/* * SHA-1 in C * By Steve Reid * 100% Public Domain * * ----------------- * Modified 7/98 * By James H. Brown * Still 100% Public Domain * * Corrected a problem which generated improper hash values on 16 bit machines * Routine SHA1Update changed from * void SHA1Update(SHA1_CTX* context, unsigned char* data, unsigned int * len) * to * void SHA1Update(SHA1_CTX* context, unsigned char* data, unsigned * long len) * * The 'len' parameter was declared an int which works fine on 32 bit machines. * However, on 16 bit machines an int is too small for the shifts being done * against * it. This caused the hash function to generate incorrect values if len was * greater than 8191 (8K - 1) due to the 'len << 3' on line 3 of SHA1Update(). * * Since the file IO in main() reads 16K at a time, any file 8K or larger would * be guaranteed to generate the wrong hash (e.g. Test Vector #3, a million * "a"s). * * I also changed the declaration of variables i & j in SHA1Update to * unsigned long from unsigned int for the same reason. * * These changes should make no difference to any 32 bit implementations since * an * int and a long are the same size in those environments. * * -- * I also corrected a few compiler warnings generated by Borland C. * 1. Added #include for exit() prototype * 2. Removed unused variable 'j' in SHA1Final * 3. Changed exit(0) to return(0) at end of main. * * ALL changes I made can be located by searching for comments containing 'JHB' * ----------------- * Modified 8/98 * By Steve Reid * Still 100% public domain * * 1- Removed #include and used return() instead of exit() * 2- Fixed overwriting of finalcount in SHA1Final() (discovered by Chris Hall) * 3- Changed email address from steve@edmweb.com to sreid@sea-to-sky.net * * ----------------- * Modified 4/01 * By Saul Kravitz * Still 100% PD * Modified to run on Compaq Alpha hardware. * * ----------------- * Modified 07/2002 * By Ralph Giles * Still 100% public domain * modified for use with stdint types, autoconf * code cleanup, removed attribution comments * switched SHA1Final() argument order for consistency * use SHA1_ prefix for public api * move public api to sha1.h * * ----------------- * Modified 02/2012 * By Justin Uberti * Remove underscore from SHA1 prefix to avoid conflict with OpenSSL * Remove test code * Untabify * * ----------------- * Modified 03/2012 * By Ronghua Wu * Change the typedef of uint32(8)_t to uint32(8). We need this because in the * chromium android build, the stdio.h will include stdint.h which already * defined uint32(8)_t. * * ----------------- * Modified 04/2012 * By Frank Barchard * Ported to C++, Google style, change len to size_t, enable SHA1HANDSOFF * * Test Vectors (from FIPS PUB 180-1) * "abc" * A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D * "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq" * 84983E44 1C3BD26E BAAE4AA1 F95129E5 E54670F1 * A million repetitions of "a" * 34AA973C D4C4DAA4 F61EEB2B DBAD2731 6534016F * * ----------------- * Modified 05/2015 * By Sergey Ulanov * Removed static buffer to make computation thread-safe. * * ----------------- * Modified 10/2015 * By Peter Boström * Change uint32(8) back to uint32(8)_t (undoes (03/2012) change). */ // Enabling SHA1HANDSOFF preserves the caller's data buffer. // Disabling SHA1HANDSOFF the buffer will be modified (end swapped). #define SHA1HANDSOFF #include "webrtc/base/sha1.h" #include #include namespace rtc { namespace { #define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits)))) // blk0() and blk() perform the initial expand. // I got the idea of expanding during the round function from SSLeay // FIXME: can we do this in an endian-proof way? #ifdef RTC_ARCH_CPU_BIG_ENDIAN #define blk0(i) block->l[i] #else #define blk0(i) (block->l[i] = (rol(block->l[i], 24) & 0xFF00FF00) | \ (rol(block->l[i], 8) & 0x00FF00FF)) #endif #define blk(i) (block->l[i & 15] = rol(block->l[(i + 13) & 15] ^ \ block->l[(i + 8) & 15] ^ block->l[(i + 2) & 15] ^ block->l[i & 15], 1)) // (R0+R1), R2, R3, R4 are the different operations used in SHA1. #define R0(v, w, x, y, z, i) \ z += ((w & (x ^ y)) ^ y) + blk0(i) + 0x5A827999 + rol(v, 5); \ w = rol(w, 30); #define R1(v, w, x, y, z, i) \ z += ((w & (x ^ y)) ^ y) + blk(i) + 0x5A827999 + rol(v, 5); \ w = rol(w, 30); #define R2(v, w, x, y, z, i) \ z += (w ^ x ^ y) + blk(i) + 0x6ED9EBA1 + rol(v, 5);\ w = rol(w, 30); #define R3(v, w, x, y, z, i) \ z += (((w | x) & y) | (w & x)) + blk(i) + 0x8F1BBCDC + rol(v, 5); \ w = rol(w, 30); #define R4(v, w, x, y, z, i) \ z += (w ^ x ^ y) + blk(i) + 0xCA62C1D6 + rol(v, 5); \ w = rol(w, 30); #ifdef VERBOSE // SAK void SHAPrintContext(SHA1_CTX *context, char *msg) { printf("%s (%d,%d) %x %x %x %x %x\n", msg, context->count[0], context->count[1], context->state[0], context->state[1], context->state[2], context->state[3], context->state[4]); } #endif /* VERBOSE */ // Hash a single 512-bit block. This is the core of the algorithm. void SHA1Transform(uint32_t state[5], const uint8_t buffer[64]) { union CHAR64LONG16 { uint8_t c[64]; uint32_t l[16]; }; #ifdef SHA1HANDSOFF uint8_t workspace[64]; memcpy(workspace, buffer, 64); CHAR64LONG16* block = reinterpret_cast(workspace); #else // Note(fbarchard): This option does modify the user's data buffer. CHAR64LONG16* block = const_cast( reinterpret_cast(buffer)); #endif // Copy context->state[] to working vars. uint32_t a = state[0]; uint32_t b = state[1]; uint32_t c = state[2]; uint32_t d = state[3]; uint32_t e = state[4]; // 4 rounds of 20 operations each. Loop unrolled. // Note(fbarchard): The following has lint warnings for multiple ; on // a line and no space after , but is left as-is to be similar to the // original code. R0(a,b,c,d,e,0); R0(e,a,b,c,d,1); R0(d,e,a,b,c,2); R0(c,d,e,a,b,3); R0(b,c,d,e,a,4); R0(a,b,c,d,e,5); R0(e,a,b,c,d,6); R0(d,e,a,b,c,7); R0(c,d,e,a,b,8); R0(b,c,d,e,a,9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11); R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15); R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19); R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23); R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27); R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31); R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35); R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39); R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43); R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47); R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51); R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55); R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59); R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63); R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67); R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71); R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75); R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79); // Add the working vars back into context.state[]. state[0] += a; state[1] += b; state[2] += c; state[3] += d; state[4] += e; } } // namespace // SHA1Init - Initialize new context. void SHA1Init(SHA1_CTX* context) { // SHA1 initialization constants. context->state[0] = 0x67452301; context->state[1] = 0xEFCDAB89; context->state[2] = 0x98BADCFE; context->state[3] = 0x10325476; context->state[4] = 0xC3D2E1F0; context->count[0] = context->count[1] = 0; } // Run your data through this. void SHA1Update(SHA1_CTX* context, const uint8_t* data, size_t input_len) { size_t i = 0; #ifdef VERBOSE SHAPrintContext(context, "before"); #endif // Compute number of bytes mod 64. size_t index = (context->count[0] >> 3) & 63; // Update number of bits. // TODO: Use uint64_t instead of 2 uint32_t for count. // count[0] has low 29 bits for byte count + 3 pad 0's making 32 bits for // bit count. // Add bit count to low uint32_t context->count[0] += static_cast(input_len << 3); if (context->count[0] < static_cast(input_len << 3)) { ++context->count[1]; // if overlow (carry), add one to high word } context->count[1] += static_cast(input_len >> 29); if ((index + input_len) > 63) { i = 64 - index; memcpy(&context->buffer[index], data, i); SHA1Transform(context->state, context->buffer); for (; i + 63 < input_len; i += 64) { SHA1Transform(context->state, data + i); } index = 0; } memcpy(&context->buffer[index], &data[i], input_len - i); #ifdef VERBOSE SHAPrintContext(context, "after "); #endif } // Add padding and return the message digest. void SHA1Final(SHA1_CTX* context, uint8_t digest[SHA1_DIGEST_SIZE]) { uint8_t finalcount[8]; for (int i = 0; i < 8; ++i) { // Endian independent finalcount[i] = static_cast( (context->count[(i >= 4 ? 0 : 1)] >> ((3 - (i & 3)) * 8)) & 255); } SHA1Update(context, reinterpret_cast("\200"), 1); while ((context->count[0] & 504) != 448) { SHA1Update(context, reinterpret_cast("\0"), 1); } SHA1Update(context, finalcount, 8); // Should cause a SHA1Transform(). for (int i = 0; i < SHA1_DIGEST_SIZE; ++i) { digest[i] = static_cast( (context->state[i >> 2] >> ((3 - (i & 3)) * 8)) & 255); } // Wipe variables. memset(context->buffer, 0, 64); memset(context->state, 0, 20); memset(context->count, 0, 8); memset(finalcount, 0, 8); // SWR #ifdef SHA1HANDSOFF // Make SHA1Transform overwrite its own static vars. SHA1Transform(context->state, context->buffer); #endif } } // namespace rtc