/* * Copyright 2011 The WebRTC Project Authors. All rights reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "webrtc/base/messagedigest.h" #include #include "webrtc/base/sslconfig.h" #if SSL_USE_OPENSSL #include "webrtc/base/openssldigest.h" #else #include "webrtc/base/md5digest.h" #include "webrtc/base/sha1digest.h" #endif #include "webrtc/base/scoped_ptr.h" #include "webrtc/base/stringencode.h" namespace rtc { // From RFC 4572. const char DIGEST_MD5[] = "md5"; const char DIGEST_SHA_1[] = "sha-1"; const char DIGEST_SHA_224[] = "sha-224"; const char DIGEST_SHA_256[] = "sha-256"; const char DIGEST_SHA_384[] = "sha-384"; const char DIGEST_SHA_512[] = "sha-512"; static const size_t kBlockSize = 64; // valid for SHA-256 and down MessageDigest* MessageDigestFactory::Create(const std::string& alg) { #if SSL_USE_OPENSSL MessageDigest* digest = new OpenSSLDigest(alg); if (digest->Size() == 0) { // invalid algorithm delete digest; digest = NULL; } return digest; #else MessageDigest* digest = NULL; if (alg == DIGEST_MD5) { digest = new Md5Digest(); } else if (alg == DIGEST_SHA_1) { digest = new Sha1Digest(); } return digest; #endif } bool IsFips180DigestAlgorithm(const std::string& alg) { // These are the FIPS 180 algorithms. According to RFC 4572 Section 5, // "Self-signed certificates (for which legacy certificates are not a // consideration) MUST use one of the FIPS 180 algorithms (SHA-1, // SHA-224, SHA-256, SHA-384, or SHA-512) as their signature algorithm, // and thus also MUST use it to calculate certificate fingerprints." return alg == DIGEST_SHA_1 || alg == DIGEST_SHA_224 || alg == DIGEST_SHA_256 || alg == DIGEST_SHA_384 || alg == DIGEST_SHA_512; } size_t ComputeDigest(MessageDigest* digest, const void* input, size_t in_len, void* output, size_t out_len) { digest->Update(input, in_len); return digest->Finish(output, out_len); } size_t ComputeDigest(const std::string& alg, const void* input, size_t in_len, void* output, size_t out_len) { scoped_ptr digest(MessageDigestFactory::Create(alg)); return (digest) ? ComputeDigest(digest.get(), input, in_len, output, out_len) : 0; } std::string ComputeDigest(MessageDigest* digest, const std::string& input) { scoped_ptr output(new char[digest->Size()]); ComputeDigest(digest, input.data(), input.size(), output.get(), digest->Size()); return hex_encode(output.get(), digest->Size()); } bool ComputeDigest(const std::string& alg, const std::string& input, std::string* output) { scoped_ptr digest(MessageDigestFactory::Create(alg)); if (!digest) { return false; } *output = ComputeDigest(digest.get(), input); return true; } std::string ComputeDigest(const std::string& alg, const std::string& input) { std::string output; ComputeDigest(alg, input, &output); return output; } // Compute a RFC 2104 HMAC: H(K XOR opad, H(K XOR ipad, text)) size_t ComputeHmac(MessageDigest* digest, const void* key, size_t key_len, const void* input, size_t in_len, void* output, size_t out_len) { // We only handle algorithms with a 64-byte blocksize. // TODO: Add BlockSize() method to MessageDigest. size_t block_len = kBlockSize; if (digest->Size() > 32) { return 0; } // Copy the key to a block-sized buffer to simplify padding. // If the key is longer than a block, hash it and use the result instead. scoped_ptr new_key(new uint8[block_len]); if (key_len > block_len) { ComputeDigest(digest, key, key_len, new_key.get(), block_len); memset(new_key.get() + digest->Size(), 0, block_len - digest->Size()); } else { memcpy(new_key.get(), key, key_len); memset(new_key.get() + key_len, 0, block_len - key_len); } // Set up the padding from the key, salting appropriately for each padding. scoped_ptr o_pad(new uint8[block_len]), i_pad(new uint8[block_len]); for (size_t i = 0; i < block_len; ++i) { o_pad[i] = 0x5c ^ new_key[i]; i_pad[i] = 0x36 ^ new_key[i]; } // Inner hash; hash the inner padding, and then the input buffer. scoped_ptr inner(new uint8[digest->Size()]); digest->Update(i_pad.get(), block_len); digest->Update(input, in_len); digest->Finish(inner.get(), digest->Size()); // Outer hash; hash the outer padding, and then the result of the inner hash. digest->Update(o_pad.get(), block_len); digest->Update(inner.get(), digest->Size()); return digest->Finish(output, out_len); } size_t ComputeHmac(const std::string& alg, const void* key, size_t key_len, const void* input, size_t in_len, void* output, size_t out_len) { scoped_ptr digest(MessageDigestFactory::Create(alg)); if (!digest) { return 0; } return ComputeHmac(digest.get(), key, key_len, input, in_len, output, out_len); } std::string ComputeHmac(MessageDigest* digest, const std::string& key, const std::string& input) { scoped_ptr output(new char[digest->Size()]); ComputeHmac(digest, key.data(), key.size(), input.data(), input.size(), output.get(), digest->Size()); return hex_encode(output.get(), digest->Size()); } bool ComputeHmac(const std::string& alg, const std::string& key, const std::string& input, std::string* output) { scoped_ptr digest(MessageDigestFactory::Create(alg)); if (!digest) { return false; } *output = ComputeHmac(digest.get(), key, input); return true; } std::string ComputeHmac(const std::string& alg, const std::string& key, const std::string& input) { std::string output; ComputeHmac(alg, key, input, &output); return output; } } // namespace rtc