/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "webrtc/common_audio/signal_processing/include/real_fft.h" #include "webrtc/common_audio/signal_processing/include/signal_processing_library.h" #include "webrtc/typedefs.h" #include "testing/gtest/include/gtest/gtest.h" namespace webrtc { namespace { // FFT order. const int kOrder = 5; // Lengths for real FFT's time and frequency bufffers. // For N-point FFT, the length requirements from API are N and N+2 respectively. const int kTimeDataLength = 1 << kOrder; const int kFreqDataLength = (1 << kOrder) + 2; // For complex FFT's time and freq buffer. The implementation requires // 2*N 16-bit words. const int kComplexFftDataLength = 2 << kOrder; // Reference data for time signal. const int16_t kRefData[kTimeDataLength] = { 11739, 6848, -8688, 31980, -30295, 25242, 27085, 19410, -26299, 15607, -10791, 11778, -23819, 14498, -25772, 10076, 1173, 6848, -8688, 31980, -30295, 2522, 27085, 19410, -2629, 5607, -3, 1178, -23819, 1498, -25772, 10076 }; class RealFFTTest : public ::testing::Test { protected: RealFFTTest() { WebRtcSpl_Init(); } }; TEST_F(RealFFTTest, CreateFailsOnBadInput) { RealFFT* fft = WebRtcSpl_CreateRealFFT(11); EXPECT_TRUE(fft == NULL); fft = WebRtcSpl_CreateRealFFT(-1); EXPECT_TRUE(fft == NULL); } TEST_F(RealFFTTest, RealAndComplexMatch) { int i = 0; int j = 0; int16_t real_fft_time[kTimeDataLength] = {0}; int16_t real_fft_freq[kFreqDataLength] = {0}; // One common buffer for complex FFT's time and frequency data. int16_t complex_fft_buff[kComplexFftDataLength] = {0}; // Prepare the inputs to forward FFT's. memcpy(real_fft_time, kRefData, sizeof(kRefData)); for (i = 0, j = 0; i < kTimeDataLength; i += 1, j += 2) { complex_fft_buff[j] = kRefData[i]; complex_fft_buff[j + 1] = 0; // Insert zero's to imaginary parts. }; // Create and run real forward FFT. RealFFT* fft = WebRtcSpl_CreateRealFFT(kOrder); EXPECT_TRUE(fft != NULL); EXPECT_EQ(0, WebRtcSpl_RealForwardFFT(fft, real_fft_time, real_fft_freq)); // Run complex forward FFT. WebRtcSpl_ComplexBitReverse(complex_fft_buff, kOrder); EXPECT_EQ(0, WebRtcSpl_ComplexFFT(complex_fft_buff, kOrder, 1)); // Verify the results between complex and real forward FFT. for (i = 0; i < kFreqDataLength; i++) { EXPECT_EQ(real_fft_freq[i], complex_fft_buff[i]); } // Prepare the inputs to inverse real FFT. // We use whatever data in complex_fft_buff[] since we don't care // about data contents. Only kFreqDataLength 16-bit words are copied // from complex_fft_buff to real_fft_freq since remaining words (2nd half) // are conjugate-symmetric to the first half in theory. memcpy(real_fft_freq, complex_fft_buff, sizeof(real_fft_freq)); // Run real inverse FFT. int real_scale = WebRtcSpl_RealInverseFFT(fft, real_fft_freq, real_fft_time); EXPECT_GE(real_scale, 0); // Run complex inverse FFT. WebRtcSpl_ComplexBitReverse(complex_fft_buff, kOrder); int complex_scale = WebRtcSpl_ComplexIFFT(complex_fft_buff, kOrder, 1); // Verify the results between complex and real inverse FFT. // They are not bit-exact, since complex IFFT doesn't produce // exactly conjugate-symmetric data (between first and second half). EXPECT_EQ(real_scale, complex_scale); for (i = 0, j = 0; i < kTimeDataLength; i += 1, j += 2) { EXPECT_LE(abs(real_fft_time[i] - complex_fft_buff[j]), 1); } WebRtcSpl_FreeRealFFT(fft); } } // namespace } // namespace webrtc