/* * Copyright 2004 The WebRTC Project Authors. All rights reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "webrtc/base/common.h" #include "webrtc/base/gunit.h" #include "webrtc/base/helpers.h" #include "webrtc/base/thread.h" #include "webrtc/base/timeutils.h" namespace rtc { TEST(TimeTest, TimeInMs) { uint32_t ts_earlier = Time(); Thread::SleepMs(100); uint32_t ts_now = Time(); // Allow for the thread to wakeup ~20ms early. EXPECT_GE(ts_now, ts_earlier + 80); // Make sure the Time is not returning in smaller unit like microseconds. EXPECT_LT(ts_now, ts_earlier + 1000); } TEST(TimeTest, Comparison) { // Obtain two different times, in known order TimeStamp ts_earlier = Time(); Thread::SleepMs(100); TimeStamp ts_now = Time(); EXPECT_NE(ts_earlier, ts_now); // Common comparisons EXPECT_TRUE( TimeIsLaterOrEqual(ts_earlier, ts_now)); EXPECT_TRUE( TimeIsLater( ts_earlier, ts_now)); EXPECT_FALSE(TimeIsLaterOrEqual(ts_now, ts_earlier)); EXPECT_FALSE(TimeIsLater( ts_now, ts_earlier)); // Edge cases EXPECT_TRUE( TimeIsLaterOrEqual(ts_earlier, ts_earlier)); EXPECT_FALSE(TimeIsLater( ts_earlier, ts_earlier)); // Obtain a third time TimeStamp ts_later = TimeAfter(100); EXPECT_NE(ts_now, ts_later); EXPECT_TRUE( TimeIsLater(ts_now, ts_later)); EXPECT_TRUE( TimeIsLater(ts_earlier, ts_later)); // Common comparisons EXPECT_TRUE( TimeIsBetween(ts_earlier, ts_now, ts_later)); EXPECT_FALSE(TimeIsBetween(ts_earlier, ts_later, ts_now)); EXPECT_FALSE(TimeIsBetween(ts_now, ts_earlier, ts_later)); EXPECT_TRUE( TimeIsBetween(ts_now, ts_later, ts_earlier)); EXPECT_TRUE( TimeIsBetween(ts_later, ts_earlier, ts_now)); EXPECT_FALSE(TimeIsBetween(ts_later, ts_now, ts_earlier)); // Edge cases EXPECT_TRUE( TimeIsBetween(ts_earlier, ts_earlier, ts_earlier)); EXPECT_TRUE( TimeIsBetween(ts_earlier, ts_earlier, ts_later)); EXPECT_TRUE( TimeIsBetween(ts_earlier, ts_later, ts_later)); // Earlier of two times EXPECT_EQ(ts_earlier, TimeMin(ts_earlier, ts_earlier)); EXPECT_EQ(ts_earlier, TimeMin(ts_earlier, ts_now)); EXPECT_EQ(ts_earlier, TimeMin(ts_earlier, ts_later)); EXPECT_EQ(ts_earlier, TimeMin(ts_now, ts_earlier)); EXPECT_EQ(ts_earlier, TimeMin(ts_later, ts_earlier)); // Later of two times EXPECT_EQ(ts_earlier, TimeMax(ts_earlier, ts_earlier)); EXPECT_EQ(ts_now, TimeMax(ts_earlier, ts_now)); EXPECT_EQ(ts_later, TimeMax(ts_earlier, ts_later)); EXPECT_EQ(ts_now, TimeMax(ts_now, ts_earlier)); EXPECT_EQ(ts_later, TimeMax(ts_later, ts_earlier)); } TEST(TimeTest, Intervals) { TimeStamp ts_earlier = Time(); TimeStamp ts_later = TimeAfter(500); // We can't depend on ts_later and ts_earlier to be exactly 500 apart // since time elapses between the calls to Time() and TimeAfter(500) EXPECT_LE(500, TimeDiff(ts_later, ts_earlier)); EXPECT_GE(-500, TimeDiff(ts_earlier, ts_later)); // Time has elapsed since ts_earlier EXPECT_GE(TimeSince(ts_earlier), 0); // ts_earlier is earlier than now, so TimeUntil ts_earlier is -ve EXPECT_LE(TimeUntil(ts_earlier), 0); // ts_later likely hasn't happened yet, so TimeSince could be -ve // but within 500 EXPECT_GE(TimeSince(ts_later), -500); // TimeUntil ts_later is at most 500 EXPECT_LE(TimeUntil(ts_later), 500); } TEST(TimeTest, BoundaryComparison) { // Obtain two different times, in known order TimeStamp ts_earlier = static_cast(-50); TimeStamp ts_later = ts_earlier + 100; EXPECT_NE(ts_earlier, ts_later); // Common comparisons EXPECT_TRUE( TimeIsLaterOrEqual(ts_earlier, ts_later)); EXPECT_TRUE( TimeIsLater( ts_earlier, ts_later)); EXPECT_FALSE(TimeIsLaterOrEqual(ts_later, ts_earlier)); EXPECT_FALSE(TimeIsLater( ts_later, ts_earlier)); // Earlier of two times EXPECT_EQ(ts_earlier, TimeMin(ts_earlier, ts_earlier)); EXPECT_EQ(ts_earlier, TimeMin(ts_earlier, ts_later)); EXPECT_EQ(ts_earlier, TimeMin(ts_later, ts_earlier)); // Later of two times EXPECT_EQ(ts_earlier, TimeMax(ts_earlier, ts_earlier)); EXPECT_EQ(ts_later, TimeMax(ts_earlier, ts_later)); EXPECT_EQ(ts_later, TimeMax(ts_later, ts_earlier)); // Interval EXPECT_EQ(100, TimeDiff(ts_later, ts_earlier)); EXPECT_EQ(-100, TimeDiff(ts_earlier, ts_later)); } TEST(TimeTest, DISABLED_CurrentTmTime) { struct tm tm; int microseconds; time_t before = ::time(NULL); CurrentTmTime(&tm, µseconds); time_t after = ::time(NULL); // Assert that 'tm' represents a time between 'before' and 'after'. // mktime() uses local time, so we have to compensate for that. time_t local_delta = before - ::mktime(::gmtime(&before)); // NOLINT time_t t = ::mktime(&tm) + local_delta; EXPECT_TRUE(before <= t && t <= after); EXPECT_TRUE(0 <= microseconds && microseconds < 1000000); } class TimestampWrapAroundHandlerTest : public testing::Test { public: TimestampWrapAroundHandlerTest() {} protected: TimestampWrapAroundHandler wraparound_handler_; }; TEST_F(TimestampWrapAroundHandlerTest, Unwrap) { uint32_t ts = 0xfffffff2; int64_t unwrapped_ts = ts; EXPECT_EQ(ts, wraparound_handler_.Unwrap(ts)); ts = 2; unwrapped_ts += 0x10; EXPECT_EQ(unwrapped_ts, wraparound_handler_.Unwrap(ts)); ts = 0xfffffff2; unwrapped_ts += 0xfffffff0; EXPECT_EQ(unwrapped_ts, wraparound_handler_.Unwrap(ts)); ts = 0; unwrapped_ts += 0xe; EXPECT_EQ(unwrapped_ts, wraparound_handler_.Unwrap(ts)); } class TmToSeconds : public testing::Test { public: TmToSeconds() { // Set use of the test RNG to get deterministic expiration timestamp. rtc::SetRandomTestMode(true); } ~TmToSeconds() { // Put it back for the next test. rtc::SetRandomTestMode(false); } void TestTmToSeconds(int times) { static char mdays[12] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; for (int i = 0; i < times; i++) { // First generate something correct and check that TmToSeconds is happy. int year = rtc::CreateRandomId() % 400 + 1970; bool leap_year = false; if (year % 4 == 0) leap_year = true; if (year % 100 == 0) leap_year = false; if (year % 400 == 0) leap_year = true; std::tm tm; tm.tm_year = year - 1900; // std::tm is year 1900 based. tm.tm_mon = rtc::CreateRandomId() % 12; tm.tm_mday = rtc::CreateRandomId() % mdays[tm.tm_mon] + 1; tm.tm_hour = rtc::CreateRandomId() % 24; tm.tm_min = rtc::CreateRandomId() % 60; tm.tm_sec = rtc::CreateRandomId() % 60; int64_t t = rtc::TmToSeconds(tm); EXPECT_TRUE(t >= 0); // Now damage a random field and check that TmToSeconds is unhappy. switch (rtc::CreateRandomId() % 11) { case 0: tm.tm_year = 1969 - 1900; break; case 1: tm.tm_mon = -1; break; case 2: tm.tm_mon = 12; break; case 3: tm.tm_mday = 0; break; case 4: tm.tm_mday = mdays[tm.tm_mon] + (leap_year && tm.tm_mon == 1) + 1; break; case 5: tm.tm_hour = -1; break; case 6: tm.tm_hour = 24; break; case 7: tm.tm_min = -1; break; case 8: tm.tm_min = 60; break; case 9: tm.tm_sec = -1; break; case 10: tm.tm_sec = 60; break; } EXPECT_EQ(rtc::TmToSeconds(tm), -1); } // Check consistency with the system gmtime_r. With time_t, we can only // portably test dates until 2038, which is achieved by the % 0x80000000. for (int i = 0; i < times; i++) { time_t t = rtc::CreateRandomId() % 0x80000000; #if defined(WEBRTC_WIN) std::tm* tm = std::gmtime(&t); EXPECT_TRUE(tm); EXPECT_TRUE(rtc::TmToSeconds(*tm) == t); #else std::tm tm; EXPECT_TRUE(gmtime_r(&t, &tm)); EXPECT_TRUE(rtc::TmToSeconds(tm) == t); #endif } } }; TEST_F(TmToSeconds, TestTmToSeconds) { TestTmToSeconds(100000); } } // namespace rtc