/* * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include #include #include "testing/gtest/include/gtest/gtest.h" #include "webrtc/base/arraysize.h" #include "webrtc/base/format_macros.h" #include "webrtc/base/scoped_ptr.h" #include "webrtc/common_audio/audio_converter.h" #include "webrtc/common_audio/channel_buffer.h" #include "webrtc/common_audio/resampler/push_sinc_resampler.h" namespace webrtc { typedef rtc::scoped_ptr> ScopedBuffer; // Sets the signal value to increase by |data| with every sample. ScopedBuffer CreateBuffer(const std::vector& data, size_t frames) { const size_t num_channels = data.size(); ScopedBuffer sb(new ChannelBuffer(frames, num_channels)); for (size_t i = 0; i < num_channels; ++i) for (size_t j = 0; j < frames; ++j) sb->channels()[i][j] = data[i] * j; return sb; } void VerifyParams(const ChannelBuffer& ref, const ChannelBuffer& test) { EXPECT_EQ(ref.num_channels(), test.num_channels()); EXPECT_EQ(ref.num_frames(), test.num_frames()); } // Computes the best SNR based on the error between |ref_frame| and // |test_frame|. It searches around |expected_delay| in samples between the // signals to compensate for the resampling delay. float ComputeSNR(const ChannelBuffer& ref, const ChannelBuffer& test, size_t expected_delay) { VerifyParams(ref, test); float best_snr = 0; size_t best_delay = 0; // Search within one sample of the expected delay. for (size_t delay = std::max(expected_delay, static_cast(1)) - 1; delay <= std::min(expected_delay + 1, ref.num_frames()); ++delay) { float mse = 0; float variance = 0; float mean = 0; for (size_t i = 0; i < ref.num_channels(); ++i) { for (size_t j = 0; j < ref.num_frames() - delay; ++j) { float error = ref.channels()[i][j] - test.channels()[i][j + delay]; mse += error * error; variance += ref.channels()[i][j] * ref.channels()[i][j]; mean += ref.channels()[i][j]; } } const size_t length = ref.num_channels() * (ref.num_frames() - delay); mse /= length; variance /= length; mean /= length; variance -= mean * mean; float snr = 100; // We assign 100 dB to the zero-error case. if (mse > 0) snr = 10 * std::log10(variance / mse); if (snr > best_snr) { best_snr = snr; best_delay = delay; } } printf("SNR=%.1f dB at delay=%" PRIuS "\n", best_snr, best_delay); return best_snr; } // Sets the source to a linearly increasing signal for which we can easily // generate a reference. Runs the AudioConverter and ensures the output has // sufficiently high SNR relative to the reference. void RunAudioConverterTest(size_t src_channels, int src_sample_rate_hz, size_t dst_channels, int dst_sample_rate_hz) { const float kSrcLeft = 0.0002f; const float kSrcRight = 0.0001f; const float resampling_factor = (1.f * src_sample_rate_hz) / dst_sample_rate_hz; const float dst_left = resampling_factor * kSrcLeft; const float dst_right = resampling_factor * kSrcRight; const float dst_mono = (dst_left + dst_right) / 2; const size_t src_frames = static_cast(src_sample_rate_hz / 100); const size_t dst_frames = static_cast(dst_sample_rate_hz / 100); std::vector src_data(1, kSrcLeft); if (src_channels == 2) src_data.push_back(kSrcRight); ScopedBuffer src_buffer = CreateBuffer(src_data, src_frames); std::vector dst_data(1, 0); std::vector ref_data; if (dst_channels == 1) { if (src_channels == 1) ref_data.push_back(dst_left); else ref_data.push_back(dst_mono); } else { dst_data.push_back(0); ref_data.push_back(dst_left); if (src_channels == 1) ref_data.push_back(dst_left); else ref_data.push_back(dst_right); } ScopedBuffer dst_buffer = CreateBuffer(dst_data, dst_frames); ScopedBuffer ref_buffer = CreateBuffer(ref_data, dst_frames); // The sinc resampler has a known delay, which we compute here. const size_t delay_frames = src_sample_rate_hz == dst_sample_rate_hz ? 0 : static_cast( PushSincResampler::AlgorithmicDelaySeconds(src_sample_rate_hz) * dst_sample_rate_hz); // SNR reported on the same line later. printf("(%" PRIuS ", %d Hz) -> (%" PRIuS ", %d Hz) ", src_channels, src_sample_rate_hz, dst_channels, dst_sample_rate_hz); rtc::scoped_ptr converter = AudioConverter::Create( src_channels, src_frames, dst_channels, dst_frames); converter->Convert(src_buffer->channels(), src_buffer->size(), dst_buffer->channels(), dst_buffer->size()); EXPECT_LT(43.f, ComputeSNR(*ref_buffer.get(), *dst_buffer.get(), delay_frames)); } TEST(AudioConverterTest, ConversionsPassSNRThreshold) { const int kSampleRates[] = {8000, 16000, 32000, 44100, 48000}; const size_t kChannels[] = {1, 2}; for (size_t src_rate = 0; src_rate < arraysize(kSampleRates); ++src_rate) { for (size_t dst_rate = 0; dst_rate < arraysize(kSampleRates); ++dst_rate) { for (size_t src_channel = 0; src_channel < arraysize(kChannels); ++src_channel) { for (size_t dst_channel = 0; dst_channel < arraysize(kChannels); ++dst_channel) { RunAudioConverterTest(kChannels[src_channel], kSampleRates[src_rate], kChannels[dst_channel], kSampleRates[dst_rate]); } } } } } } // namespace webrtc