/* * Copyright (c) 2020 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "video/adaptation/overuse_frame_detector.h" #include #include "api/video/encoded_image.h" #include "api/video/i420_buffer.h" #include "api/video/video_adaptation_reason.h" #include "modules/video_coding/utility/quality_scaler.h" #include "rtc_base/event.h" #include "rtc_base/fake_clock.h" #include "rtc_base/random.h" #include "rtc_base/task_queue_for_test.h" #include "test/gmock.h" #include "test/gtest.h" namespace webrtc { using ::testing::_; using ::testing::InvokeWithoutArgs; namespace { const int kWidth = 640; const int kHeight = 480; // Corresponds to load of 15% const int kFrameIntervalUs = 33 * rtc::kNumMicrosecsPerMillisec; const int kProcessTimeUs = 5 * rtc::kNumMicrosecsPerMillisec; } // namespace class MockCpuOveruseObserver : public OveruseFrameDetectorObserverInterface { public: MockCpuOveruseObserver() {} virtual ~MockCpuOveruseObserver() {} MOCK_METHOD(void, AdaptUp, (), (override)); MOCK_METHOD(void, AdaptDown, (), (override)); }; class CpuOveruseObserverImpl : public OveruseFrameDetectorObserverInterface { public: CpuOveruseObserverImpl() : overuse_(0), normaluse_(0) {} virtual ~CpuOveruseObserverImpl() {} void AdaptDown() override { ++overuse_; } void AdaptUp() override { ++normaluse_; } int overuse_; int normaluse_; }; class OveruseFrameDetectorUnderTest : public OveruseFrameDetector { public: explicit OveruseFrameDetectorUnderTest( CpuOveruseMetricsObserver* metrics_observer) : OveruseFrameDetector(metrics_observer) {} ~OveruseFrameDetectorUnderTest() {} using OveruseFrameDetector::CheckForOveruse; using OveruseFrameDetector::SetOptions; }; class OveruseFrameDetectorTest : public ::testing::Test, public CpuOveruseMetricsObserver { protected: void SetUp() override { observer_ = &mock_observer_; options_.min_process_count = 0; overuse_detector_ = std::make_unique(this); // Unfortunately, we can't call SetOptions here, since that would break // single-threading requirements in the RunOnTqNormalUsage test. } void OnEncodedFrameTimeMeasured(int encode_time_ms, int encode_usage_percent) override { encode_usage_percent_ = encode_usage_percent; } int InitialUsage() { return ((options_.low_encode_usage_threshold_percent + options_.high_encode_usage_threshold_percent) / 2.0f) + 0.5; } virtual void InsertAndSendFramesWithInterval(int num_frames, int interval_us, int width, int height, int delay_us) { VideoFrame frame = VideoFrame::Builder() .set_video_frame_buffer(I420Buffer::Create(width, height)) .set_rotation(webrtc::kVideoRotation_0) .set_timestamp_us(0) .build(); uint32_t timestamp = 0; while (num_frames-- > 0) { frame.set_timestamp(timestamp); int64_t capture_time_us = rtc::TimeMicros(); overuse_detector_->FrameCaptured(frame, capture_time_us); clock_.AdvanceTime(TimeDelta::Micros(delay_us)); overuse_detector_->FrameSent(timestamp, rtc::TimeMicros(), capture_time_us, delay_us); clock_.AdvanceTime(TimeDelta::Micros(interval_us - delay_us)); timestamp += interval_us * 90 / 1000; } } virtual void InsertAndSendSimulcastFramesWithInterval( int num_frames, int interval_us, int width, int height, // One element per layer rtc::ArrayView delays_us) { VideoFrame frame = VideoFrame::Builder() .set_video_frame_buffer(I420Buffer::Create(width, height)) .set_rotation(webrtc::kVideoRotation_0) .set_timestamp_us(0) .build(); uint32_t timestamp = 0; while (num_frames-- > 0) { frame.set_timestamp(timestamp); int64_t capture_time_us = rtc::TimeMicros(); overuse_detector_->FrameCaptured(frame, capture_time_us); int max_delay_us = 0; for (int delay_us : delays_us) { if (delay_us > max_delay_us) { clock_.AdvanceTime(TimeDelta::Micros(delay_us - max_delay_us)); max_delay_us = delay_us; } overuse_detector_->FrameSent(timestamp, rtc::TimeMicros(), capture_time_us, delay_us); } overuse_detector_->CheckForOveruse(observer_); clock_.AdvanceTime(TimeDelta::Micros(interval_us - max_delay_us)); timestamp += interval_us * 90 / 1000; } } virtual void InsertAndSendFramesWithRandomInterval(int num_frames, int min_interval_us, int max_interval_us, int width, int height, int delay_us) { webrtc::Random random(17); VideoFrame frame = VideoFrame::Builder() .set_video_frame_buffer(I420Buffer::Create(width, height)) .set_rotation(webrtc::kVideoRotation_0) .set_timestamp_us(0) .build(); uint32_t timestamp = 0; while (num_frames-- > 0) { frame.set_timestamp(timestamp); int interval_us = random.Rand(min_interval_us, max_interval_us); int64_t capture_time_us = rtc::TimeMicros(); overuse_detector_->FrameCaptured(frame, capture_time_us); clock_.AdvanceTime(TimeDelta::Micros(delay_us)); overuse_detector_->FrameSent(timestamp, rtc::TimeMicros(), capture_time_us, absl::optional(delay_us)); overuse_detector_->CheckForOveruse(observer_); // Avoid turning clock backwards. if (interval_us > delay_us) clock_.AdvanceTime(TimeDelta::Micros(interval_us - delay_us)); timestamp += interval_us * 90 / 1000; } } virtual void ForceUpdate(int width, int height) { // Insert one frame, wait a second and then put in another to force update // the usage. From the tests where these are used, adding another sample // doesn't affect the expected outcome (this is mainly to check initial // values and whether the overuse detector has been reset or not). InsertAndSendFramesWithInterval(2, rtc::kNumMicrosecsPerSec, width, height, kFrameIntervalUs); } void TriggerOveruse(int num_times) { const int kDelayUs = 32 * rtc::kNumMicrosecsPerMillisec; for (int i = 0; i < num_times; ++i) { InsertAndSendFramesWithInterval(1000, kFrameIntervalUs, kWidth, kHeight, kDelayUs); overuse_detector_->CheckForOveruse(observer_); } } void TriggerUnderuse() { const int kDelayUs1 = 5000; const int kDelayUs2 = 6000; InsertAndSendFramesWithInterval(1300, kFrameIntervalUs, kWidth, kHeight, kDelayUs1); InsertAndSendFramesWithInterval(1, kFrameIntervalUs, kWidth, kHeight, kDelayUs2); overuse_detector_->CheckForOveruse(observer_); } int UsagePercent() { return encode_usage_percent_; } int64_t OveruseProcessingTimeLimitForFramerate(int fps) const { int64_t frame_interval = rtc::kNumMicrosecsPerSec / fps; int64_t max_processing_time_us = (frame_interval * options_.high_encode_usage_threshold_percent) / 100; return max_processing_time_us; } int64_t UnderuseProcessingTimeLimitForFramerate(int fps) const { int64_t frame_interval = rtc::kNumMicrosecsPerSec / fps; int64_t max_processing_time_us = (frame_interval * options_.low_encode_usage_threshold_percent) / 100; return max_processing_time_us; } CpuOveruseOptions options_; rtc::ScopedFakeClock clock_; MockCpuOveruseObserver mock_observer_; OveruseFrameDetectorObserverInterface* observer_; std::unique_ptr overuse_detector_; int encode_usage_percent_ = -1; }; // UsagePercent() > high_encode_usage_threshold_percent => overuse. // UsagePercent() < low_encode_usage_threshold_percent => underuse. TEST_F(OveruseFrameDetectorTest, TriggerOveruse) { // usage > high => overuse overuse_detector_->SetOptions(options_); EXPECT_CALL(mock_observer_, AdaptDown()).Times(1); TriggerOveruse(options_.high_threshold_consecutive_count); } TEST_F(OveruseFrameDetectorTest, OveruseAndRecover) { // usage > high => overuse overuse_detector_->SetOptions(options_); EXPECT_CALL(mock_observer_, AdaptDown()).Times(1); TriggerOveruse(options_.high_threshold_consecutive_count); // usage < low => underuse EXPECT_CALL(mock_observer_, AdaptUp()).Times(::testing::AtLeast(1)); TriggerUnderuse(); } TEST_F(OveruseFrameDetectorTest, DoubleOveruseAndRecover) { overuse_detector_->SetOptions(options_); EXPECT_CALL(mock_observer_, AdaptDown()).Times(2); TriggerOveruse(options_.high_threshold_consecutive_count); TriggerOveruse(options_.high_threshold_consecutive_count); EXPECT_CALL(mock_observer_, AdaptUp()).Times(::testing::AtLeast(1)); TriggerUnderuse(); } TEST_F(OveruseFrameDetectorTest, TriggerUnderuseWithMinProcessCount) { const int kProcessIntervalUs = 5 * rtc::kNumMicrosecsPerSec; options_.min_process_count = 1; CpuOveruseObserverImpl overuse_observer; observer_ = nullptr; overuse_detector_->SetOptions(options_); InsertAndSendFramesWithInterval(1200, kFrameIntervalUs, kWidth, kHeight, kProcessTimeUs); overuse_detector_->CheckForOveruse(&overuse_observer); EXPECT_EQ(0, overuse_observer.normaluse_); clock_.AdvanceTime(TimeDelta::Micros(kProcessIntervalUs)); overuse_detector_->CheckForOveruse(&overuse_observer); EXPECT_EQ(1, overuse_observer.normaluse_); } TEST_F(OveruseFrameDetectorTest, ConstantOveruseGivesNoNormalUsage) { overuse_detector_->SetOptions(options_); EXPECT_CALL(mock_observer_, AdaptUp()).Times(0); EXPECT_CALL(mock_observer_, AdaptDown()).Times(64); for (size_t i = 0; i < 64; ++i) { TriggerOveruse(options_.high_threshold_consecutive_count); } } TEST_F(OveruseFrameDetectorTest, ConsecutiveCountTriggersOveruse) { overuse_detector_->SetOptions(options_); EXPECT_CALL(mock_observer_, AdaptDown()).Times(1); options_.high_threshold_consecutive_count = 2; overuse_detector_->SetOptions(options_); TriggerOveruse(2); } TEST_F(OveruseFrameDetectorTest, IncorrectConsecutiveCountTriggersNoOveruse) { overuse_detector_->SetOptions(options_); EXPECT_CALL(mock_observer_, AdaptDown()).Times(0); options_.high_threshold_consecutive_count = 2; overuse_detector_->SetOptions(options_); TriggerOveruse(1); } TEST_F(OveruseFrameDetectorTest, ProcessingUsage) { overuse_detector_->SetOptions(options_); InsertAndSendFramesWithInterval(1000, kFrameIntervalUs, kWidth, kHeight, kProcessTimeUs); EXPECT_EQ(kProcessTimeUs * 100 / kFrameIntervalUs, UsagePercent()); } TEST_F(OveruseFrameDetectorTest, ResetAfterResolutionChange) { overuse_detector_->SetOptions(options_); ForceUpdate(kWidth, kHeight); EXPECT_EQ(InitialUsage(), UsagePercent()); InsertAndSendFramesWithInterval(1000, kFrameIntervalUs, kWidth, kHeight, kProcessTimeUs); EXPECT_NE(InitialUsage(), UsagePercent()); // Verify reset (with new width/height). ForceUpdate(kWidth, kHeight + 1); EXPECT_EQ(InitialUsage(), UsagePercent()); } TEST_F(OveruseFrameDetectorTest, ResetAfterFrameTimeout) { overuse_detector_->SetOptions(options_); ForceUpdate(kWidth, kHeight); EXPECT_EQ(InitialUsage(), UsagePercent()); InsertAndSendFramesWithInterval(1000, kFrameIntervalUs, kWidth, kHeight, kProcessTimeUs); EXPECT_NE(InitialUsage(), UsagePercent()); InsertAndSendFramesWithInterval( 2, options_.frame_timeout_interval_ms * rtc::kNumMicrosecsPerMillisec, kWidth, kHeight, kProcessTimeUs); EXPECT_NE(InitialUsage(), UsagePercent()); // Verify reset. InsertAndSendFramesWithInterval( 2, (options_.frame_timeout_interval_ms + 1) * rtc::kNumMicrosecsPerMillisec, kWidth, kHeight, kProcessTimeUs); ForceUpdate(kWidth, kHeight); EXPECT_EQ(InitialUsage(), UsagePercent()); } TEST_F(OveruseFrameDetectorTest, MinFrameSamplesBeforeUpdating) { options_.min_frame_samples = 40; overuse_detector_->SetOptions(options_); InsertAndSendFramesWithInterval(40, kFrameIntervalUs, kWidth, kHeight, kProcessTimeUs); EXPECT_EQ(InitialUsage(), UsagePercent()); // Pass time far enough to digest all previous samples. clock_.AdvanceTime(TimeDelta::Seconds(1)); InsertAndSendFramesWithInterval(1, kFrameIntervalUs, kWidth, kHeight, kProcessTimeUs); // The last sample has not been processed here. EXPECT_EQ(InitialUsage(), UsagePercent()); // Pass time far enough to digest all previous samples, 41 in total. clock_.AdvanceTime(TimeDelta::Seconds(1)); InsertAndSendFramesWithInterval(1, kFrameIntervalUs, kWidth, kHeight, kProcessTimeUs); EXPECT_NE(InitialUsage(), UsagePercent()); } TEST_F(OveruseFrameDetectorTest, InitialProcessingUsage) { overuse_detector_->SetOptions(options_); ForceUpdate(kWidth, kHeight); EXPECT_EQ(InitialUsage(), UsagePercent()); } TEST_F(OveruseFrameDetectorTest, MeasuresMultipleConcurrentSamples) { overuse_detector_->SetOptions(options_); EXPECT_CALL(mock_observer_, AdaptDown()).Times(::testing::AtLeast(1)); static const int kIntervalUs = 33 * rtc::kNumMicrosecsPerMillisec; static const size_t kNumFramesEncodingDelay = 3; VideoFrame frame = VideoFrame::Builder() .set_video_frame_buffer(I420Buffer::Create(kWidth, kHeight)) .set_rotation(webrtc::kVideoRotation_0) .set_timestamp_us(0) .build(); for (size_t i = 0; i < 1000; ++i) { // Unique timestamps. frame.set_timestamp(static_cast(i)); int64_t capture_time_us = rtc::TimeMicros(); overuse_detector_->FrameCaptured(frame, capture_time_us); clock_.AdvanceTime(TimeDelta::Micros(kIntervalUs)); if (i > kNumFramesEncodingDelay) { overuse_detector_->FrameSent( static_cast(i - kNumFramesEncodingDelay), rtc::TimeMicros(), capture_time_us, kIntervalUs); } overuse_detector_->CheckForOveruse(observer_); } } TEST_F(OveruseFrameDetectorTest, UpdatesExistingSamples) { // >85% encoding time should trigger overuse. overuse_detector_->SetOptions(options_); EXPECT_CALL(mock_observer_, AdaptDown()).Times(::testing::AtLeast(1)); static const int kIntervalUs = 33 * rtc::kNumMicrosecsPerMillisec; static const int kDelayUs = 30 * rtc::kNumMicrosecsPerMillisec; VideoFrame frame = VideoFrame::Builder() .set_video_frame_buffer(I420Buffer::Create(kWidth, kHeight)) .set_rotation(webrtc::kVideoRotation_0) .set_timestamp_us(0) .build(); uint32_t timestamp = 0; for (size_t i = 0; i < 1000; ++i) { frame.set_timestamp(timestamp); int64_t capture_time_us = rtc::TimeMicros(); overuse_detector_->FrameCaptured(frame, capture_time_us); // Encode and send first parts almost instantly. clock_.AdvanceTime(TimeDelta::Millis(1)); overuse_detector_->FrameSent(timestamp, rtc::TimeMicros(), capture_time_us, rtc::kNumMicrosecsPerMillisec); // Encode heavier part, resulting in >85% usage total. clock_.AdvanceTime(TimeDelta::Micros(kDelayUs) - TimeDelta::Millis(1)); overuse_detector_->FrameSent(timestamp, rtc::TimeMicros(), capture_time_us, kDelayUs); clock_.AdvanceTime(TimeDelta::Micros(kIntervalUs - kDelayUs)); timestamp += kIntervalUs * 90 / 1000; overuse_detector_->CheckForOveruse(observer_); } } TEST_F(OveruseFrameDetectorTest, RunOnTqNormalUsage) { TaskQueueForTest queue("OveruseFrameDetectorTestQueue"); queue.SendTask( [&] { overuse_detector_->StartCheckForOveruse(queue.Get(), options_, observer_); }, RTC_FROM_HERE); rtc::Event event; // Expect NormalUsage(). When called, stop the |overuse_detector_| and then // set |event| to end the test. EXPECT_CALL(mock_observer_, AdaptUp()) .WillOnce(InvokeWithoutArgs([this, &event] { overuse_detector_->StopCheckForOveruse(); event.Set(); })); queue.PostTask([this] { const int kDelayUs1 = 5 * rtc::kNumMicrosecsPerMillisec; const int kDelayUs2 = 6 * rtc::kNumMicrosecsPerMillisec; InsertAndSendFramesWithInterval(1300, kFrameIntervalUs, kWidth, kHeight, kDelayUs1); InsertAndSendFramesWithInterval(1, kFrameIntervalUs, kWidth, kHeight, kDelayUs2); }); EXPECT_TRUE(event.Wait(10000)); } TEST_F(OveruseFrameDetectorTest, MaxIntervalScalesWithFramerate) { const int kCapturerMaxFrameRate = 30; const int kEncodeMaxFrameRate = 20; // Maximum fps the encoder can sustain. overuse_detector_->SetOptions(options_); // Trigger overuse. int64_t frame_interval_us = rtc::kNumMicrosecsPerSec / kCapturerMaxFrameRate; // Processing time just below over use limit given kEncodeMaxFrameRate. int64_t processing_time_us = (98 * OveruseProcessingTimeLimitForFramerate(kEncodeMaxFrameRate)) / 100; EXPECT_CALL(mock_observer_, AdaptDown()).Times(1); for (int i = 0; i < options_.high_threshold_consecutive_count; ++i) { InsertAndSendFramesWithInterval(1200, frame_interval_us, kWidth, kHeight, processing_time_us); overuse_detector_->CheckForOveruse(observer_); } // Simulate frame rate reduction and normal usage. frame_interval_us = rtc::kNumMicrosecsPerSec / kEncodeMaxFrameRate; overuse_detector_->OnTargetFramerateUpdated(kEncodeMaxFrameRate); EXPECT_CALL(mock_observer_, AdaptDown()).Times(0); for (int i = 0; i < options_.high_threshold_consecutive_count; ++i) { InsertAndSendFramesWithInterval(1200, frame_interval_us, kWidth, kHeight, processing_time_us); overuse_detector_->CheckForOveruse(observer_); } // Reduce processing time to trigger underuse. processing_time_us = (98 * UnderuseProcessingTimeLimitForFramerate(kEncodeMaxFrameRate)) / 100; EXPECT_CALL(mock_observer_, AdaptUp()).Times(1); InsertAndSendFramesWithInterval(1200, frame_interval_us, kWidth, kHeight, processing_time_us); overuse_detector_->CheckForOveruse(observer_); } TEST_F(OveruseFrameDetectorTest, RespectsMinFramerate) { const int kMinFrameRate = 7; // Minimum fps allowed by current detector impl. overuse_detector_->SetOptions(options_); overuse_detector_->OnTargetFramerateUpdated(kMinFrameRate); // Normal usage just at the limit. int64_t frame_interval_us = rtc::kNumMicrosecsPerSec / kMinFrameRate; // Processing time just below over use limit given kEncodeMaxFrameRate. int64_t processing_time_us = (98 * OveruseProcessingTimeLimitForFramerate(kMinFrameRate)) / 100; EXPECT_CALL(mock_observer_, AdaptDown()).Times(0); for (int i = 0; i < options_.high_threshold_consecutive_count; ++i) { InsertAndSendFramesWithInterval(1200, frame_interval_us, kWidth, kHeight, processing_time_us); overuse_detector_->CheckForOveruse(observer_); } // Over the limit to overuse. processing_time_us = (102 * OveruseProcessingTimeLimitForFramerate(kMinFrameRate)) / 100; EXPECT_CALL(mock_observer_, AdaptDown()).Times(1); for (int i = 0; i < options_.high_threshold_consecutive_count; ++i) { InsertAndSendFramesWithInterval(1200, frame_interval_us, kWidth, kHeight, processing_time_us); overuse_detector_->CheckForOveruse(observer_); } // Reduce input frame rate. Should still trigger overuse. overuse_detector_->OnTargetFramerateUpdated(kMinFrameRate - 1); EXPECT_CALL(mock_observer_, AdaptDown()).Times(1); for (int i = 0; i < options_.high_threshold_consecutive_count; ++i) { InsertAndSendFramesWithInterval(1200, frame_interval_us, kWidth, kHeight, processing_time_us); overuse_detector_->CheckForOveruse(observer_); } } TEST_F(OveruseFrameDetectorTest, LimitsMaxFrameInterval) { const int kMaxFrameRate = 20; overuse_detector_->SetOptions(options_); overuse_detector_->OnTargetFramerateUpdated(kMaxFrameRate); int64_t frame_interval_us = rtc::kNumMicrosecsPerSec / kMaxFrameRate; // Maximum frame interval allowed is 35% above ideal. int64_t max_frame_interval_us = (135 * frame_interval_us) / 100; // Maximum processing time, without triggering overuse, allowed with the above // frame interval. int64_t max_processing_time_us = (max_frame_interval_us * options_.high_encode_usage_threshold_percent) / 100; // Processing time just below overuse limit given kMaxFrameRate. int64_t processing_time_us = (98 * max_processing_time_us) / 100; EXPECT_CALL(mock_observer_, AdaptDown()).Times(0); for (int i = 0; i < options_.high_threshold_consecutive_count; ++i) { InsertAndSendFramesWithInterval(1200, max_frame_interval_us, kWidth, kHeight, processing_time_us); overuse_detector_->CheckForOveruse(observer_); } // Go above limit, trigger overuse. processing_time_us = (102 * max_processing_time_us) / 100; EXPECT_CALL(mock_observer_, AdaptDown()).Times(1); for (int i = 0; i < options_.high_threshold_consecutive_count; ++i) { InsertAndSendFramesWithInterval(1200, max_frame_interval_us, kWidth, kHeight, processing_time_us); overuse_detector_->CheckForOveruse(observer_); } // Increase frame interval, should still trigger overuse. max_frame_interval_us *= 2; EXPECT_CALL(mock_observer_, AdaptDown()).Times(1); for (int i = 0; i < options_.high_threshold_consecutive_count; ++i) { InsertAndSendFramesWithInterval(1200, max_frame_interval_us, kWidth, kHeight, processing_time_us); overuse_detector_->CheckForOveruse(observer_); } } // Models screencast, with irregular arrival of frames which are heavy // to encode. TEST_F(OveruseFrameDetectorTest, NoOveruseForLargeRandomFrameInterval) { // TODO(bugs.webrtc.org/8504): When new estimator is relanded, // behavior is improved in this scenario, with only AdaptUp events, // and estimated load closer to the true average. // EXPECT_CALL(mock_observer_, AdaptDown()).Times(0); // EXPECT_CALL(mock_observer_, AdaptUp()) // .Times(::testing::AtLeast(1)); overuse_detector_->SetOptions(options_); const int kNumFrames = 500; const int kEncodeTimeUs = 100 * rtc::kNumMicrosecsPerMillisec; const int kMinIntervalUs = 30 * rtc::kNumMicrosecsPerMillisec; const int kMaxIntervalUs = 1000 * rtc::kNumMicrosecsPerMillisec; const int kTargetFramerate = 5; overuse_detector_->OnTargetFramerateUpdated(kTargetFramerate); InsertAndSendFramesWithRandomInterval(kNumFrames, kMinIntervalUs, kMaxIntervalUs, kWidth, kHeight, kEncodeTimeUs); // Average usage 19%. Check that estimate is in the right ball park. // EXPECT_NEAR(UsagePercent(), 20, 10); EXPECT_NEAR(UsagePercent(), 20, 35); } // Models screencast, with irregular arrival of frames, often // exceeding the timeout interval. TEST_F(OveruseFrameDetectorTest, NoOveruseForRandomFrameIntervalWithReset) { // TODO(bugs.webrtc.org/8504): When new estimator is relanded, // behavior is improved in this scenario, and we get AdaptUp events. overuse_detector_->SetOptions(options_); EXPECT_CALL(mock_observer_, AdaptDown()).Times(0); // EXPECT_CALL(mock_observer_, AdaptUp()) // .Times(::testing::AtLeast(1)); const int kNumFrames = 500; const int kEncodeTimeUs = 100 * rtc::kNumMicrosecsPerMillisec; const int kMinIntervalUs = 30 * rtc::kNumMicrosecsPerMillisec; const int kMaxIntervalUs = 3000 * rtc::kNumMicrosecsPerMillisec; const int kTargetFramerate = 5; overuse_detector_->OnTargetFramerateUpdated(kTargetFramerate); InsertAndSendFramesWithRandomInterval(kNumFrames, kMinIntervalUs, kMaxIntervalUs, kWidth, kHeight, kEncodeTimeUs); // Average usage 6.6%, but since the frame_timeout_interval_ms is // only 1500 ms, we often reset the estimate to the initial value. // Check that estimate is in the right ball park. EXPECT_GE(UsagePercent(), 1); EXPECT_LE(UsagePercent(), InitialUsage() + 5); } // Models simulcast, with multiple encoded frames for each input frame. // Load estimate should be based on the maximum encode time per input frame. TEST_F(OveruseFrameDetectorTest, NoOveruseForSimulcast) { overuse_detector_->SetOptions(options_); EXPECT_CALL(mock_observer_, AdaptDown()).Times(0); constexpr int kNumFrames = 500; constexpr int kEncodeTimesUs[] = { 10 * rtc::kNumMicrosecsPerMillisec, 8 * rtc::kNumMicrosecsPerMillisec, 12 * rtc::kNumMicrosecsPerMillisec, }; constexpr int kIntervalUs = 30 * rtc::kNumMicrosecsPerMillisec; InsertAndSendSimulcastFramesWithInterval(kNumFrames, kIntervalUs, kWidth, kHeight, kEncodeTimesUs); // Average usage 40%. 12 ms / 30 ms. EXPECT_GE(UsagePercent(), 35); EXPECT_LE(UsagePercent(), 45); } // Tests using new cpu load estimator class OveruseFrameDetectorTest2 : public OveruseFrameDetectorTest { protected: void SetUp() override { options_.filter_time_ms = 5 * rtc::kNumMillisecsPerSec; OveruseFrameDetectorTest::SetUp(); } void InsertAndSendFramesWithInterval(int num_frames, int interval_us, int width, int height, int delay_us) override { VideoFrame frame = VideoFrame::Builder() .set_video_frame_buffer(I420Buffer::Create(width, height)) .set_rotation(webrtc::kVideoRotation_0) .set_timestamp_us(0) .build(); while (num_frames-- > 0) { int64_t capture_time_us = rtc::TimeMicros(); overuse_detector_->FrameCaptured(frame, capture_time_us /* ignored */); overuse_detector_->FrameSent(0 /* ignored timestamp */, 0 /* ignored send_time_us */, capture_time_us, delay_us); clock_.AdvanceTime(TimeDelta::Micros(interval_us)); } } void InsertAndSendFramesWithRandomInterval(int num_frames, int min_interval_us, int max_interval_us, int width, int height, int delay_us) override { webrtc::Random random(17); VideoFrame frame = VideoFrame::Builder() .set_video_frame_buffer(I420Buffer::Create(width, height)) .set_rotation(webrtc::kVideoRotation_0) .set_timestamp_us(0) .build(); for (int i = 0; i < num_frames; i++) { int interval_us = random.Rand(min_interval_us, max_interval_us); int64_t capture_time_us = rtc::TimeMicros(); overuse_detector_->FrameCaptured(frame, capture_time_us); overuse_detector_->FrameSent(0 /* ignored timestamp */, 0 /* ignored send_time_us */, capture_time_us, delay_us); overuse_detector_->CheckForOveruse(observer_); clock_.AdvanceTime(TimeDelta::Micros(interval_us)); } } void ForceUpdate(int width, int height) override { // This is mainly to check initial values and whether the overuse // detector has been reset or not. InsertAndSendFramesWithInterval(1, rtc::kNumMicrosecsPerSec, width, height, kFrameIntervalUs); } }; // UsagePercent() > high_encode_usage_threshold_percent => overuse. // UsagePercent() < low_encode_usage_threshold_percent => underuse. TEST_F(OveruseFrameDetectorTest2, TriggerOveruse) { // usage > high => overuse overuse_detector_->SetOptions(options_); EXPECT_CALL(mock_observer_, AdaptDown()).Times(1); TriggerOveruse(options_.high_threshold_consecutive_count); } TEST_F(OveruseFrameDetectorTest2, OveruseAndRecover) { // usage > high => overuse overuse_detector_->SetOptions(options_); EXPECT_CALL(mock_observer_, AdaptDown()).Times(1); TriggerOveruse(options_.high_threshold_consecutive_count); // usage < low => underuse EXPECT_CALL(mock_observer_, AdaptUp()).Times(::testing::AtLeast(1)); TriggerUnderuse(); } TEST_F(OveruseFrameDetectorTest2, DoubleOveruseAndRecover) { overuse_detector_->SetOptions(options_); EXPECT_CALL(mock_observer_, AdaptDown()).Times(2); TriggerOveruse(options_.high_threshold_consecutive_count); TriggerOveruse(options_.high_threshold_consecutive_count); EXPECT_CALL(mock_observer_, AdaptUp()).Times(::testing::AtLeast(1)); TriggerUnderuse(); } TEST_F(OveruseFrameDetectorTest2, TriggerUnderuseWithMinProcessCount) { const int kProcessIntervalUs = 5 * rtc::kNumMicrosecsPerSec; options_.min_process_count = 1; CpuOveruseObserverImpl overuse_observer; observer_ = nullptr; overuse_detector_->SetOptions(options_); InsertAndSendFramesWithInterval(1200, kFrameIntervalUs, kWidth, kHeight, kProcessTimeUs); overuse_detector_->CheckForOveruse(&overuse_observer); EXPECT_EQ(0, overuse_observer.normaluse_); clock_.AdvanceTime(TimeDelta::Micros(kProcessIntervalUs)); overuse_detector_->CheckForOveruse(&overuse_observer); EXPECT_EQ(1, overuse_observer.normaluse_); } TEST_F(OveruseFrameDetectorTest2, ConstantOveruseGivesNoNormalUsage) { overuse_detector_->SetOptions(options_); EXPECT_CALL(mock_observer_, AdaptUp()).Times(0); EXPECT_CALL(mock_observer_, AdaptDown()).Times(64); for (size_t i = 0; i < 64; ++i) { TriggerOveruse(options_.high_threshold_consecutive_count); } } TEST_F(OveruseFrameDetectorTest2, ConsecutiveCountTriggersOveruse) { EXPECT_CALL(mock_observer_, AdaptDown()).Times(1); options_.high_threshold_consecutive_count = 2; overuse_detector_->SetOptions(options_); TriggerOveruse(2); } TEST_F(OveruseFrameDetectorTest2, IncorrectConsecutiveCountTriggersNoOveruse) { EXPECT_CALL(mock_observer_, AdaptDown()).Times(0); options_.high_threshold_consecutive_count = 2; overuse_detector_->SetOptions(options_); TriggerOveruse(1); } TEST_F(OveruseFrameDetectorTest2, ProcessingUsage) { overuse_detector_->SetOptions(options_); InsertAndSendFramesWithInterval(1000, kFrameIntervalUs, kWidth, kHeight, kProcessTimeUs); EXPECT_EQ(kProcessTimeUs * 100 / kFrameIntervalUs, UsagePercent()); } TEST_F(OveruseFrameDetectorTest2, ResetAfterResolutionChange) { overuse_detector_->SetOptions(options_); ForceUpdate(kWidth, kHeight); EXPECT_EQ(InitialUsage(), UsagePercent()); InsertAndSendFramesWithInterval(1000, kFrameIntervalUs, kWidth, kHeight, kProcessTimeUs); EXPECT_NE(InitialUsage(), UsagePercent()); // Verify reset (with new width/height). ForceUpdate(kWidth, kHeight + 1); EXPECT_EQ(InitialUsage(), UsagePercent()); } TEST_F(OveruseFrameDetectorTest2, ResetAfterFrameTimeout) { overuse_detector_->SetOptions(options_); ForceUpdate(kWidth, kHeight); EXPECT_EQ(InitialUsage(), UsagePercent()); InsertAndSendFramesWithInterval(1000, kFrameIntervalUs, kWidth, kHeight, kProcessTimeUs); EXPECT_NE(InitialUsage(), UsagePercent()); InsertAndSendFramesWithInterval( 2, options_.frame_timeout_interval_ms * rtc::kNumMicrosecsPerMillisec, kWidth, kHeight, kProcessTimeUs); EXPECT_NE(InitialUsage(), UsagePercent()); // Verify reset. InsertAndSendFramesWithInterval( 2, (options_.frame_timeout_interval_ms + 1) * rtc::kNumMicrosecsPerMillisec, kWidth, kHeight, kProcessTimeUs); ForceUpdate(kWidth, kHeight); EXPECT_EQ(InitialUsage(), UsagePercent()); } TEST_F(OveruseFrameDetectorTest2, ConvergesSlowly) { overuse_detector_->SetOptions(options_); InsertAndSendFramesWithInterval(1, kFrameIntervalUs, kWidth, kHeight, kProcessTimeUs); // No update for the first sample. EXPECT_EQ(InitialUsage(), UsagePercent()); // Total time approximately 40 * 33ms = 1.3s, significantly less // than the 5s time constant. InsertAndSendFramesWithInterval(40, kFrameIntervalUs, kWidth, kHeight, kProcessTimeUs); // Should have started to approach correct load of 15%, but not very far. EXPECT_LT(UsagePercent(), InitialUsage()); EXPECT_GT(UsagePercent(), (InitialUsage() * 3 + 15) / 4); // Run for roughly 10s more, should now be closer. InsertAndSendFramesWithInterval(300, kFrameIntervalUs, kWidth, kHeight, kProcessTimeUs); EXPECT_NEAR(UsagePercent(), 20, 5); } TEST_F(OveruseFrameDetectorTest2, InitialProcessingUsage) { overuse_detector_->SetOptions(options_); ForceUpdate(kWidth, kHeight); EXPECT_EQ(InitialUsage(), UsagePercent()); } TEST_F(OveruseFrameDetectorTest2, MeasuresMultipleConcurrentSamples) { overuse_detector_->SetOptions(options_); EXPECT_CALL(mock_observer_, AdaptDown()).Times(::testing::AtLeast(1)); static const int kIntervalUs = 33 * rtc::kNumMicrosecsPerMillisec; static const size_t kNumFramesEncodingDelay = 3; VideoFrame frame = VideoFrame::Builder() .set_video_frame_buffer(I420Buffer::Create(kWidth, kHeight)) .set_rotation(webrtc::kVideoRotation_0) .set_timestamp_us(0) .build(); for (size_t i = 0; i < 1000; ++i) { // Unique timestamps. frame.set_timestamp(static_cast(i)); int64_t capture_time_us = rtc::TimeMicros(); overuse_detector_->FrameCaptured(frame, capture_time_us); clock_.AdvanceTime(TimeDelta::Micros(kIntervalUs)); if (i > kNumFramesEncodingDelay) { overuse_detector_->FrameSent( static_cast(i - kNumFramesEncodingDelay), rtc::TimeMicros(), capture_time_us, kIntervalUs); } overuse_detector_->CheckForOveruse(observer_); } } TEST_F(OveruseFrameDetectorTest2, UpdatesExistingSamples) { // >85% encoding time should trigger overuse. overuse_detector_->SetOptions(options_); EXPECT_CALL(mock_observer_, AdaptDown()).Times(::testing::AtLeast(1)); static const int kIntervalUs = 33 * rtc::kNumMicrosecsPerMillisec; static const int kDelayUs = 30 * rtc::kNumMicrosecsPerMillisec; VideoFrame frame = VideoFrame::Builder() .set_video_frame_buffer(I420Buffer::Create(kWidth, kHeight)) .set_rotation(webrtc::kVideoRotation_0) .set_timestamp_us(0) .build(); uint32_t timestamp = 0; for (size_t i = 0; i < 1000; ++i) { frame.set_timestamp(timestamp); int64_t capture_time_us = rtc::TimeMicros(); overuse_detector_->FrameCaptured(frame, capture_time_us); // Encode and send first parts almost instantly. clock_.AdvanceTime(TimeDelta::Millis(1)); overuse_detector_->FrameSent(timestamp, rtc::TimeMicros(), capture_time_us, rtc::kNumMicrosecsPerMillisec); // Encode heavier part, resulting in >85% usage total. clock_.AdvanceTime(TimeDelta::Micros(kDelayUs) - TimeDelta::Millis(1)); overuse_detector_->FrameSent(timestamp, rtc::TimeMicros(), capture_time_us, kDelayUs); clock_.AdvanceTime(TimeDelta::Micros(kIntervalUs - kDelayUs)); timestamp += kIntervalUs * 90 / 1000; overuse_detector_->CheckForOveruse(observer_); } } TEST_F(OveruseFrameDetectorTest2, RunOnTqNormalUsage) { TaskQueueForTest queue("OveruseFrameDetectorTestQueue"); queue.SendTask( [&] { overuse_detector_->StartCheckForOveruse(queue.Get(), options_, observer_); }, RTC_FROM_HERE); rtc::Event event; // Expect NormalUsage(). When called, stop the |overuse_detector_| and then // set |event| to end the test. EXPECT_CALL(mock_observer_, AdaptUp()) .WillOnce(InvokeWithoutArgs([this, &event] { overuse_detector_->StopCheckForOveruse(); event.Set(); })); queue.PostTask([this] { const int kDelayUs1 = 5 * rtc::kNumMicrosecsPerMillisec; const int kDelayUs2 = 6 * rtc::kNumMicrosecsPerMillisec; InsertAndSendFramesWithInterval(1300, kFrameIntervalUs, kWidth, kHeight, kDelayUs1); InsertAndSendFramesWithInterval(1, kFrameIntervalUs, kWidth, kHeight, kDelayUs2); }); EXPECT_TRUE(event.Wait(10000)); } // Models screencast, with irregular arrival of frames which are heavy // to encode. TEST_F(OveruseFrameDetectorTest2, NoOveruseForLargeRandomFrameInterval) { overuse_detector_->SetOptions(options_); EXPECT_CALL(mock_observer_, AdaptDown()).Times(0); EXPECT_CALL(mock_observer_, AdaptUp()).Times(::testing::AtLeast(1)); const int kNumFrames = 500; const int kEncodeTimeUs = 100 * rtc::kNumMicrosecsPerMillisec; const int kMinIntervalUs = 30 * rtc::kNumMicrosecsPerMillisec; const int kMaxIntervalUs = 1000 * rtc::kNumMicrosecsPerMillisec; InsertAndSendFramesWithRandomInterval(kNumFrames, kMinIntervalUs, kMaxIntervalUs, kWidth, kHeight, kEncodeTimeUs); // Average usage 19%. Check that estimate is in the right ball park. EXPECT_NEAR(UsagePercent(), 20, 10); } // Models screencast, with irregular arrival of frames, often // exceeding the timeout interval. TEST_F(OveruseFrameDetectorTest2, NoOveruseForRandomFrameIntervalWithReset) { overuse_detector_->SetOptions(options_); EXPECT_CALL(mock_observer_, AdaptDown()).Times(0); EXPECT_CALL(mock_observer_, AdaptUp()).Times(::testing::AtLeast(1)); const int kNumFrames = 500; const int kEncodeTimeUs = 100 * rtc::kNumMicrosecsPerMillisec; const int kMinIntervalUs = 30 * rtc::kNumMicrosecsPerMillisec; const int kMaxIntervalUs = 3000 * rtc::kNumMicrosecsPerMillisec; InsertAndSendFramesWithRandomInterval(kNumFrames, kMinIntervalUs, kMaxIntervalUs, kWidth, kHeight, kEncodeTimeUs); // Average usage 6.6%, but since the frame_timeout_interval_ms is // only 1500 ms, we often reset the estimate to the initial value. // Check that estimate is in the right ball park. EXPECT_GE(UsagePercent(), 1); EXPECT_LE(UsagePercent(), InitialUsage() + 5); } TEST_F(OveruseFrameDetectorTest2, ToleratesOutOfOrderFrames) { overuse_detector_->SetOptions(options_); // Represents a cpu utilization close to 100%. First input frame results in // three encoded frames, and the last of those isn't finished until after the // first encoded frame corresponding to the next input frame. const int kEncodeTimeUs = 30 * rtc::kNumMicrosecsPerMillisec; const int kCaptureTimesMs[] = {33, 33, 66, 33}; for (int capture_time_ms : kCaptureTimesMs) { overuse_detector_->FrameSent( 0, 0, capture_time_ms * rtc::kNumMicrosecsPerMillisec, kEncodeTimeUs); } EXPECT_GE(UsagePercent(), InitialUsage()); } // Models simulcast, with multiple encoded frames for each input frame. // Load estimate should be based on the maximum encode time per input frame. TEST_F(OveruseFrameDetectorTest2, NoOveruseForSimulcast) { overuse_detector_->SetOptions(options_); EXPECT_CALL(mock_observer_, AdaptDown()).Times(0); constexpr int kNumFrames = 500; constexpr int kEncodeTimesUs[] = { 10 * rtc::kNumMicrosecsPerMillisec, 8 * rtc::kNumMicrosecsPerMillisec, 12 * rtc::kNumMicrosecsPerMillisec, }; constexpr int kIntervalUs = 30 * rtc::kNumMicrosecsPerMillisec; InsertAndSendSimulcastFramesWithInterval(kNumFrames, kIntervalUs, kWidth, kHeight, kEncodeTimesUs); // Average usage 40%. 12 ms / 30 ms. EXPECT_GE(UsagePercent(), 35); EXPECT_LE(UsagePercent(), 45); } } // namespace webrtc