/* * Copyright 2004 The WebRTC Project Authors. All rights reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "webrtc/base/arraysize.h" #include "webrtc/base/common.h" #include "webrtc/base/gunit.h" #include "webrtc/base/stringencode.h" #include "webrtc/base/stringutils.h" namespace rtc { TEST(Utf8EncodeTest, EncodeDecode) { const struct Utf8Test { const char* encoded; size_t encsize, enclen; unsigned long decoded; } kTests[] = { { "a ", 5, 1, 'a' }, { "\x7F ", 5, 1, 0x7F }, { "\xC2\x80 ", 5, 2, 0x80 }, { "\xDF\xBF ", 5, 2, 0x7FF }, { "\xE0\xA0\x80 ", 5, 3, 0x800 }, { "\xEF\xBF\xBF ", 5, 3, 0xFFFF }, { "\xF0\x90\x80\x80 ", 5, 4, 0x10000 }, { "\xF0\x90\x80\x80 ", 3, 0, 0x10000 }, { "\xF0\xF0\x80\x80 ", 5, 0, 0 }, { "\xF0\x90\x80 ", 5, 0, 0 }, { "\x90\x80\x80 ", 5, 0, 0 }, { NULL, 0, 0 }, }; for (size_t i = 0; kTests[i].encoded; ++i) { unsigned long val = 0; ASSERT_EQ(kTests[i].enclen, utf8_decode(kTests[i].encoded, kTests[i].encsize, &val)); unsigned long result = (kTests[i].enclen == 0) ? 0 : kTests[i].decoded; ASSERT_EQ(result, val); if (kTests[i].decoded == 0) { // Not an interesting encoding test case continue; } char buffer[5]; memset(buffer, 0x01, arraysize(buffer)); ASSERT_EQ(kTests[i].enclen, utf8_encode(buffer, kTests[i].encsize, kTests[i].decoded)); ASSERT_TRUE(memcmp(buffer, kTests[i].encoded, kTests[i].enclen) == 0); // Make sure remainder of buffer is unchanged ASSERT_TRUE(memory_check(buffer + kTests[i].enclen, 0x1, arraysize(buffer) - kTests[i].enclen)); } } class HexEncodeTest : public testing::Test { public: HexEncodeTest() : enc_res_(0), dec_res_(0) { for (size_t i = 0; i < sizeof(data_); ++i) { data_[i] = (i + 128) & 0xff; } memset(decoded_, 0x7f, sizeof(decoded_)); } char data_[10]; char encoded_[31]; char decoded_[11]; size_t enc_res_; size_t dec_res_; }; // Test that we can convert to/from hex with no delimiter. TEST_F(HexEncodeTest, TestWithNoDelimiter) { enc_res_ = hex_encode(encoded_, sizeof(encoded_), data_, sizeof(data_)); ASSERT_EQ(sizeof(data_) * 2, enc_res_); ASSERT_STREQ("80818283848586878889", encoded_); dec_res_ = hex_decode(decoded_, sizeof(decoded_), encoded_, enc_res_); ASSERT_EQ(sizeof(data_), dec_res_); ASSERT_EQ(0, memcmp(data_, decoded_, dec_res_)); } // Test that we can convert to/from hex with a colon delimiter. TEST_F(HexEncodeTest, TestWithDelimiter) { enc_res_ = hex_encode_with_delimiter(encoded_, sizeof(encoded_), data_, sizeof(data_), ':'); ASSERT_EQ(sizeof(data_) * 3 - 1, enc_res_); ASSERT_STREQ("80:81:82:83:84:85:86:87:88:89", encoded_); dec_res_ = hex_decode_with_delimiter(decoded_, sizeof(decoded_), encoded_, enc_res_, ':'); ASSERT_EQ(sizeof(data_), dec_res_); ASSERT_EQ(0, memcmp(data_, decoded_, dec_res_)); } // Test that encoding with one delimiter and decoding with another fails. TEST_F(HexEncodeTest, TestWithWrongDelimiter) { enc_res_ = hex_encode_with_delimiter(encoded_, sizeof(encoded_), data_, sizeof(data_), ':'); ASSERT_EQ(sizeof(data_) * 3 - 1, enc_res_); dec_res_ = hex_decode_with_delimiter(decoded_, sizeof(decoded_), encoded_, enc_res_, '/'); ASSERT_EQ(0U, dec_res_); } // Test that encoding without a delimiter and decoding with one fails. TEST_F(HexEncodeTest, TestExpectedDelimiter) { enc_res_ = hex_encode(encoded_, sizeof(encoded_), data_, sizeof(data_)); ASSERT_EQ(sizeof(data_) * 2, enc_res_); dec_res_ = hex_decode_with_delimiter(decoded_, sizeof(decoded_), encoded_, enc_res_, ':'); ASSERT_EQ(0U, dec_res_); } // Test that encoding with a delimiter and decoding without one fails. TEST_F(HexEncodeTest, TestExpectedNoDelimiter) { enc_res_ = hex_encode_with_delimiter(encoded_, sizeof(encoded_), data_, sizeof(data_), ':'); ASSERT_EQ(sizeof(data_) * 3 - 1, enc_res_); dec_res_ = hex_decode(decoded_, sizeof(decoded_), encoded_, enc_res_); ASSERT_EQ(0U, dec_res_); } // Test that we handle a zero-length buffer with no delimiter. TEST_F(HexEncodeTest, TestZeroLengthNoDelimiter) { enc_res_ = hex_encode(encoded_, sizeof(encoded_), "", 0); ASSERT_EQ(0U, enc_res_); dec_res_ = hex_decode(decoded_, sizeof(decoded_), encoded_, enc_res_); ASSERT_EQ(0U, dec_res_); } // Test that we handle a zero-length buffer with a delimiter. TEST_F(HexEncodeTest, TestZeroLengthWithDelimiter) { enc_res_ = hex_encode_with_delimiter(encoded_, sizeof(encoded_), "", 0, ':'); ASSERT_EQ(0U, enc_res_); dec_res_ = hex_decode_with_delimiter(decoded_, sizeof(decoded_), encoded_, enc_res_, ':'); ASSERT_EQ(0U, dec_res_); } // Test the std::string variants that take no delimiter. TEST_F(HexEncodeTest, TestHelpersNoDelimiter) { std::string result = hex_encode(data_, sizeof(data_)); ASSERT_EQ("80818283848586878889", result); dec_res_ = hex_decode(decoded_, sizeof(decoded_), result); ASSERT_EQ(sizeof(data_), dec_res_); ASSERT_EQ(0, memcmp(data_, decoded_, dec_res_)); } // Test the std::string variants that use a delimiter. TEST_F(HexEncodeTest, TestHelpersWithDelimiter) { std::string result = hex_encode_with_delimiter(data_, sizeof(data_), ':'); ASSERT_EQ("80:81:82:83:84:85:86:87:88:89", result); dec_res_ = hex_decode_with_delimiter(decoded_, sizeof(decoded_), result, ':'); ASSERT_EQ(sizeof(data_), dec_res_); ASSERT_EQ(0, memcmp(data_, decoded_, dec_res_)); } // Test that encoding into a too-small output buffer (without delimiter) fails. TEST_F(HexEncodeTest, TestEncodeTooShort) { enc_res_ = hex_encode_with_delimiter(encoded_, sizeof(data_) * 2, data_, sizeof(data_), 0); ASSERT_EQ(0U, enc_res_); } // Test that encoding into a too-small output buffer (with delimiter) fails. TEST_F(HexEncodeTest, TestEncodeWithDelimiterTooShort) { enc_res_ = hex_encode_with_delimiter(encoded_, sizeof(data_) * 3 - 1, data_, sizeof(data_), ':'); ASSERT_EQ(0U, enc_res_); } // Test that decoding into a too-small output buffer fails. TEST_F(HexEncodeTest, TestDecodeTooShort) { dec_res_ = hex_decode_with_delimiter(decoded_, 4, "0123456789", 10, 0); ASSERT_EQ(0U, dec_res_); ASSERT_EQ(0x7f, decoded_[4]); } // Test that decoding non-hex data fails. TEST_F(HexEncodeTest, TestDecodeBogusData) { dec_res_ = hex_decode_with_delimiter(decoded_, sizeof(decoded_), "xyz", 3, 0); ASSERT_EQ(0U, dec_res_); } // Test that decoding an odd number of hex characters fails. TEST_F(HexEncodeTest, TestDecodeOddHexDigits) { dec_res_ = hex_decode_with_delimiter(decoded_, sizeof(decoded_), "012", 3, 0); ASSERT_EQ(0U, dec_res_); } // Test that decoding a string with too many delimiters fails. TEST_F(HexEncodeTest, TestDecodeWithDelimiterTooManyDelimiters) { dec_res_ = hex_decode_with_delimiter(decoded_, 4, "01::23::45::67", 14, ':'); ASSERT_EQ(0U, dec_res_); } // Test that decoding a string with a leading delimiter fails. TEST_F(HexEncodeTest, TestDecodeWithDelimiterLeadingDelimiter) { dec_res_ = hex_decode_with_delimiter(decoded_, 4, ":01:23:45:67", 12, ':'); ASSERT_EQ(0U, dec_res_); } // Test that decoding a string with a trailing delimiter fails. TEST_F(HexEncodeTest, TestDecodeWithDelimiterTrailingDelimiter) { dec_res_ = hex_decode_with_delimiter(decoded_, 4, "01:23:45:67:", 12, ':'); ASSERT_EQ(0U, dec_res_); } // Tests counting substrings. TEST(TokenizeTest, CountSubstrings) { std::vector fields; EXPECT_EQ(5ul, tokenize("one two three four five", ' ', &fields)); fields.clear(); EXPECT_EQ(1ul, tokenize("one", ' ', &fields)); // Extra spaces should be ignored. fields.clear(); EXPECT_EQ(5ul, tokenize(" one two three four five ", ' ', &fields)); fields.clear(); EXPECT_EQ(1ul, tokenize(" one ", ' ', &fields)); fields.clear(); EXPECT_EQ(0ul, tokenize(" ", ' ', &fields)); } // Tests comparing substrings. TEST(TokenizeTest, CompareSubstrings) { std::vector fields; tokenize("find middle one", ' ', &fields); ASSERT_EQ(3ul, fields.size()); ASSERT_STREQ("middle", fields.at(1).c_str()); fields.clear(); // Extra spaces should be ignored. tokenize(" find middle one ", ' ', &fields); ASSERT_EQ(3ul, fields.size()); ASSERT_STREQ("middle", fields.at(1).c_str()); fields.clear(); tokenize(" ", ' ', &fields); ASSERT_EQ(0ul, fields.size()); } TEST(TokenizeTest, TokenizeAppend) { ASSERT_EQ(0ul, tokenize_append("A B C", ' ', NULL)); std::vector fields; tokenize_append("A B C", ' ', &fields); ASSERT_EQ(3ul, fields.size()); ASSERT_STREQ("B", fields.at(1).c_str()); tokenize_append("D E", ' ', &fields); ASSERT_EQ(5ul, fields.size()); ASSERT_STREQ("B", fields.at(1).c_str()); ASSERT_STREQ("E", fields.at(4).c_str()); } TEST(TokenizeTest, TokenizeWithMarks) { ASSERT_EQ(0ul, tokenize("D \"A B", ' ', '(', ')', NULL)); std::vector fields; tokenize("A B C", ' ', '"', '"', &fields); ASSERT_EQ(3ul, fields.size()); ASSERT_STREQ("C", fields.at(2).c_str()); tokenize("\"A B\" C", ' ', '"', '"', &fields); ASSERT_EQ(2ul, fields.size()); ASSERT_STREQ("A B", fields.at(0).c_str()); tokenize("D \"A B\" C", ' ', '"', '"', &fields); ASSERT_EQ(3ul, fields.size()); ASSERT_STREQ("D", fields.at(0).c_str()); ASSERT_STREQ("A B", fields.at(1).c_str()); tokenize("D \"A B\" C \"E F\"", ' ', '"', '"', &fields); ASSERT_EQ(4ul, fields.size()); ASSERT_STREQ("D", fields.at(0).c_str()); ASSERT_STREQ("A B", fields.at(1).c_str()); ASSERT_STREQ("E F", fields.at(3).c_str()); // No matching marks. tokenize("D \"A B", ' ', '"', '"', &fields); ASSERT_EQ(3ul, fields.size()); ASSERT_STREQ("D", fields.at(0).c_str()); ASSERT_STREQ("\"A", fields.at(1).c_str()); tokenize("D (A B) C (E F) G", ' ', '(', ')', &fields); ASSERT_EQ(5ul, fields.size()); ASSERT_STREQ("D", fields.at(0).c_str()); ASSERT_STREQ("A B", fields.at(1).c_str()); ASSERT_STREQ("E F", fields.at(3).c_str()); } TEST(TokenizeTest, TokenizeWithEmptyTokens) { std::vector fields; EXPECT_EQ(3ul, tokenize_with_empty_tokens("a.b.c", '.', &fields)); EXPECT_EQ("a", fields[0]); EXPECT_EQ("b", fields[1]); EXPECT_EQ("c", fields[2]); EXPECT_EQ(3ul, tokenize_with_empty_tokens("..c", '.', &fields)); EXPECT_TRUE(fields[0].empty()); EXPECT_TRUE(fields[1].empty()); EXPECT_EQ("c", fields[2]); EXPECT_EQ(1ul, tokenize_with_empty_tokens("", '.', &fields)); EXPECT_TRUE(fields[0].empty()); } TEST(TokenizeFirstTest, NoLeadingSpaces) { std::string token; std::string rest; ASSERT_TRUE(tokenize_first("A &*${}", ' ', &token, &rest)); ASSERT_STREQ("A", token.c_str()); ASSERT_STREQ("&*${}", rest.c_str()); ASSERT_TRUE(tokenize_first("A B& *${}", ' ', &token, &rest)); ASSERT_STREQ("A", token.c_str()); ASSERT_STREQ("B& *${}", rest.c_str()); ASSERT_TRUE(tokenize_first("A B& *${} ", ' ', &token, &rest)); ASSERT_STREQ("A", token.c_str()); ASSERT_STREQ("B& *${} ", rest.c_str()); } TEST(TokenizeFirstTest, LeadingSpaces) { std::string token; std::string rest; ASSERT_TRUE(tokenize_first(" A B C", ' ', &token, &rest)); ASSERT_STREQ("", token.c_str()); ASSERT_STREQ("A B C", rest.c_str()); ASSERT_TRUE(tokenize_first(" A B C ", ' ', &token, &rest)); ASSERT_STREQ("", token.c_str()); ASSERT_STREQ("A B C ", rest.c_str()); } TEST(TokenizeFirstTest, SingleToken) { std::string token; std::string rest; // In the case where we cannot find delimiter the whole string is a token. ASSERT_FALSE(tokenize_first("ABC", ' ', &token, &rest)); ASSERT_TRUE(tokenize_first("ABC ", ' ', &token, &rest)); ASSERT_STREQ("ABC", token.c_str()); ASSERT_STREQ("", rest.c_str()); ASSERT_TRUE(tokenize_first(" ABC ", ' ', &token, &rest)); ASSERT_STREQ("", token.c_str()); ASSERT_STREQ("ABC ", rest.c_str()); } // Tests counting substrings. TEST(SplitTest, CountSubstrings) { std::vector fields; EXPECT_EQ(5ul, split("one,two,three,four,five", ',', &fields)); fields.clear(); EXPECT_EQ(1ul, split("one", ',', &fields)); // Empty fields between commas count. fields.clear(); EXPECT_EQ(5ul, split("one,,three,four,five", ',', &fields)); fields.clear(); EXPECT_EQ(3ul, split(",three,", ',', &fields)); fields.clear(); EXPECT_EQ(1ul, split("", ',', &fields)); } // Tests comparing substrings. TEST(SplitTest, CompareSubstrings) { std::vector fields; split("find,middle,one", ',', &fields); ASSERT_EQ(3ul, fields.size()); ASSERT_STREQ("middle", fields.at(1).c_str()); fields.clear(); // Empty fields between commas count. split("find,,middle,one", ',', &fields); ASSERT_EQ(4ul, fields.size()); ASSERT_STREQ("middle", fields.at(2).c_str()); fields.clear(); split("", ',', &fields); ASSERT_EQ(1ul, fields.size()); ASSERT_STREQ("", fields.at(0).c_str()); } TEST(BoolTest, DecodeValid) { bool value; EXPECT_TRUE(FromString("true", &value)); EXPECT_TRUE(value); EXPECT_TRUE(FromString("true,", &value)); EXPECT_TRUE(value); EXPECT_TRUE(FromString("true , true", &value)); EXPECT_TRUE(value); EXPECT_TRUE(FromString("true ,\n false", &value)); EXPECT_TRUE(value); EXPECT_TRUE(FromString(" true \n", &value)); EXPECT_TRUE(value); EXPECT_TRUE(FromString("false", &value)); EXPECT_FALSE(value); EXPECT_TRUE(FromString(" false ", &value)); EXPECT_FALSE(value); EXPECT_TRUE(FromString(" false, ", &value)); EXPECT_FALSE(value); EXPECT_TRUE(FromString("true\n")); EXPECT_FALSE(FromString("false\n")); } TEST(BoolTest, DecodeInvalid) { bool value; EXPECT_FALSE(FromString("True", &value)); EXPECT_FALSE(FromString("TRUE", &value)); EXPECT_FALSE(FromString("False", &value)); EXPECT_FALSE(FromString("FALSE", &value)); EXPECT_FALSE(FromString("0", &value)); EXPECT_FALSE(FromString("1", &value)); EXPECT_FALSE(FromString("0,", &value)); EXPECT_FALSE(FromString("1,", &value)); EXPECT_FALSE(FromString("1,0", &value)); EXPECT_FALSE(FromString("1.", &value)); EXPECT_FALSE(FromString("1.0", &value)); EXPECT_FALSE(FromString("", &value)); EXPECT_FALSE(FromString("false\nfalse")); } TEST(BoolTest, RoundTrip) { bool value; EXPECT_TRUE(FromString(ToString(true), &value)); EXPECT_TRUE(value); EXPECT_TRUE(FromString(ToString(false), &value)); EXPECT_FALSE(value); } } // namespace rtc