/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include #include "config/av1_rtcd.h" #include "aom_dsp/aom_dsp_common.h" #include "aom_mem/aom_mem.h" #include "aom_ports/bitops.h" #include "aom_ports/mem.h" #include "aom_ports/system_state.h" #include "av1/common/common.h" #include "av1/common/entropy.h" #include "av1/common/entropymode.h" #include "av1/common/mvref_common.h" #include "av1/common/pred_common.h" #include "av1/common/quant_common.h" #include "av1/common/reconinter.h" #include "av1/common/reconintra.h" #include "av1/common/seg_common.h" #include "av1/encoder/av1_quantize.h" #include "av1/encoder/cost.h" #include "av1/encoder/encodemb.h" #include "av1/encoder/encodemv.h" #include "av1/encoder/encoder.h" #include "av1/encoder/encodetxb.h" #include "av1/encoder/mcomp.h" #include "av1/encoder/ratectrl.h" #include "av1/encoder/rd.h" #include "av1/encoder/tokenize.h" #define RD_THRESH_POW 1.25 // The baseline rd thresholds for breaking out of the rd loop for // certain modes are assumed to be based on 8x8 blocks. // This table is used to correct for block size. // The factors here are << 2 (2 = x0.5, 32 = x8 etc). static const uint8_t rd_thresh_block_size_factor[BLOCK_SIZES_ALL] = { 2, 3, 3, 4, 6, 6, 8, 12, 12, 16, 24, 24, 32, 48, 48, 64, 4, 4, 8, 8, 16, 16 }; static const int use_intra_ext_tx_for_txsize[EXT_TX_SETS_INTRA] [EXT_TX_SIZES] = { { 1, 1, 1, 1 }, // unused { 1, 1, 0, 0 }, { 0, 0, 1, 0 }, }; static const int use_inter_ext_tx_for_txsize[EXT_TX_SETS_INTER] [EXT_TX_SIZES] = { { 1, 1, 1, 1 }, // unused { 1, 1, 0, 0 }, { 0, 0, 1, 0 }, { 0, 1, 1, 1 }, }; static const int av1_ext_tx_set_idx_to_type[2][AOMMAX(EXT_TX_SETS_INTRA, EXT_TX_SETS_INTER)] = { { // Intra EXT_TX_SET_DCTONLY, EXT_TX_SET_DTT4_IDTX_1DDCT, EXT_TX_SET_DTT4_IDTX, }, { // Inter EXT_TX_SET_DCTONLY, EXT_TX_SET_ALL16, EXT_TX_SET_DTT9_IDTX_1DDCT, EXT_TX_SET_DCT_IDTX, }, }; void av1_fill_mode_rates(AV1_COMMON *const cm, ModeCosts *mode_costs, FRAME_CONTEXT *fc) { int i, j; for (i = 0; i < PARTITION_CONTEXTS; ++i) av1_cost_tokens_from_cdf(mode_costs->partition_cost[i], fc->partition_cdf[i], NULL); if (cm->current_frame.skip_mode_info.skip_mode_flag) { for (i = 0; i < SKIP_MODE_CONTEXTS; ++i) { av1_cost_tokens_from_cdf(mode_costs->skip_mode_cost[i], fc->skip_mode_cdfs[i], NULL); } } for (i = 0; i < SKIP_CONTEXTS; ++i) { av1_cost_tokens_from_cdf(mode_costs->skip_txfm_cost[i], fc->skip_txfm_cdfs[i], NULL); } for (i = 0; i < KF_MODE_CONTEXTS; ++i) for (j = 0; j < KF_MODE_CONTEXTS; ++j) av1_cost_tokens_from_cdf(mode_costs->y_mode_costs[i][j], fc->kf_y_cdf[i][j], NULL); for (i = 0; i < BLOCK_SIZE_GROUPS; ++i) av1_cost_tokens_from_cdf(mode_costs->mbmode_cost[i], fc->y_mode_cdf[i], NULL); for (i = 0; i < CFL_ALLOWED_TYPES; ++i) for (j = 0; j < INTRA_MODES; ++j) av1_cost_tokens_from_cdf(mode_costs->intra_uv_mode_cost[i][j], fc->uv_mode_cdf[i][j], NULL); av1_cost_tokens_from_cdf(mode_costs->filter_intra_mode_cost, fc->filter_intra_mode_cdf, NULL); for (i = 0; i < BLOCK_SIZES_ALL; ++i) { if (av1_filter_intra_allowed_bsize(cm, i)) av1_cost_tokens_from_cdf(mode_costs->filter_intra_cost[i], fc->filter_intra_cdfs[i], NULL); } for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i) av1_cost_tokens_from_cdf(mode_costs->switchable_interp_costs[i], fc->switchable_interp_cdf[i], NULL); for (i = 0; i < PALATTE_BSIZE_CTXS; ++i) { av1_cost_tokens_from_cdf(mode_costs->palette_y_size_cost[i], fc->palette_y_size_cdf[i], NULL); av1_cost_tokens_from_cdf(mode_costs->palette_uv_size_cost[i], fc->palette_uv_size_cdf[i], NULL); for (j = 0; j < PALETTE_Y_MODE_CONTEXTS; ++j) { av1_cost_tokens_from_cdf(mode_costs->palette_y_mode_cost[i][j], fc->palette_y_mode_cdf[i][j], NULL); } } for (i = 0; i < PALETTE_UV_MODE_CONTEXTS; ++i) { av1_cost_tokens_from_cdf(mode_costs->palette_uv_mode_cost[i], fc->palette_uv_mode_cdf[i], NULL); } for (i = 0; i < PALETTE_SIZES; ++i) { for (j = 0; j < PALETTE_COLOR_INDEX_CONTEXTS; ++j) { av1_cost_tokens_from_cdf(mode_costs->palette_y_color_cost[i][j], fc->palette_y_color_index_cdf[i][j], NULL); av1_cost_tokens_from_cdf(mode_costs->palette_uv_color_cost[i][j], fc->palette_uv_color_index_cdf[i][j], NULL); } } int sign_cost[CFL_JOINT_SIGNS]; av1_cost_tokens_from_cdf(sign_cost, fc->cfl_sign_cdf, NULL); for (int joint_sign = 0; joint_sign < CFL_JOINT_SIGNS; joint_sign++) { int *cost_u = mode_costs->cfl_cost[joint_sign][CFL_PRED_U]; int *cost_v = mode_costs->cfl_cost[joint_sign][CFL_PRED_V]; if (CFL_SIGN_U(joint_sign) == CFL_SIGN_ZERO) { memset(cost_u, 0, CFL_ALPHABET_SIZE * sizeof(*cost_u)); } else { const aom_cdf_prob *cdf_u = fc->cfl_alpha_cdf[CFL_CONTEXT_U(joint_sign)]; av1_cost_tokens_from_cdf(cost_u, cdf_u, NULL); } if (CFL_SIGN_V(joint_sign) == CFL_SIGN_ZERO) { memset(cost_v, 0, CFL_ALPHABET_SIZE * sizeof(*cost_v)); } else { const aom_cdf_prob *cdf_v = fc->cfl_alpha_cdf[CFL_CONTEXT_V(joint_sign)]; av1_cost_tokens_from_cdf(cost_v, cdf_v, NULL); } for (int u = 0; u < CFL_ALPHABET_SIZE; u++) cost_u[u] += sign_cost[joint_sign]; } for (i = 0; i < MAX_TX_CATS; ++i) for (j = 0; j < TX_SIZE_CONTEXTS; ++j) av1_cost_tokens_from_cdf(mode_costs->tx_size_cost[i][j], fc->tx_size_cdf[i][j], NULL); for (i = 0; i < TXFM_PARTITION_CONTEXTS; ++i) { av1_cost_tokens_from_cdf(mode_costs->txfm_partition_cost[i], fc->txfm_partition_cdf[i], NULL); } for (i = TX_4X4; i < EXT_TX_SIZES; ++i) { int s; for (s = 1; s < EXT_TX_SETS_INTER; ++s) { if (use_inter_ext_tx_for_txsize[s][i]) { av1_cost_tokens_from_cdf( mode_costs->inter_tx_type_costs[s][i], fc->inter_ext_tx_cdf[s][i], av1_ext_tx_inv[av1_ext_tx_set_idx_to_type[1][s]]); } } for (s = 1; s < EXT_TX_SETS_INTRA; ++s) { if (use_intra_ext_tx_for_txsize[s][i]) { for (j = 0; j < INTRA_MODES; ++j) { av1_cost_tokens_from_cdf( mode_costs->intra_tx_type_costs[s][i][j], fc->intra_ext_tx_cdf[s][i][j], av1_ext_tx_inv[av1_ext_tx_set_idx_to_type[0][s]]); } } } } for (i = 0; i < DIRECTIONAL_MODES; ++i) { av1_cost_tokens_from_cdf(mode_costs->angle_delta_cost[i], fc->angle_delta_cdf[i], NULL); } av1_cost_tokens_from_cdf(mode_costs->intrabc_cost, fc->intrabc_cdf, NULL); if (!frame_is_intra_only(cm)) { for (i = 0; i < COMP_INTER_CONTEXTS; ++i) { av1_cost_tokens_from_cdf(mode_costs->comp_inter_cost[i], fc->comp_inter_cdf[i], NULL); } for (i = 0; i < REF_CONTEXTS; ++i) { for (j = 0; j < SINGLE_REFS - 1; ++j) { av1_cost_tokens_from_cdf(mode_costs->single_ref_cost[i][j], fc->single_ref_cdf[i][j], NULL); } } for (i = 0; i < COMP_REF_TYPE_CONTEXTS; ++i) { av1_cost_tokens_from_cdf(mode_costs->comp_ref_type_cost[i], fc->comp_ref_type_cdf[i], NULL); } for (i = 0; i < UNI_COMP_REF_CONTEXTS; ++i) { for (j = 0; j < UNIDIR_COMP_REFS - 1; ++j) { av1_cost_tokens_from_cdf(mode_costs->uni_comp_ref_cost[i][j], fc->uni_comp_ref_cdf[i][j], NULL); } } for (i = 0; i < REF_CONTEXTS; ++i) { for (j = 0; j < FWD_REFS - 1; ++j) { av1_cost_tokens_from_cdf(mode_costs->comp_ref_cost[i][j], fc->comp_ref_cdf[i][j], NULL); } } for (i = 0; i < REF_CONTEXTS; ++i) { for (j = 0; j < BWD_REFS - 1; ++j) { av1_cost_tokens_from_cdf(mode_costs->comp_bwdref_cost[i][j], fc->comp_bwdref_cdf[i][j], NULL); } } for (i = 0; i < INTRA_INTER_CONTEXTS; ++i) { av1_cost_tokens_from_cdf(mode_costs->intra_inter_cost[i], fc->intra_inter_cdf[i], NULL); } for (i = 0; i < NEWMV_MODE_CONTEXTS; ++i) { av1_cost_tokens_from_cdf(mode_costs->newmv_mode_cost[i], fc->newmv_cdf[i], NULL); } for (i = 0; i < GLOBALMV_MODE_CONTEXTS; ++i) { av1_cost_tokens_from_cdf(mode_costs->zeromv_mode_cost[i], fc->zeromv_cdf[i], NULL); } for (i = 0; i < REFMV_MODE_CONTEXTS; ++i) { av1_cost_tokens_from_cdf(mode_costs->refmv_mode_cost[i], fc->refmv_cdf[i], NULL); } for (i = 0; i < DRL_MODE_CONTEXTS; ++i) { av1_cost_tokens_from_cdf(mode_costs->drl_mode_cost0[i], fc->drl_cdf[i], NULL); } for (i = 0; i < INTER_MODE_CONTEXTS; ++i) av1_cost_tokens_from_cdf(mode_costs->inter_compound_mode_cost[i], fc->inter_compound_mode_cdf[i], NULL); for (i = 0; i < BLOCK_SIZES_ALL; ++i) av1_cost_tokens_from_cdf(mode_costs->compound_type_cost[i], fc->compound_type_cdf[i], NULL); for (i = 0; i < BLOCK_SIZES_ALL; ++i) { if (av1_is_wedge_used(i)) { av1_cost_tokens_from_cdf(mode_costs->wedge_idx_cost[i], fc->wedge_idx_cdf[i], NULL); } } for (i = 0; i < BLOCK_SIZE_GROUPS; ++i) { av1_cost_tokens_from_cdf(mode_costs->interintra_cost[i], fc->interintra_cdf[i], NULL); av1_cost_tokens_from_cdf(mode_costs->interintra_mode_cost[i], fc->interintra_mode_cdf[i], NULL); } for (i = 0; i < BLOCK_SIZES_ALL; ++i) { av1_cost_tokens_from_cdf(mode_costs->wedge_interintra_cost[i], fc->wedge_interintra_cdf[i], NULL); } for (i = BLOCK_8X8; i < BLOCK_SIZES_ALL; i++) { av1_cost_tokens_from_cdf(mode_costs->motion_mode_cost[i], fc->motion_mode_cdf[i], NULL); } for (i = BLOCK_8X8; i < BLOCK_SIZES_ALL; i++) { av1_cost_tokens_from_cdf(mode_costs->motion_mode_cost1[i], fc->obmc_cdf[i], NULL); } for (i = 0; i < COMP_INDEX_CONTEXTS; ++i) { av1_cost_tokens_from_cdf(mode_costs->comp_idx_cost[i], fc->compound_index_cdf[i], NULL); } for (i = 0; i < COMP_GROUP_IDX_CONTEXTS; ++i) { av1_cost_tokens_from_cdf(mode_costs->comp_group_idx_cost[i], fc->comp_group_idx_cdf[i], NULL); } } } void av1_fill_lr_rates(ModeCosts *mode_costs, FRAME_CONTEXT *fc) { av1_cost_tokens_from_cdf(mode_costs->switchable_restore_cost, fc->switchable_restore_cdf, NULL); av1_cost_tokens_from_cdf(mode_costs->wiener_restore_cost, fc->wiener_restore_cdf, NULL); av1_cost_tokens_from_cdf(mode_costs->sgrproj_restore_cost, fc->sgrproj_restore_cdf, NULL); } // Values are now correlated to quantizer. static int sad_per_bit_lut_8[QINDEX_RANGE]; static int sad_per_bit_lut_10[QINDEX_RANGE]; static int sad_per_bit_lut_12[QINDEX_RANGE]; static void init_me_luts_bd(int *bit16lut, int range, aom_bit_depth_t bit_depth) { int i; // Initialize the sad lut tables using a formulaic calculation for now. // This is to make it easier to resolve the impact of experimental changes // to the quantizer tables. for (i = 0; i < range; i++) { const double q = av1_convert_qindex_to_q(i, bit_depth); bit16lut[i] = (int)(0.0418 * q + 2.4107); } } void av1_init_me_luts(void) { init_me_luts_bd(sad_per_bit_lut_8, QINDEX_RANGE, AOM_BITS_8); init_me_luts_bd(sad_per_bit_lut_10, QINDEX_RANGE, AOM_BITS_10); init_me_luts_bd(sad_per_bit_lut_12, QINDEX_RANGE, AOM_BITS_12); } static const int rd_boost_factor[16] = { 64, 32, 32, 32, 24, 16, 12, 12, 8, 8, 4, 4, 2, 2, 1, 0 }; static const int rd_layer_depth_factor[7] = { 160, 160, 160, 160, 192, 208, 224 }; // Returns the default rd multiplier for inter frames for a given qindex. // The function here is a first pass estimate based on data from // a previous Vizer run static double def_inter_rd_multiplier(int qindex) { return 3.2 + (0.0035 * (double)qindex); } // Returns the default rd multiplier for ARF/Golden Frames for a given qindex. // The function here is a first pass estimate based on data from // a previous Vizer run static double def_arf_rd_multiplier(int qindex) { return 3.25 + (0.0035 * (double)qindex); } // Returns the default rd multiplier for key frames for a given qindex. // The function here is a first pass estimate based on data from // a previous Vizer run static double def_kf_rd_multiplier(int qindex) { return 3.3 + (0.0035 * (double)qindex); } int av1_compute_rd_mult_based_on_qindex(const AV1_COMP *cpi, int qindex) { const int q = av1_dc_quant_QTX(qindex, 0, cpi->common.seq_params->bit_depth); const FRAME_UPDATE_TYPE update_type = cpi->ppi->gf_group.update_type[cpi->gf_frame_index]; int rdmult = q * q; if (update_type == KF_UPDATE) { double def_rd_q_mult = def_kf_rd_multiplier(qindex); rdmult = (int)((double)rdmult * def_rd_q_mult); } else if ((update_type == GF_UPDATE) || (update_type == ARF_UPDATE)) { double def_rd_q_mult = def_arf_rd_multiplier(qindex); rdmult = (int)((double)rdmult * def_rd_q_mult); } else { double def_rd_q_mult = def_inter_rd_multiplier(qindex); rdmult = (int)((double)rdmult * def_rd_q_mult); } switch (cpi->common.seq_params->bit_depth) { case AOM_BITS_8: break; case AOM_BITS_10: rdmult = ROUND_POWER_OF_TWO(rdmult, 4); break; case AOM_BITS_12: rdmult = ROUND_POWER_OF_TWO(rdmult, 8); break; default: assert(0 && "bit_depth should be AOM_BITS_8, AOM_BITS_10 or AOM_BITS_12"); return -1; } return rdmult > 0 ? rdmult : 1; } int av1_compute_rd_mult(const AV1_COMP *cpi, int qindex) { int64_t rdmult = av1_compute_rd_mult_based_on_qindex(cpi, qindex); if (is_stat_consumption_stage(cpi) && (cpi->common.current_frame.frame_type != KEY_FRAME)) { const GF_GROUP *const gf_group = &cpi->ppi->gf_group; const int boost_index = AOMMIN(15, (cpi->ppi->p_rc.gfu_boost / 100)); const int layer_depth = AOMMIN(gf_group->layer_depth[cpi->gf_frame_index], 6); // Layer depth adjustment rdmult = (rdmult * rd_layer_depth_factor[layer_depth]) >> 7; // ARF boost adjustment rdmult += ((rdmult * rd_boost_factor[boost_index]) >> 7); } return (int)rdmult; } int av1_get_deltaq_offset(aom_bit_depth_t bit_depth, int qindex, double beta) { assert(beta > 0.0); int q = av1_dc_quant_QTX(qindex, 0, bit_depth); int newq = (int)rint(q / sqrt(beta)); int orig_qindex = qindex; if (newq == q) { return 0; } if (newq < q) { while (qindex > 0) { qindex--; q = av1_dc_quant_QTX(qindex, 0, bit_depth); if (newq >= q) { break; } } } else { while (qindex < MAXQ) { qindex++; q = av1_dc_quant_QTX(qindex, 0, bit_depth); if (newq <= q) { break; } } } return qindex - orig_qindex; } int av1_get_adaptive_rdmult(const AV1_COMP *cpi, double beta) { assert(beta > 0.0); const AV1_COMMON *cm = &cpi->common; int q = av1_dc_quant_QTX(cm->quant_params.base_qindex, 0, cm->seq_params->bit_depth); return (int)(av1_compute_rd_mult(cpi, q) / beta); } static int compute_rd_thresh_factor(int qindex, aom_bit_depth_t bit_depth) { double q; switch (bit_depth) { case AOM_BITS_8: q = av1_dc_quant_QTX(qindex, 0, AOM_BITS_8) / 4.0; break; case AOM_BITS_10: q = av1_dc_quant_QTX(qindex, 0, AOM_BITS_10) / 16.0; break; case AOM_BITS_12: q = av1_dc_quant_QTX(qindex, 0, AOM_BITS_12) / 64.0; break; default: assert(0 && "bit_depth should be AOM_BITS_8, AOM_BITS_10 or AOM_BITS_12"); return -1; } // TODO(debargha): Adjust the function below. return AOMMAX((int)(pow(q, RD_THRESH_POW) * 5.12), 8); } void av1_set_sad_per_bit(const AV1_COMP *cpi, int *sadperbit, int qindex) { switch (cpi->common.seq_params->bit_depth) { case AOM_BITS_8: *sadperbit = sad_per_bit_lut_8[qindex]; break; case AOM_BITS_10: *sadperbit = sad_per_bit_lut_10[qindex]; break; case AOM_BITS_12: *sadperbit = sad_per_bit_lut_12[qindex]; break; default: assert(0 && "bit_depth should be AOM_BITS_8, AOM_BITS_10 or AOM_BITS_12"); } } static void set_block_thresholds(const AV1_COMMON *cm, RD_OPT *rd) { int i, bsize, segment_id; for (segment_id = 0; segment_id < MAX_SEGMENTS; ++segment_id) { const int qindex = clamp( av1_get_qindex(&cm->seg, segment_id, cm->quant_params.base_qindex) + cm->quant_params.y_dc_delta_q, 0, MAXQ); const int q = compute_rd_thresh_factor(qindex, cm->seq_params->bit_depth); for (bsize = 0; bsize < BLOCK_SIZES_ALL; ++bsize) { // Threshold here seems unnecessarily harsh but fine given actual // range of values used for cpi->sf.thresh_mult[]. const int t = q * rd_thresh_block_size_factor[bsize]; const int thresh_max = INT_MAX / t; for (i = 0; i < MAX_MODES; ++i) rd->threshes[segment_id][bsize][i] = rd->thresh_mult[i] < thresh_max ? rd->thresh_mult[i] * t / 4 : INT_MAX; } } } void av1_fill_coeff_costs(CoeffCosts *coeff_costs, FRAME_CONTEXT *fc, const int num_planes) { const int nplanes = AOMMIN(num_planes, PLANE_TYPES); for (int eob_multi_size = 0; eob_multi_size < 7; ++eob_multi_size) { for (int plane = 0; plane < nplanes; ++plane) { LV_MAP_EOB_COST *pcost = &coeff_costs->eob_costs[eob_multi_size][plane]; for (int ctx = 0; ctx < 2; ++ctx) { aom_cdf_prob *pcdf; switch (eob_multi_size) { case 0: pcdf = fc->eob_flag_cdf16[plane][ctx]; break; case 1: pcdf = fc->eob_flag_cdf32[plane][ctx]; break; case 2: pcdf = fc->eob_flag_cdf64[plane][ctx]; break; case 3: pcdf = fc->eob_flag_cdf128[plane][ctx]; break; case 4: pcdf = fc->eob_flag_cdf256[plane][ctx]; break; case 5: pcdf = fc->eob_flag_cdf512[plane][ctx]; break; case 6: default: pcdf = fc->eob_flag_cdf1024[plane][ctx]; break; } av1_cost_tokens_from_cdf(pcost->eob_cost[ctx], pcdf, NULL); } } } for (int tx_size = 0; tx_size < TX_SIZES; ++tx_size) { for (int plane = 0; plane < nplanes; ++plane) { LV_MAP_COEFF_COST *pcost = &coeff_costs->coeff_costs[tx_size][plane]; for (int ctx = 0; ctx < TXB_SKIP_CONTEXTS; ++ctx) av1_cost_tokens_from_cdf(pcost->txb_skip_cost[ctx], fc->txb_skip_cdf[tx_size][ctx], NULL); for (int ctx = 0; ctx < SIG_COEF_CONTEXTS_EOB; ++ctx) av1_cost_tokens_from_cdf(pcost->base_eob_cost[ctx], fc->coeff_base_eob_cdf[tx_size][plane][ctx], NULL); for (int ctx = 0; ctx < SIG_COEF_CONTEXTS; ++ctx) av1_cost_tokens_from_cdf(pcost->base_cost[ctx], fc->coeff_base_cdf[tx_size][plane][ctx], NULL); for (int ctx = 0; ctx < SIG_COEF_CONTEXTS; ++ctx) { pcost->base_cost[ctx][4] = 0; pcost->base_cost[ctx][5] = pcost->base_cost[ctx][1] + av1_cost_literal(1) - pcost->base_cost[ctx][0]; pcost->base_cost[ctx][6] = pcost->base_cost[ctx][2] - pcost->base_cost[ctx][1]; pcost->base_cost[ctx][7] = pcost->base_cost[ctx][3] - pcost->base_cost[ctx][2]; } for (int ctx = 0; ctx < EOB_COEF_CONTEXTS; ++ctx) av1_cost_tokens_from_cdf(pcost->eob_extra_cost[ctx], fc->eob_extra_cdf[tx_size][plane][ctx], NULL); for (int ctx = 0; ctx < DC_SIGN_CONTEXTS; ++ctx) av1_cost_tokens_from_cdf(pcost->dc_sign_cost[ctx], fc->dc_sign_cdf[plane][ctx], NULL); for (int ctx = 0; ctx < LEVEL_CONTEXTS; ++ctx) { int br_rate[BR_CDF_SIZE]; int prev_cost = 0; int i, j; av1_cost_tokens_from_cdf( br_rate, fc->coeff_br_cdf[AOMMIN(tx_size, TX_32X32)][plane][ctx], NULL); // printf("br_rate: "); // for(j = 0; j < BR_CDF_SIZE; j++) // printf("%4d ", br_rate[j]); // printf("\n"); for (i = 0; i < COEFF_BASE_RANGE; i += BR_CDF_SIZE - 1) { for (j = 0; j < BR_CDF_SIZE - 1; j++) { pcost->lps_cost[ctx][i + j] = prev_cost + br_rate[j]; } prev_cost += br_rate[j]; } pcost->lps_cost[ctx][i] = prev_cost; // printf("lps_cost: %d %d %2d : ", tx_size, plane, ctx); // for (i = 0; i <= COEFF_BASE_RANGE; i++) // printf("%5d ", pcost->lps_cost[ctx][i]); // printf("\n"); } for (int ctx = 0; ctx < LEVEL_CONTEXTS; ++ctx) { pcost->lps_cost[ctx][0 + COEFF_BASE_RANGE + 1] = pcost->lps_cost[ctx][0]; for (int i = 1; i <= COEFF_BASE_RANGE; ++i) { pcost->lps_cost[ctx][i + COEFF_BASE_RANGE + 1] = pcost->lps_cost[ctx][i] - pcost->lps_cost[ctx][i - 1]; } } } } } void av1_fill_mv_costs(const nmv_context *nmvc, int integer_mv, int usehp, MvCosts *mv_costs) { mv_costs->nmv_cost[0] = &mv_costs->nmv_cost_alloc[0][MV_MAX]; mv_costs->nmv_cost[1] = &mv_costs->nmv_cost_alloc[1][MV_MAX]; mv_costs->nmv_cost_hp[0] = &mv_costs->nmv_cost_hp_alloc[0][MV_MAX]; mv_costs->nmv_cost_hp[1] = &mv_costs->nmv_cost_hp_alloc[1][MV_MAX]; if (integer_mv) { mv_costs->mv_cost_stack = (int **)&mv_costs->nmv_cost; av1_build_nmv_cost_table(mv_costs->nmv_joint_cost, mv_costs->mv_cost_stack, nmvc, MV_SUBPEL_NONE); } else { mv_costs->mv_cost_stack = usehp ? mv_costs->nmv_cost_hp : mv_costs->nmv_cost; av1_build_nmv_cost_table(mv_costs->nmv_joint_cost, mv_costs->mv_cost_stack, nmvc, usehp); } } void av1_fill_dv_costs(const nmv_context *ndvc, IntraBCMVCosts *dv_costs) { dv_costs->dv_costs[0] = &dv_costs->dv_costs_alloc[0][MV_MAX]; dv_costs->dv_costs[1] = &dv_costs->dv_costs_alloc[1][MV_MAX]; av1_build_nmv_cost_table(dv_costs->joint_mv, dv_costs->dv_costs, ndvc, MV_SUBPEL_NONE); } void av1_initialize_rd_consts(AV1_COMP *cpi) { AV1_COMMON *const cm = &cpi->common; MACROBLOCK *const x = &cpi->td.mb; RD_OPT *const rd = &cpi->rd; MvCosts *mv_costs = x->mv_costs; int use_nonrd_pick_mode = cpi->sf.rt_sf.use_nonrd_pick_mode; CostUpdateFreq cost_upd_freq = cpi->oxcf.cost_upd_freq; int fill_costs = frame_is_intra_only(cm) || (cm->current_frame.frame_number & 0x07) == 1; int num_planes = av1_num_planes(cm); aom_clear_system_state(); rd->RDMULT = av1_compute_rd_mult( cpi, cm->quant_params.base_qindex + cm->quant_params.y_dc_delta_q); av1_set_error_per_bit(&x->errorperbit, rd->RDMULT); set_block_thresholds(cm, rd); if ((!use_nonrd_pick_mode && cost_upd_freq.mv != COST_UPD_OFF) || cost_upd_freq.mv == COST_UPD_TILE || fill_costs) av1_fill_mv_costs(&cm->fc->nmvc, cm->features.cur_frame_force_integer_mv, cm->features.allow_high_precision_mv, mv_costs); if ((!use_nonrd_pick_mode && cost_upd_freq.coeff != COST_UPD_OFF) || cost_upd_freq.coeff == COST_UPD_TILE || fill_costs) av1_fill_coeff_costs(&x->coeff_costs, cm->fc, num_planes); if ((!use_nonrd_pick_mode && cost_upd_freq.mode != COST_UPD_OFF) || cost_upd_freq.mode == COST_UPD_TILE || fill_costs) av1_fill_mode_rates(cm, &x->mode_costs, cm->fc); if (!use_nonrd_pick_mode && av1_allow_intrabc(cm) && !is_stat_generation_stage(cpi)) { av1_fill_dv_costs(&cm->fc->ndvc, x->dv_costs); } } static void model_rd_norm(int xsq_q10, int *r_q10, int *d_q10) { // NOTE: The tables below must be of the same size. // The functions described below are sampled at the four most significant // bits of x^2 + 8 / 256. // Normalized rate: // This table models the rate for a Laplacian source with given variance // when quantized with a uniform quantizer with given stepsize. The // closed form expression is: // Rn(x) = H(sqrt(r)) + sqrt(r)*[1 + H(r)/(1 - r)], // where r = exp(-sqrt(2) * x) and x = qpstep / sqrt(variance), // and H(x) is the binary entropy function. static const int rate_tab_q10[] = { 65536, 6086, 5574, 5275, 5063, 4899, 4764, 4651, 4553, 4389, 4255, 4142, 4044, 3958, 3881, 3811, 3748, 3635, 3538, 3453, 3376, 3307, 3244, 3186, 3133, 3037, 2952, 2877, 2809, 2747, 2690, 2638, 2589, 2501, 2423, 2353, 2290, 2232, 2179, 2130, 2084, 2001, 1928, 1862, 1802, 1748, 1698, 1651, 1608, 1530, 1460, 1398, 1342, 1290, 1243, 1199, 1159, 1086, 1021, 963, 911, 864, 821, 781, 745, 680, 623, 574, 530, 490, 455, 424, 395, 345, 304, 269, 239, 213, 190, 171, 154, 126, 104, 87, 73, 61, 52, 44, 38, 28, 21, 16, 12, 10, 8, 6, 5, 3, 2, 1, 1, 1, 0, 0, }; // Normalized distortion: // This table models the normalized distortion for a Laplacian source // with given variance when quantized with a uniform quantizer // with given stepsize. The closed form expression is: // Dn(x) = 1 - 1/sqrt(2) * x / sinh(x/sqrt(2)) // where x = qpstep / sqrt(variance). // Note the actual distortion is Dn * variance. static const int dist_tab_q10[] = { 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, 5, 6, 7, 7, 8, 9, 11, 12, 13, 15, 16, 17, 18, 21, 24, 26, 29, 31, 34, 36, 39, 44, 49, 54, 59, 64, 69, 73, 78, 88, 97, 106, 115, 124, 133, 142, 151, 167, 184, 200, 215, 231, 245, 260, 274, 301, 327, 351, 375, 397, 418, 439, 458, 495, 528, 559, 587, 613, 637, 659, 680, 717, 749, 777, 801, 823, 842, 859, 874, 899, 919, 936, 949, 960, 969, 977, 983, 994, 1001, 1006, 1010, 1013, 1015, 1017, 1018, 1020, 1022, 1022, 1023, 1023, 1023, 1024, }; static const int xsq_iq_q10[] = { 0, 4, 8, 12, 16, 20, 24, 28, 32, 40, 48, 56, 64, 72, 80, 88, 96, 112, 128, 144, 160, 176, 192, 208, 224, 256, 288, 320, 352, 384, 416, 448, 480, 544, 608, 672, 736, 800, 864, 928, 992, 1120, 1248, 1376, 1504, 1632, 1760, 1888, 2016, 2272, 2528, 2784, 3040, 3296, 3552, 3808, 4064, 4576, 5088, 5600, 6112, 6624, 7136, 7648, 8160, 9184, 10208, 11232, 12256, 13280, 14304, 15328, 16352, 18400, 20448, 22496, 24544, 26592, 28640, 30688, 32736, 36832, 40928, 45024, 49120, 53216, 57312, 61408, 65504, 73696, 81888, 90080, 98272, 106464, 114656, 122848, 131040, 147424, 163808, 180192, 196576, 212960, 229344, 245728, }; const int tmp = (xsq_q10 >> 2) + 8; const int k = get_msb(tmp) - 3; const int xq = (k << 3) + ((tmp >> k) & 0x7); const int one_q10 = 1 << 10; const int a_q10 = ((xsq_q10 - xsq_iq_q10[xq]) << 10) >> (2 + k); const int b_q10 = one_q10 - a_q10; *r_q10 = (rate_tab_q10[xq] * b_q10 + rate_tab_q10[xq + 1] * a_q10) >> 10; *d_q10 = (dist_tab_q10[xq] * b_q10 + dist_tab_q10[xq + 1] * a_q10) >> 10; } void av1_model_rd_from_var_lapndz(int64_t var, unsigned int n_log2, unsigned int qstep, int *rate, int64_t *dist) { // This function models the rate and distortion for a Laplacian // source with given variance when quantized with a uniform quantizer // with given stepsize. The closed form expressions are in: // Hang and Chen, "Source Model for transform video coder and its // application - Part I: Fundamental Theory", IEEE Trans. Circ. // Sys. for Video Tech., April 1997. if (var == 0) { *rate = 0; *dist = 0; } else { int d_q10, r_q10; static const uint32_t MAX_XSQ_Q10 = 245727; const uint64_t xsq_q10_64 = (((uint64_t)qstep * qstep << (n_log2 + 10)) + (var >> 1)) / var; const int xsq_q10 = (int)AOMMIN(xsq_q10_64, MAX_XSQ_Q10); model_rd_norm(xsq_q10, &r_q10, &d_q10); *rate = ROUND_POWER_OF_TWO(r_q10 << n_log2, 10 - AV1_PROB_COST_SHIFT); *dist = (var * (int64_t)d_q10 + 512) >> 10; } } static double interp_cubic(const double *p, double x) { return p[1] + 0.5 * x * (p[2] - p[0] + x * (2.0 * p[0] - 5.0 * p[1] + 4.0 * p[2] - p[3] + x * (3.0 * (p[1] - p[2]) + p[3] - p[0]))); } /* static double interp_bicubic(const double *p, int p_stride, double x, double y) { double q[4]; q[0] = interp_cubic(p, x); q[1] = interp_cubic(p + p_stride, x); q[2] = interp_cubic(p + 2 * p_stride, x); q[3] = interp_cubic(p + 3 * p_stride, x); return interp_cubic(q, y); } */ static const uint8_t bsize_curvfit_model_cat_lookup[BLOCK_SIZES_ALL] = { 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 1, 1, 2, 2, 3, 3 }; static int sse_norm_curvfit_model_cat_lookup(double sse_norm) { return (sse_norm > 16.0); } // Models distortion by sse using a logistic function on // l = log2(sse / q^2) as: // dbysse = 16 / (1 + k exp(l + c)) static double get_dbysse_logistic(double l, double c, double k) { const double A = 16.0; const double dbysse = A / (1 + k * exp(l + c)); return dbysse; } // Models rate using a clamped linear function on // l = log2(sse / q^2) as: // rate = max(0, a + b * l) static double get_rate_clamplinear(double l, double a, double b) { const double rate = a + b * l; return (rate < 0 ? 0 : rate); } static const uint8_t bsize_surffit_model_cat_lookup[BLOCK_SIZES_ALL] = { 0, 0, 0, 0, 1, 1, 2, 3, 3, 4, 5, 5, 6, 7, 7, 8, 0, 0, 2, 2, 4, 4 }; static const double surffit_rate_params[9][4] = { { 638.390212, 2.253108, 166.585650, -3.939401, }, { 5.256905, 81.997240, -1.321771, 17.694216, }, { -74.193045, 72.431868, -19.033152, 15.407276, }, { 416.770113, 14.794188, 167.686830, -6.997756, }, { 378.511276, 9.558376, 154.658843, -6.635663, }, { 277.818787, 4.413180, 150.317637, -9.893038, }, { 142.212132, 11.542038, 94.393964, -5.518517, }, { 219.100256, 4.007421, 108.932852, -6.981310, }, { 222.261971, 3.251049, 95.972916, -5.609789, }, }; static const double surffit_dist_params[7] = { 1.475844, 4.328362, -5.680233, -0.500994, 0.554585, 4.839478, -0.695837 }; static void rate_surffit_model_params_lookup(BLOCK_SIZE bsize, double xm, double *rpar) { const int cat = bsize_surffit_model_cat_lookup[bsize]; rpar[0] = surffit_rate_params[cat][0] + surffit_rate_params[cat][1] * xm; rpar[1] = surffit_rate_params[cat][2] + surffit_rate_params[cat][3] * xm; } static void dist_surffit_model_params_lookup(BLOCK_SIZE bsize, double xm, double *dpar) { (void)bsize; const double *params = surffit_dist_params; dpar[0] = params[0] + params[1] / (1 + exp((xm + params[2]) * params[3])); dpar[1] = params[4] + params[5] * exp(params[6] * xm); } void av1_model_rd_surffit(BLOCK_SIZE bsize, double sse_norm, double xm, double yl, double *rate_f, double *distbysse_f) { (void)sse_norm; double rpar[2], dpar[2]; rate_surffit_model_params_lookup(bsize, xm, rpar); dist_surffit_model_params_lookup(bsize, xm, dpar); *rate_f = get_rate_clamplinear(yl, rpar[0], rpar[1]); *distbysse_f = get_dbysse_logistic(yl, dpar[0], dpar[1]); } static const double interp_rgrid_curv[4][65] = { { 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 118.257702, 120.210658, 121.434853, 122.100487, 122.377758, 122.436865, 72.290102, 96.974289, 101.652727, 126.830141, 140.417377, 157.644879, 184.315291, 215.823873, 262.300169, 335.919859, 420.624173, 519.185032, 619.854243, 726.053595, 827.663369, 933.127475, 1037.988755, 1138.839609, 1233.342933, 1333.508064, 1428.760126, 1533.396364, 1616.952052, 1744.539319, 1803.413586, 1951.466618, 1994.227838, 2086.031680, 2148.635443, 2239.068450, 2222.590637, 2338.859809, 2402.929011, 2418.727875, 2435.342670, 2471.159469, 2523.187446, 2591.183827, 2674.905840, 2774.110714, 2888.555675, 3017.997952, 3162.194773, 3320.903365, 3493.880956, 3680.884773, 3881.672045, 4096.000000, }, { 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 13.087244, 15.919735, 25.930313, 24.412411, 28.567417, 29.924194, 30.857010, 32.742979, 36.382570, 39.210386, 42.265690, 47.378572, 57.014850, 82.740067, 137.346562, 219.968084, 316.781856, 415.643773, 516.706538, 614.914364, 714.303763, 815.512135, 911.210485, 1008.501528, 1109.787854, 1213.772279, 1322.922561, 1414.752579, 1510.505641, 1615.741888, 1697.989032, 1780.123933, 1847.453790, 1913.742309, 1960.828122, 2047.500168, 2085.454095, 2129.230668, 2158.171824, 2182.231724, 2217.684864, 2269.589211, 2337.264824, 2420.618694, 2519.557814, 2633.989178, 2763.819779, 2908.956609, 3069.306660, 3244.776927, 3435.274401, 3640.706076, 3860.978945, 4096.000000, }, { 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 4.656893, 5.123633, 5.594132, 6.162376, 6.918433, 7.768444, 8.739415, 10.105862, 11.477328, 13.236604, 15.421030, 19.093623, 25.801871, 46.724612, 98.841054, 181.113466, 272.586364, 359.499769, 445.546343, 525.944439, 605.188743, 681.793483, 756.668359, 838.486885, 926.950356, 1015.482542, 1113.353926, 1204.897193, 1288.871992, 1373.464145, 1455.746628, 1527.796460, 1588.475066, 1658.144771, 1710.302500, 1807.563351, 1863.197608, 1927.281616, 1964.450872, 2022.719898, 2100.041145, 2185.205712, 2280.993936, 2387.616216, 2505.282950, 2634.204540, 2774.591385, 2926.653884, 3090.602436, 3266.647443, 3454.999303, 3655.868416, 3869.465182, 4096.000000, }, { 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.337370, 0.391916, 0.468839, 0.566334, 0.762564, 1.069225, 1.384361, 1.787581, 2.293948, 3.251909, 4.412991, 8.050068, 11.606073, 27.668092, 65.227758, 128.463938, 202.097653, 262.715851, 312.464873, 355.601398, 400.609054, 447.201352, 495.761568, 552.871938, 619.067625, 691.984883, 773.753288, 860.628503, 946.262808, 1019.805896, 1106.061360, 1178.422145, 1244.852258, 1302.173987, 1399.650266, 1548.092912, 1545.928652, 1670.817500, 1694.523823, 1779.195362, 1882.155494, 1990.662097, 2108.325181, 2235.456119, 2372.366287, 2519.367059, 2676.769812, 2844.885918, 3024.026754, 3214.503695, 3416.628115, 3630.711389, 3857.064892, 4096.000000, }, }; static const double interp_dgrid_curv[3][65] = { { 16.000000, 15.962891, 15.925174, 15.886888, 15.848074, 15.808770, 15.769015, 15.728850, 15.688313, 15.647445, 15.606284, 15.564870, 15.525918, 15.483820, 15.373330, 15.126844, 14.637442, 14.184387, 13.560070, 12.880717, 12.165995, 11.378144, 10.438769, 9.130790, 7.487633, 5.688649, 4.267515, 3.196300, 2.434201, 1.834064, 1.369920, 1.035921, 0.775279, 0.574895, 0.427232, 0.314123, 0.233236, 0.171440, 0.128188, 0.092762, 0.067569, 0.049324, 0.036330, 0.027008, 0.019853, 0.015539, 0.011093, 0.008733, 0.007624, 0.008105, 0.005427, 0.004065, 0.003427, 0.002848, 0.002328, 0.001865, 0.001457, 0.001103, 0.000801, 0.000550, 0.000348, 0.000193, 0.000085, 0.000021, 0.000000, }, { 16.000000, 15.996116, 15.984769, 15.966413, 15.941505, 15.910501, 15.873856, 15.832026, 15.785466, 15.734633, 15.679981, 15.621967, 15.560961, 15.460157, 15.288367, 15.052462, 14.466922, 13.921212, 13.073692, 12.222005, 11.237799, 9.985848, 8.898823, 7.423519, 5.995325, 4.773152, 3.744032, 2.938217, 2.294526, 1.762412, 1.327145, 1.020728, 0.765535, 0.570548, 0.425833, 0.313825, 0.232959, 0.171324, 0.128174, 0.092750, 0.067558, 0.049319, 0.036330, 0.027008, 0.019853, 0.015539, 0.011093, 0.008733, 0.007624, 0.008105, 0.005427, 0.004065, 0.003427, 0.002848, 0.002328, 0.001865, 0.001457, 0.001103, 0.000801, 0.000550, 0.000348, 0.000193, 0.000085, 0.000021, -0.000000, }, }; void av1_model_rd_curvfit(BLOCK_SIZE bsize, double sse_norm, double xqr, double *rate_f, double *distbysse_f) { const double x_start = -15.5; const double x_end = 16.5; const double x_step = 0.5; const double epsilon = 1e-6; const int rcat = bsize_curvfit_model_cat_lookup[bsize]; const int dcat = sse_norm_curvfit_model_cat_lookup(sse_norm); (void)x_end; xqr = AOMMAX(xqr, x_start + x_step + epsilon); xqr = AOMMIN(xqr, x_end - x_step - epsilon); const double x = (xqr - x_start) / x_step; const int xi = (int)floor(x); const double xo = x - xi; assert(xi > 0); const double *prate = &interp_rgrid_curv[rcat][(xi - 1)]; *rate_f = interp_cubic(prate, xo); const double *pdist = &interp_dgrid_curv[dcat][(xi - 1)]; *distbysse_f = interp_cubic(pdist, xo); } static void get_entropy_contexts_plane(BLOCK_SIZE plane_bsize, const struct macroblockd_plane *pd, ENTROPY_CONTEXT t_above[MAX_MIB_SIZE], ENTROPY_CONTEXT t_left[MAX_MIB_SIZE]) { const int num_4x4_w = mi_size_wide[plane_bsize]; const int num_4x4_h = mi_size_high[plane_bsize]; const ENTROPY_CONTEXT *const above = pd->above_entropy_context; const ENTROPY_CONTEXT *const left = pd->left_entropy_context; memcpy(t_above, above, sizeof(ENTROPY_CONTEXT) * num_4x4_w); memcpy(t_left, left, sizeof(ENTROPY_CONTEXT) * num_4x4_h); } void av1_get_entropy_contexts(BLOCK_SIZE plane_bsize, const struct macroblockd_plane *pd, ENTROPY_CONTEXT t_above[MAX_MIB_SIZE], ENTROPY_CONTEXT t_left[MAX_MIB_SIZE]) { assert(plane_bsize < BLOCK_SIZES_ALL); get_entropy_contexts_plane(plane_bsize, pd, t_above, t_left); } void av1_mv_pred(const AV1_COMP *cpi, MACROBLOCK *x, uint8_t *ref_y_buffer, int ref_y_stride, int ref_frame, BLOCK_SIZE block_size) { const MV_REFERENCE_FRAME ref_frames[2] = { ref_frame, NONE_FRAME }; const int_mv ref_mv = av1_get_ref_mv_from_stack(0, ref_frames, 0, &x->mbmi_ext); const int_mv ref_mv1 = av1_get_ref_mv_from_stack(0, ref_frames, 1, &x->mbmi_ext); MV pred_mv[MAX_MV_REF_CANDIDATES + 1]; int num_mv_refs = 0; pred_mv[num_mv_refs++] = ref_mv.as_mv; if (ref_mv.as_int != ref_mv1.as_int) { pred_mv[num_mv_refs++] = ref_mv1.as_mv; } assert(num_mv_refs <= (int)(sizeof(pred_mv) / sizeof(pred_mv[0]))); const uint8_t *const src_y_ptr = x->plane[0].src.buf; int zero_seen = 0; int best_sad = INT_MAX; int max_mv = 0; // Get the sad for each candidate reference mv. for (int i = 0; i < num_mv_refs; ++i) { const MV *this_mv = &pred_mv[i]; const int fp_row = (this_mv->row + 3 + (this_mv->row >= 0)) >> 3; const int fp_col = (this_mv->col + 3 + (this_mv->col >= 0)) >> 3; max_mv = AOMMAX(max_mv, AOMMAX(abs(this_mv->row), abs(this_mv->col)) >> 3); if (fp_row == 0 && fp_col == 0 && zero_seen) continue; zero_seen |= (fp_row == 0 && fp_col == 0); const uint8_t *const ref_y_ptr = &ref_y_buffer[ref_y_stride * fp_row + fp_col]; // Find sad for current vector. const int this_sad = cpi->ppi->fn_ptr[block_size].sdf( src_y_ptr, x->plane[0].src.stride, ref_y_ptr, ref_y_stride); // Note if it is the best so far. if (this_sad < best_sad) { best_sad = this_sad; } if (i == 0) x->pred_mv0_sad[ref_frame] = this_sad; else if (i == 1) x->pred_mv1_sad[ref_frame] = this_sad; } // Note the index of the mv that worked best in the reference list. x->max_mv_context[ref_frame] = max_mv; x->pred_mv_sad[ref_frame] = best_sad; } void av1_setup_pred_block(const MACROBLOCKD *xd, struct buf_2d dst[MAX_MB_PLANE], const YV12_BUFFER_CONFIG *src, const struct scale_factors *scale, const struct scale_factors *scale_uv, const int num_planes) { dst[0].buf = src->y_buffer; dst[0].stride = src->y_stride; dst[1].buf = src->u_buffer; dst[2].buf = src->v_buffer; dst[1].stride = dst[2].stride = src->uv_stride; const int mi_row = xd->mi_row; const int mi_col = xd->mi_col; for (int i = 0; i < num_planes; ++i) { setup_pred_plane(dst + i, xd->mi[0]->bsize, dst[i].buf, i ? src->uv_crop_width : src->y_crop_width, i ? src->uv_crop_height : src->y_crop_height, dst[i].stride, mi_row, mi_col, i ? scale_uv : scale, xd->plane[i].subsampling_x, xd->plane[i].subsampling_y); } } YV12_BUFFER_CONFIG *av1_get_scaled_ref_frame(const AV1_COMP *cpi, int ref_frame) { assert(ref_frame >= LAST_FRAME && ref_frame <= ALTREF_FRAME); RefCntBuffer *const scaled_buf = cpi->scaled_ref_buf[ref_frame - 1]; const RefCntBuffer *const ref_buf = get_ref_frame_buf(&cpi->common, ref_frame); return (scaled_buf != ref_buf && scaled_buf != NULL) ? &scaled_buf->buf : NULL; } int av1_get_switchable_rate(const MACROBLOCK *x, const MACROBLOCKD *xd, InterpFilter interp_filter, int dual_filter) { if (interp_filter == SWITCHABLE) { const MB_MODE_INFO *const mbmi = xd->mi[0]; int inter_filter_cost = 0; for (int dir = 0; dir < 2; ++dir) { if (dir && !dual_filter) break; const int ctx = av1_get_pred_context_switchable_interp(xd, dir); const InterpFilter filter = av1_extract_interp_filter(mbmi->interp_filters, dir); inter_filter_cost += x->mode_costs.switchable_interp_costs[ctx][filter]; } return SWITCHABLE_INTERP_RATE_FACTOR * inter_filter_cost; } else { return 0; } } void av1_set_rd_speed_thresholds(AV1_COMP *cpi) { RD_OPT *const rd = &cpi->rd; // Set baseline threshold values. av1_zero(rd->thresh_mult); rd->thresh_mult[THR_NEARESTMV] = 300; rd->thresh_mult[THR_NEARESTL2] = 300; rd->thresh_mult[THR_NEARESTL3] = 300; rd->thresh_mult[THR_NEARESTB] = 300; rd->thresh_mult[THR_NEARESTA2] = 300; rd->thresh_mult[THR_NEARESTA] = 300; rd->thresh_mult[THR_NEARESTG] = 300; rd->thresh_mult[THR_NEWMV] = 1000; rd->thresh_mult[THR_NEWL2] = 1000; rd->thresh_mult[THR_NEWL3] = 1000; rd->thresh_mult[THR_NEWB] = 1000; rd->thresh_mult[THR_NEWA2] = 1100; rd->thresh_mult[THR_NEWA] = 1000; rd->thresh_mult[THR_NEWG] = 1000; rd->thresh_mult[THR_NEARMV] = 1000; rd->thresh_mult[THR_NEARL2] = 1000; rd->thresh_mult[THR_NEARL3] = 1000; rd->thresh_mult[THR_NEARB] = 1000; rd->thresh_mult[THR_NEARA2] = 1000; rd->thresh_mult[THR_NEARA] = 1000; rd->thresh_mult[THR_NEARG] = 1000; rd->thresh_mult[THR_GLOBALMV] = 2200; rd->thresh_mult[THR_GLOBALL2] = 2000; rd->thresh_mult[THR_GLOBALL3] = 2000; rd->thresh_mult[THR_GLOBALB] = 2400; rd->thresh_mult[THR_GLOBALA2] = 2000; rd->thresh_mult[THR_GLOBALG] = 2000; rd->thresh_mult[THR_GLOBALA] = 2400; rd->thresh_mult[THR_COMP_NEAREST_NEARESTLA] = 1100; rd->thresh_mult[THR_COMP_NEAREST_NEARESTL2A] = 1000; rd->thresh_mult[THR_COMP_NEAREST_NEARESTL3A] = 800; rd->thresh_mult[THR_COMP_NEAREST_NEARESTGA] = 900; rd->thresh_mult[THR_COMP_NEAREST_NEARESTLB] = 1000; rd->thresh_mult[THR_COMP_NEAREST_NEARESTL2B] = 1000; rd->thresh_mult[THR_COMP_NEAREST_NEARESTL3B] = 1000; rd->thresh_mult[THR_COMP_NEAREST_NEARESTGB] = 1000; rd->thresh_mult[THR_COMP_NEAREST_NEARESTLA2] = 1000; rd->thresh_mult[THR_COMP_NEAREST_NEARESTL2A2] = 1000; rd->thresh_mult[THR_COMP_NEAREST_NEARESTL3A2] = 1000; rd->thresh_mult[THR_COMP_NEAREST_NEARESTGA2] = 1000; rd->thresh_mult[THR_COMP_NEAREST_NEARESTLL2] = 2000; rd->thresh_mult[THR_COMP_NEAREST_NEARESTLL3] = 2000; rd->thresh_mult[THR_COMP_NEAREST_NEARESTLG] = 2000; rd->thresh_mult[THR_COMP_NEAREST_NEARESTBA] = 2000; rd->thresh_mult[THR_COMP_NEAR_NEARLA] = 1200; rd->thresh_mult[THR_COMP_NEAREST_NEWLA] = 1500; rd->thresh_mult[THR_COMP_NEW_NEARESTLA] = 1500; rd->thresh_mult[THR_COMP_NEAR_NEWLA] = 1530; rd->thresh_mult[THR_COMP_NEW_NEARLA] = 1870; rd->thresh_mult[THR_COMP_NEW_NEWLA] = 2400; rd->thresh_mult[THR_COMP_GLOBAL_GLOBALLA] = 2750; rd->thresh_mult[THR_COMP_NEAR_NEARL2A] = 1200; rd->thresh_mult[THR_COMP_NEAREST_NEWL2A] = 1500; rd->thresh_mult[THR_COMP_NEW_NEARESTL2A] = 1500; rd->thresh_mult[THR_COMP_NEAR_NEWL2A] = 1870; rd->thresh_mult[THR_COMP_NEW_NEARL2A] = 1700; rd->thresh_mult[THR_COMP_NEW_NEWL2A] = 1800; rd->thresh_mult[THR_COMP_GLOBAL_GLOBALL2A] = 2500; rd->thresh_mult[THR_COMP_NEAR_NEARL3A] = 1200; rd->thresh_mult[THR_COMP_NEAREST_NEWL3A] = 1500; rd->thresh_mult[THR_COMP_NEW_NEARESTL3A] = 1500; rd->thresh_mult[THR_COMP_NEAR_NEWL3A] = 1700; rd->thresh_mult[THR_COMP_NEW_NEARL3A] = 1700; rd->thresh_mult[THR_COMP_NEW_NEWL3A] = 2000; rd->thresh_mult[THR_COMP_GLOBAL_GLOBALL3A] = 3000; rd->thresh_mult[THR_COMP_NEAR_NEARGA] = 1320; rd->thresh_mult[THR_COMP_NEAREST_NEWGA] = 1500; rd->thresh_mult[THR_COMP_NEW_NEARESTGA] = 1500; rd->thresh_mult[THR_COMP_NEAR_NEWGA] = 2040; rd->thresh_mult[THR_COMP_NEW_NEARGA] = 1700; rd->thresh_mult[THR_COMP_NEW_NEWGA] = 2000; rd->thresh_mult[THR_COMP_GLOBAL_GLOBALGA] = 2250; rd->thresh_mult[THR_COMP_NEAR_NEARLB] = 1200; rd->thresh_mult[THR_COMP_NEAREST_NEWLB] = 1500; rd->thresh_mult[THR_COMP_NEW_NEARESTLB] = 1500; rd->thresh_mult[THR_COMP_NEAR_NEWLB] = 1360; rd->thresh_mult[THR_COMP_NEW_NEARLB] = 1700; rd->thresh_mult[THR_COMP_NEW_NEWLB] = 2400; rd->thresh_mult[THR_COMP_GLOBAL_GLOBALLB] = 2250; rd->thresh_mult[THR_COMP_NEAR_NEARL2B] = 1200; rd->thresh_mult[THR_COMP_NEAREST_NEWL2B] = 1500; rd->thresh_mult[THR_COMP_NEW_NEARESTL2B] = 1500; rd->thresh_mult[THR_COMP_NEAR_NEWL2B] = 1700; rd->thresh_mult[THR_COMP_NEW_NEARL2B] = 1700; rd->thresh_mult[THR_COMP_NEW_NEWL2B] = 2000; rd->thresh_mult[THR_COMP_GLOBAL_GLOBALL2B] = 2500; rd->thresh_mult[THR_COMP_NEAR_NEARL3B] = 1200; rd->thresh_mult[THR_COMP_NEAREST_NEWL3B] = 1500; rd->thresh_mult[THR_COMP_NEW_NEARESTL3B] = 1500; rd->thresh_mult[THR_COMP_NEAR_NEWL3B] = 1870; rd->thresh_mult[THR_COMP_NEW_NEARL3B] = 1700; rd->thresh_mult[THR_COMP_NEW_NEWL3B] = 2000; rd->thresh_mult[THR_COMP_GLOBAL_GLOBALL3B] = 2500; rd->thresh_mult[THR_COMP_NEAR_NEARGB] = 1200; rd->thresh_mult[THR_COMP_NEAREST_NEWGB] = 1500; rd->thresh_mult[THR_COMP_NEW_NEARESTGB] = 1500; rd->thresh_mult[THR_COMP_NEAR_NEWGB] = 1700; rd->thresh_mult[THR_COMP_NEW_NEARGB] = 1700; rd->thresh_mult[THR_COMP_NEW_NEWGB] = 2000; rd->thresh_mult[THR_COMP_GLOBAL_GLOBALGB] = 2500; rd->thresh_mult[THR_COMP_NEAR_NEARLA2] = 1200; rd->thresh_mult[THR_COMP_NEAREST_NEWLA2] = 1800; rd->thresh_mult[THR_COMP_NEW_NEARESTLA2] = 1500; rd->thresh_mult[THR_COMP_NEAR_NEWLA2] = 1700; rd->thresh_mult[THR_COMP_NEW_NEARLA2] = 1700; rd->thresh_mult[THR_COMP_NEW_NEWLA2] = 2000; rd->thresh_mult[THR_COMP_GLOBAL_GLOBALLA2] = 2500; rd->thresh_mult[THR_COMP_NEAR_NEARL2A2] = 1200; rd->thresh_mult[THR_COMP_NEAREST_NEWL2A2] = 1500; rd->thresh_mult[THR_COMP_NEW_NEARESTL2A2] = 1500; rd->thresh_mult[THR_COMP_NEAR_NEWL2A2] = 1700; rd->thresh_mult[THR_COMP_NEW_NEARL2A2] = 1700; rd->thresh_mult[THR_COMP_NEW_NEWL2A2] = 2000; rd->thresh_mult[THR_COMP_GLOBAL_GLOBALL2A2] = 2500; rd->thresh_mult[THR_COMP_NEAR_NEARL3A2] = 1440; rd->thresh_mult[THR_COMP_NEAREST_NEWL3A2] = 1500; rd->thresh_mult[THR_COMP_NEW_NEARESTL3A2] = 1500; rd->thresh_mult[THR_COMP_NEAR_NEWL3A2] = 1700; rd->thresh_mult[THR_COMP_NEW_NEARL3A2] = 1700; rd->thresh_mult[THR_COMP_NEW_NEWL3A2] = 2000; rd->thresh_mult[THR_COMP_GLOBAL_GLOBALL3A2] = 2500; rd->thresh_mult[THR_COMP_NEAR_NEARGA2] = 1200; rd->thresh_mult[THR_COMP_NEAREST_NEWGA2] = 1500; rd->thresh_mult[THR_COMP_NEW_NEARESTGA2] = 1500; rd->thresh_mult[THR_COMP_NEAR_NEWGA2] = 1700; rd->thresh_mult[THR_COMP_NEW_NEARGA2] = 1700; rd->thresh_mult[THR_COMP_NEW_NEWGA2] = 2000; rd->thresh_mult[THR_COMP_GLOBAL_GLOBALGA2] = 2750; rd->thresh_mult[THR_COMP_NEAR_NEARLL2] = 1600; rd->thresh_mult[THR_COMP_NEAREST_NEWLL2] = 2000; rd->thresh_mult[THR_COMP_NEW_NEARESTLL2] = 2000; rd->thresh_mult[THR_COMP_NEAR_NEWLL2] = 2640; rd->thresh_mult[THR_COMP_NEW_NEARLL2] = 2200; rd->thresh_mult[THR_COMP_NEW_NEWLL2] = 2400; rd->thresh_mult[THR_COMP_GLOBAL_GLOBALLL2] = 3200; rd->thresh_mult[THR_COMP_NEAR_NEARLL3] = 1600; rd->thresh_mult[THR_COMP_NEAREST_NEWLL3] = 2000; rd->thresh_mult[THR_COMP_NEW_NEARESTLL3] = 1800; rd->thresh_mult[THR_COMP_NEAR_NEWLL3] = 2200; rd->thresh_mult[THR_COMP_NEW_NEARLL3] = 2200; rd->thresh_mult[THR_COMP_NEW_NEWLL3] = 2400; rd->thresh_mult[THR_COMP_GLOBAL_GLOBALLL3] = 3200; rd->thresh_mult[THR_COMP_NEAR_NEARLG] = 1760; rd->thresh_mult[THR_COMP_NEAREST_NEWLG] = 2400; rd->thresh_mult[THR_COMP_NEW_NEARESTLG] = 2000; rd->thresh_mult[THR_COMP_NEAR_NEWLG] = 1760; rd->thresh_mult[THR_COMP_NEW_NEARLG] = 2640; rd->thresh_mult[THR_COMP_NEW_NEWLG] = 2400; rd->thresh_mult[THR_COMP_GLOBAL_GLOBALLG] = 3200; rd->thresh_mult[THR_COMP_NEAR_NEARBA] = 1600; rd->thresh_mult[THR_COMP_NEAREST_NEWBA] = 2000; rd->thresh_mult[THR_COMP_NEW_NEARESTBA] = 2000; rd->thresh_mult[THR_COMP_NEAR_NEWBA] = 2200; rd->thresh_mult[THR_COMP_NEW_NEARBA] = 1980; rd->thresh_mult[THR_COMP_NEW_NEWBA] = 2640; rd->thresh_mult[THR_COMP_GLOBAL_GLOBALBA] = 3200; rd->thresh_mult[THR_DC] = 1000; rd->thresh_mult[THR_PAETH] = 1000; rd->thresh_mult[THR_SMOOTH] = 2200; rd->thresh_mult[THR_SMOOTH_V] = 2000; rd->thresh_mult[THR_SMOOTH_H] = 2000; rd->thresh_mult[THR_H_PRED] = 2000; rd->thresh_mult[THR_V_PRED] = 1800; rd->thresh_mult[THR_D135_PRED] = 2500; rd->thresh_mult[THR_D203_PRED] = 2000; rd->thresh_mult[THR_D157_PRED] = 2500; rd->thresh_mult[THR_D67_PRED] = 2000; rd->thresh_mult[THR_D113_PRED] = 2500; rd->thresh_mult[THR_D45_PRED] = 2500; } void av1_update_rd_thresh_fact(const AV1_COMMON *const cm, int (*factor_buf)[MAX_MODES], int use_adaptive_rd_thresh, BLOCK_SIZE bsize, THR_MODES best_mode_index) { assert(use_adaptive_rd_thresh > 0); const THR_MODES top_mode = MAX_MODES; const int max_rd_thresh_factor = use_adaptive_rd_thresh * RD_THRESH_MAX_FACT; const int bsize_is_1_to_4 = bsize > cm->seq_params->sb_size; BLOCK_SIZE min_size, max_size; if (bsize_is_1_to_4) { // This part handles block sizes with 1:4 and 4:1 aspect ratios // TODO(any): Experiment with threshold update for parent/child blocks min_size = bsize; max_size = bsize; } else { min_size = AOMMAX(bsize - 2, BLOCK_4X4); max_size = AOMMIN(bsize + 2, (int)cm->seq_params->sb_size); } for (THR_MODES mode = 0; mode < top_mode; ++mode) { for (BLOCK_SIZE bs = min_size; bs <= max_size; ++bs) { int *const fact = &factor_buf[bs][mode]; if (mode == best_mode_index) { *fact -= (*fact >> RD_THRESH_LOG_DEC_FACTOR); } else { *fact = AOMMIN(*fact + RD_THRESH_INC, max_rd_thresh_factor); } } } } int av1_get_intra_cost_penalty(int qindex, int qdelta, aom_bit_depth_t bit_depth) { const int q = av1_dc_quant_QTX(qindex, qdelta, bit_depth); switch (bit_depth) { case AOM_BITS_8: return 20 * q; case AOM_BITS_10: return 5 * q; case AOM_BITS_12: return ROUND_POWER_OF_TWO(5 * q, 2); default: assert(0 && "bit_depth should be AOM_BITS_8, AOM_BITS_10 or AOM_BITS_12"); return -1; } }