling"); } // aom_realloc_frame_buffer() leaves config data for frame_to_show intact if (aom_realloc_frame_buffer( frame_to_show, cm->superres_upscaled_width, cm->superres_upscaled_height, seq_params->subsampling_x, seq_params->subsampling_y, seq_params->use_highbitdepth, AOM_BORDER_IN_PIXELS, byte_alignment, fb, cb, cb_priv, 0)) { unlock_buffer_pool(pool); aom_internal_error( &cm->error, AOM_CODEC_MEM_ERROR, "Failed to allocate current frame buffer for superres upscaling"); } unlock_buffer_pool(pool); } else { // Make a copy of the config data for frame_to_show in copy_buffer copy_buffer_config(frame_to_show, ©_buffer); // Don't use callbacks on the encoder. // aom_alloc_frame_buffer() clears the config data for frame_to_show if (aom_alloc_frame_buffer( frame_to_show, cm->superres_upscaled_width, cm->superres_upscaled_height, seq_params->subsampling_x, seq_params->subsampling_y, seq_params->use_highbitdepth, AOM_BORDER_IN_PIXELS, byte_alignment)) aom_internal_error( &cm->error, AOM_CODEC_MEM_ERROR, "Failed to reallocate current frame buffer for superres upscaling"); // Restore config data back to frame_to_show copy_buffer_config(©_buffer, frame_to_show); } // TODO(afergs): verify frame_to_show is correct after realloc // encoder: // decoder: assert(frame_to_show->y_crop_width == cm->superres_upscaled_width); assert(frame_to_show->y_crop_height == cm->superres_upscaled_height); // Scale up and back into frame_to_show. assert(frame_to_show->y_crop_width != cm->width); av1_upscale_normative_and_extend_frame(cm, ©_buffer, frame_to_show); // Free the copy buffer aom_free_frame_buffer(©_buffer); }