/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "testing/gtest/include/gtest/gtest.h" #include "webrtc/common_audio/signal_processing/include/signal_processing_library.h" static const size_t kVector16Size = 9; static const int16_t vector16[kVector16Size] = {1, -15511, 4323, 1963, WEBRTC_SPL_WORD16_MAX, 0, WEBRTC_SPL_WORD16_MIN + 5, -3333, 345}; class SplTest : public testing::Test { protected: SplTest() { WebRtcSpl_Init(); } virtual ~SplTest() { } }; TEST_F(SplTest, MacroTest) { // Macros with inputs. int A = 10; int B = 21; int a = -3; int b = WEBRTC_SPL_WORD32_MAX; EXPECT_EQ(10, WEBRTC_SPL_MIN(A, B)); EXPECT_EQ(21, WEBRTC_SPL_MAX(A, B)); EXPECT_EQ(3, WEBRTC_SPL_ABS_W16(a)); EXPECT_EQ(3, WEBRTC_SPL_ABS_W32(a)); EXPECT_EQ(-63, WEBRTC_SPL_MUL(a, B)); EXPECT_EQ(-2147483645, WEBRTC_SPL_MUL(a, b)); EXPECT_EQ(2147483651u, WEBRTC_SPL_UMUL(a, b)); b = WEBRTC_SPL_WORD16_MAX >> 1; EXPECT_EQ(4294918147u, WEBRTC_SPL_UMUL_32_16(a, b)); EXPECT_EQ(-49149, WEBRTC_SPL_MUL_16_U16(a, b)); a = b; b = -3; EXPECT_EQ(-1, WEBRTC_SPL_MUL_16_32_RSFT16(a, b)); EXPECT_EQ(-1, WEBRTC_SPL_MUL_16_32_RSFT15(a, b)); EXPECT_EQ(-3, WEBRTC_SPL_MUL_16_32_RSFT14(a, b)); EXPECT_EQ(-24, WEBRTC_SPL_MUL_16_32_RSFT11(a, b)); EXPECT_EQ(-12288, WEBRTC_SPL_MUL_16_16_RSFT(a, b, 2)); EXPECT_EQ(-12287, WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(a, b, 2)); EXPECT_EQ(21, WEBRTC_SPL_SAT(a, A, B)); EXPECT_EQ(21, WEBRTC_SPL_SAT(a, B, A)); // Shifting with negative numbers allowed int shift_amount = 1; // Workaround compiler warning using variable here. // Positive means left shift EXPECT_EQ(32766, WEBRTC_SPL_SHIFT_W32(a, shift_amount)); // Shifting with negative numbers not allowed // We cannot do casting here due to signed/unsigned problem EXPECT_EQ(32766, WEBRTC_SPL_LSHIFT_W32(a, 1)); EXPECT_EQ(8191u, WEBRTC_SPL_RSHIFT_U32(a, 1)); EXPECT_EQ(1470, WEBRTC_SPL_RAND(A)); EXPECT_EQ(-49149, WEBRTC_SPL_MUL_16_16(a, b)); EXPECT_EQ(1073676289, WEBRTC_SPL_MUL_16_16(WEBRTC_SPL_WORD16_MAX, WEBRTC_SPL_WORD16_MAX)); EXPECT_EQ(1073709055, WEBRTC_SPL_MUL_16_32_RSFT16(WEBRTC_SPL_WORD16_MAX, WEBRTC_SPL_WORD32_MAX)); EXPECT_EQ(1073741824, WEBRTC_SPL_MUL_16_32_RSFT16(WEBRTC_SPL_WORD16_MIN, WEBRTC_SPL_WORD32_MIN)); #ifdef WEBRTC_ARCH_ARM_V7 EXPECT_EQ(-1073741824, WEBRTC_SPL_MUL_16_32_RSFT16(WEBRTC_SPL_WORD16_MIN, WEBRTC_SPL_WORD32_MAX)); #else EXPECT_EQ(-1073741823, WEBRTC_SPL_MUL_16_32_RSFT16(WEBRTC_SPL_WORD16_MIN, WEBRTC_SPL_WORD32_MAX)); #endif } TEST_F(SplTest, InlineTest) { int16_t a16 = 121; int16_t b16 = -17; int32_t a32 = 111121; int32_t b32 = -1711; EXPECT_EQ(17, WebRtcSpl_GetSizeInBits(a32)); EXPECT_EQ(0, WebRtcSpl_NormW32(0)); EXPECT_EQ(31, WebRtcSpl_NormW32(-1)); EXPECT_EQ(0, WebRtcSpl_NormW32(WEBRTC_SPL_WORD32_MIN)); EXPECT_EQ(14, WebRtcSpl_NormW32(a32)); EXPECT_EQ(0, WebRtcSpl_NormW16(0)); EXPECT_EQ(15, WebRtcSpl_NormW16(-1)); EXPECT_EQ(0, WebRtcSpl_NormW16(WEBRTC_SPL_WORD16_MIN)); EXPECT_EQ(4, WebRtcSpl_NormW16(b32)); for (int ii = 0; ii < 15; ++ii) { int16_t value = 1 << ii; EXPECT_EQ(14 - ii, WebRtcSpl_NormW16(value)); EXPECT_EQ(15 - ii, WebRtcSpl_NormW16(-value)); } EXPECT_EQ(0, WebRtcSpl_NormU32(0u)); EXPECT_EQ(0, WebRtcSpl_NormU32(0xffffffff)); EXPECT_EQ(15, WebRtcSpl_NormU32(static_cast(a32))); EXPECT_EQ(104, WebRtcSpl_AddSatW16(a16, b16)); EXPECT_EQ(138, WebRtcSpl_SubSatW16(a16, b16)); EXPECT_EQ(109410, WebRtcSpl_AddSatW32(a32, b32)); EXPECT_EQ(112832, WebRtcSpl_SubSatW32(a32, b32)); a32 = 0x80000000; b32 = 0x80000000; // Cast to signed int to avoid compiler complaint on gtest.h. EXPECT_EQ(static_cast(0x80000000), WebRtcSpl_AddSatW32(a32, b32)); a32 = 0x7fffffff; b32 = 0x7fffffff; EXPECT_EQ(0x7fffffff, WebRtcSpl_AddSatW32(a32, b32)); a32 = 0; b32 = 0x80000000; EXPECT_EQ(0x7fffffff, WebRtcSpl_SubSatW32(a32, b32)); a32 = 0x7fffffff; b32 = 0x80000000; EXPECT_EQ(0x7fffffff, WebRtcSpl_SubSatW32(a32, b32)); a32 = 0x80000000; b32 = 0x7fffffff; EXPECT_EQ(static_cast(0x80000000), WebRtcSpl_SubSatW32(a32, b32)); } TEST_F(SplTest, MathOperationsTest) { int A = 1134567892; int32_t num = 117; int32_t den = -5; uint16_t denU = 5; EXPECT_EQ(33700, WebRtcSpl_Sqrt(A)); EXPECT_EQ(33683, WebRtcSpl_SqrtFloor(A)); EXPECT_EQ(-91772805, WebRtcSpl_DivResultInQ31(den, num)); EXPECT_EQ(-23, WebRtcSpl_DivW32W16ResW16(num, (int16_t)den)); EXPECT_EQ(-23, WebRtcSpl_DivW32W16(num, (int16_t)den)); EXPECT_EQ(23u, WebRtcSpl_DivU32U16(num, denU)); EXPECT_EQ(0, WebRtcSpl_DivW32HiLow(128, 0, 256)); } TEST_F(SplTest, BasicArrayOperationsTest) { const size_t kVectorSize = 4; int B[] = {4, 12, 133, 1100}; int16_t b16[kVectorSize]; int32_t b32[kVectorSize]; int16_t bTmp16[kVectorSize]; int32_t bTmp32[kVectorSize]; WebRtcSpl_MemSetW16(b16, 3, kVectorSize); for (size_t kk = 0; kk < kVectorSize; ++kk) { EXPECT_EQ(3, b16[kk]); } WebRtcSpl_ZerosArrayW16(b16, kVectorSize); for (size_t kk = 0; kk < kVectorSize; ++kk) { EXPECT_EQ(0, b16[kk]); } WebRtcSpl_MemSetW32(b32, 3, kVectorSize); for (size_t kk = 0; kk < kVectorSize; ++kk) { EXPECT_EQ(3, b32[kk]); } WebRtcSpl_ZerosArrayW32(b32, kVectorSize); for (size_t kk = 0; kk < kVectorSize; ++kk) { EXPECT_EQ(0, b32[kk]); } for (size_t kk = 0; kk < kVectorSize; ++kk) { bTmp16[kk] = (int16_t)kk; bTmp32[kk] = (int32_t)kk; } WEBRTC_SPL_MEMCPY_W16(b16, bTmp16, kVectorSize); for (size_t kk = 0; kk < kVectorSize; ++kk) { EXPECT_EQ(b16[kk], bTmp16[kk]); } // WEBRTC_SPL_MEMCPY_W32(b32, bTmp32, kVectorSize); // for (int kk = 0; kk < kVectorSize; ++kk) { // EXPECT_EQ(b32[kk], bTmp32[kk]); // } WebRtcSpl_CopyFromEndW16(b16, kVectorSize, 2, bTmp16); for (size_t kk = 0; kk < 2; ++kk) { EXPECT_EQ(static_cast(kk+2), bTmp16[kk]); } for (size_t kk = 0; kk < kVectorSize; ++kk) { b32[kk] = B[kk]; b16[kk] = (int16_t)B[kk]; } WebRtcSpl_VectorBitShiftW32ToW16(bTmp16, kVectorSize, b32, 1); for (size_t kk = 0; kk < kVectorSize; ++kk) { EXPECT_EQ((B[kk]>>1), bTmp16[kk]); } WebRtcSpl_VectorBitShiftW16(bTmp16, kVectorSize, b16, 1); for (size_t kk = 0; kk < kVectorSize; ++kk) { EXPECT_EQ((B[kk]>>1), bTmp16[kk]); } WebRtcSpl_VectorBitShiftW32(bTmp32, kVectorSize, b32, 1); for (size_t kk = 0; kk < kVectorSize; ++kk) { EXPECT_EQ((B[kk]>>1), bTmp32[kk]); } WebRtcSpl_MemCpyReversedOrder(&bTmp16[3], b16, kVectorSize); for (size_t kk = 0; kk < kVectorSize; ++kk) { EXPECT_EQ(b16[3-kk], bTmp16[kk]); } } TEST_F(SplTest, MinMaxOperationsTest) { const size_t kVectorSize = 17; // Vectors to test the cases where minimum values have to be caught // outside of the unrolled loops in ARM-Neon. int16_t vector16[kVectorSize] = {-1, 7485, 0, 3333, -18283, 0, 12334, -29871, 988, -3333, 345, -456, 222, 999, 888, 8774, WEBRTC_SPL_WORD16_MIN}; int32_t vector32[kVectorSize] = {-1, 0, 283211, 3333, 8712345, 0, -3333, 89345, -374585456, 222, 999, 122345334, -12389756, -987329871, 888, -2, WEBRTC_SPL_WORD32_MIN}; EXPECT_EQ(WEBRTC_SPL_WORD16_MIN, WebRtcSpl_MinValueW16(vector16, kVectorSize)); EXPECT_EQ(WEBRTC_SPL_WORD32_MIN, WebRtcSpl_MinValueW32(vector32, kVectorSize)); EXPECT_EQ(kVectorSize - 1, WebRtcSpl_MinIndexW16(vector16, kVectorSize)); EXPECT_EQ(kVectorSize - 1, WebRtcSpl_MinIndexW32(vector32, kVectorSize)); // Test the cases where maximum values have to be caught // outside of the unrolled loops in ARM-Neon. vector16[kVectorSize - 1] = WEBRTC_SPL_WORD16_MAX; vector32[kVectorSize - 1] = WEBRTC_SPL_WORD32_MAX; EXPECT_EQ(WEBRTC_SPL_WORD16_MAX, WebRtcSpl_MaxAbsValueW16(vector16, kVectorSize)); EXPECT_EQ(WEBRTC_SPL_WORD16_MAX, WebRtcSpl_MaxValueW16(vector16, kVectorSize)); EXPECT_EQ(WEBRTC_SPL_WORD32_MAX, WebRtcSpl_MaxAbsValueW32(vector32, kVectorSize)); EXPECT_EQ(WEBRTC_SPL_WORD32_MAX, WebRtcSpl_MaxValueW32(vector32, kVectorSize)); EXPECT_EQ(kVectorSize - 1, WebRtcSpl_MaxAbsIndexW16(vector16, kVectorSize)); EXPECT_EQ(kVectorSize - 1, WebRtcSpl_MaxIndexW16(vector16, kVectorSize)); EXPECT_EQ(kVectorSize - 1, WebRtcSpl_MaxIndexW32(vector32, kVectorSize)); // Test the cases where multiple maximum and minimum values are present. vector16[1] = WEBRTC_SPL_WORD16_MAX; vector16[6] = WEBRTC_SPL_WORD16_MIN; vector16[11] = WEBRTC_SPL_WORD16_MIN; vector32[1] = WEBRTC_SPL_WORD32_MAX; vector32[6] = WEBRTC_SPL_WORD32_MIN; vector32[11] = WEBRTC_SPL_WORD32_MIN; EXPECT_EQ(WEBRTC_SPL_WORD16_MAX, WebRtcSpl_MaxAbsValueW16(vector16, kVectorSize)); EXPECT_EQ(WEBRTC_SPL_WORD16_MAX, WebRtcSpl_MaxValueW16(vector16, kVectorSize)); EXPECT_EQ(WEBRTC_SPL_WORD16_MIN, WebRtcSpl_MinValueW16(vector16, kVectorSize)); EXPECT_EQ(WEBRTC_SPL_WORD32_MAX, WebRtcSpl_MaxAbsValueW32(vector32, kVectorSize)); EXPECT_EQ(WEBRTC_SPL_WORD32_MAX, WebRtcSpl_MaxValueW32(vector32, kVectorSize)); EXPECT_EQ(WEBRTC_SPL_WORD32_MIN, WebRtcSpl_MinValueW32(vector32, kVectorSize)); EXPECT_EQ(6u, WebRtcSpl_MaxAbsIndexW16(vector16, kVectorSize)); EXPECT_EQ(1u, WebRtcSpl_MaxIndexW16(vector16, kVectorSize)); EXPECT_EQ(1u, WebRtcSpl_MaxIndexW32(vector32, kVectorSize)); EXPECT_EQ(6u, WebRtcSpl_MinIndexW16(vector16, kVectorSize)); EXPECT_EQ(6u, WebRtcSpl_MinIndexW32(vector32, kVectorSize)); } TEST_F(SplTest, VectorOperationsTest) { const size_t kVectorSize = 4; int B[] = {4, 12, 133, 1100}; int16_t a16[kVectorSize]; int16_t b16[kVectorSize]; int16_t bTmp16[kVectorSize]; for (size_t kk = 0; kk < kVectorSize; ++kk) { a16[kk] = B[kk]; b16[kk] = B[kk]; } WebRtcSpl_AffineTransformVector(bTmp16, b16, 3, 7, 2, kVectorSize); for (size_t kk = 0; kk < kVectorSize; ++kk) { EXPECT_EQ((B[kk]*3+7)>>2, bTmp16[kk]); } WebRtcSpl_ScaleAndAddVectorsWithRound(b16, 3, b16, 2, 2, bTmp16, kVectorSize); for (size_t kk = 0; kk < kVectorSize; ++kk) { EXPECT_EQ((B[kk]*3+B[kk]*2+2)>>2, bTmp16[kk]); } WebRtcSpl_AddAffineVectorToVector(bTmp16, b16, 3, 7, 2, kVectorSize); for (size_t kk = 0; kk < kVectorSize; ++kk) { EXPECT_EQ(((B[kk]*3+B[kk]*2+2)>>2)+((b16[kk]*3+7)>>2), bTmp16[kk]); } WebRtcSpl_ScaleVector(b16, bTmp16, 13, kVectorSize, 2); for (size_t kk = 0; kk < kVectorSize; ++kk) { EXPECT_EQ((b16[kk]*13)>>2, bTmp16[kk]); } WebRtcSpl_ScaleVectorWithSat(b16, bTmp16, 13, kVectorSize, 2); for (size_t kk = 0; kk < kVectorSize; ++kk) { EXPECT_EQ((b16[kk]*13)>>2, bTmp16[kk]); } WebRtcSpl_ScaleAndAddVectors(a16, 13, 2, b16, 7, 2, bTmp16, kVectorSize); for (size_t kk = 0; kk < kVectorSize; ++kk) { EXPECT_EQ(((a16[kk]*13)>>2)+((b16[kk]*7)>>2), bTmp16[kk]); } WebRtcSpl_AddVectorsAndShift(bTmp16, a16, b16, kVectorSize, 2); for (size_t kk = 0; kk < kVectorSize; ++kk) { EXPECT_EQ(B[kk] >> 1, bTmp16[kk]); } WebRtcSpl_ReverseOrderMultArrayElements(bTmp16, a16, &b16[3], kVectorSize, 2); for (size_t kk = 0; kk < kVectorSize; ++kk) { EXPECT_EQ((a16[kk]*b16[3-kk])>>2, bTmp16[kk]); } WebRtcSpl_ElementwiseVectorMult(bTmp16, a16, b16, kVectorSize, 6); for (size_t kk = 0; kk < kVectorSize; ++kk) { EXPECT_EQ((a16[kk]*b16[kk])>>6, bTmp16[kk]); } WebRtcSpl_SqrtOfOneMinusXSquared(b16, kVectorSize, bTmp16); for (size_t kk = 0; kk < kVectorSize - 1; ++kk) { EXPECT_EQ(32767, bTmp16[kk]); } EXPECT_EQ(32749, bTmp16[kVectorSize - 1]); EXPECT_EQ(0, WebRtcSpl_GetScalingSquare(b16, kVectorSize, 1)); } TEST_F(SplTest, EstimatorsTest) { const size_t kOrder = 2; const int32_t unstable_filter[] = { 4, 12, 133, 1100 }; const int32_t stable_filter[] = { 1100, 133, 12, 4 }; int16_t lpc[kOrder + 2] = { 0 }; int16_t refl[kOrder + 2] = { 0 }; int16_t lpc_result[] = { 4096, -497, 15, 0 }; int16_t refl_result[] = { -3962, 123, 0, 0 }; EXPECT_EQ(0, WebRtcSpl_LevinsonDurbin(unstable_filter, lpc, refl, kOrder)); EXPECT_EQ(1, WebRtcSpl_LevinsonDurbin(stable_filter, lpc, refl, kOrder)); for (size_t i = 0; i < kOrder + 2; ++i) { EXPECT_EQ(lpc_result[i], lpc[i]); EXPECT_EQ(refl_result[i], refl[i]); } } TEST_F(SplTest, FilterTest) { const size_t kVectorSize = 4; const size_t kFilterOrder = 3; int16_t A[] = {1, 2, 33, 100}; int16_t A5[] = {1, 2, 33, 100, -5}; int16_t B[] = {4, 12, 133, 110}; int16_t data_in[kVectorSize]; int16_t data_out[kVectorSize]; int16_t bTmp16Low[kVectorSize]; int16_t bState[kVectorSize]; int16_t bStateLow[kVectorSize]; WebRtcSpl_ZerosArrayW16(bState, kVectorSize); WebRtcSpl_ZerosArrayW16(bStateLow, kVectorSize); for (size_t kk = 0; kk < kVectorSize; ++kk) { data_in[kk] = A[kk]; data_out[kk] = 0; } // MA filters. // Note that the input data has |kFilterOrder| states before the actual // data (one sample). WebRtcSpl_FilterMAFastQ12(&data_in[kFilterOrder], data_out, B, kFilterOrder + 1, 1); EXPECT_EQ(0, data_out[0]); // AR filters. // Note that the output data has |kFilterOrder| states before the actual // data (one sample). WebRtcSpl_FilterARFastQ12(data_in, &data_out[kFilterOrder], A, kFilterOrder + 1, 1); EXPECT_EQ(0, data_out[kFilterOrder]); EXPECT_EQ(kVectorSize, WebRtcSpl_FilterAR(A5, 5, data_in, kVectorSize, bState, kVectorSize, bStateLow, kVectorSize, data_out, bTmp16Low, kVectorSize)); } TEST_F(SplTest, RandTest) { const int kVectorSize = 4; int16_t BU[] = {3653, 12446, 8525, 30691}; int16_t b16[kVectorSize]; uint32_t bSeed = 100000; EXPECT_EQ(7086, WebRtcSpl_RandU(&bSeed)); EXPECT_EQ(31565, WebRtcSpl_RandU(&bSeed)); EXPECT_EQ(-9786, WebRtcSpl_RandN(&bSeed)); EXPECT_EQ(kVectorSize, WebRtcSpl_RandUArray(b16, kVectorSize, &bSeed)); for (int kk = 0; kk < kVectorSize; ++kk) { EXPECT_EQ(BU[kk], b16[kk]); } } TEST_F(SplTest, DotProductWithScaleTest) { EXPECT_EQ(605362796, WebRtcSpl_DotProductWithScale(vector16, vector16, kVector16Size, 2)); } TEST_F(SplTest, CrossCorrelationTest) { // Note the function arguments relation specificed by API. const size_t kCrossCorrelationDimension = 3; const int kShift = 2; const int kStep = 1; const size_t kSeqDimension = 6; const int16_t kVector16[kVector16Size] = {1, 4323, 1963, WEBRTC_SPL_WORD16_MAX, WEBRTC_SPL_WORD16_MIN + 5, -3333, -876, 8483, 142}; int32_t vector32[kCrossCorrelationDimension] = {0}; WebRtcSpl_CrossCorrelation(vector32, vector16, kVector16, kSeqDimension, kCrossCorrelationDimension, kShift, kStep); // WebRtcSpl_CrossCorrelationC() and WebRtcSpl_CrossCorrelationNeon() // are not bit-exact. const int32_t kExpected[kCrossCorrelationDimension] = {-266947903, -15579555, -171282001}; const int32_t* expected = kExpected; #if !defined(MIPS32_LE) const int32_t kExpectedNeon[kCrossCorrelationDimension] = {-266947901, -15579553, -171281999}; if (WebRtcSpl_CrossCorrelation != WebRtcSpl_CrossCorrelationC) { expected = kExpectedNeon; } #endif for (size_t i = 0; i < kCrossCorrelationDimension; ++i) { EXPECT_EQ(expected[i], vector32[i]); } } TEST_F(SplTest, AutoCorrelationTest) { int scale = 0; int32_t vector32[kVector16Size]; const int32_t expected[kVector16Size] = {302681398, 14223410, -121705063, -85221647, -17104971, 61806945, 6644603, -669329, 43}; EXPECT_EQ(kVector16Size, WebRtcSpl_AutoCorrelation(vector16, kVector16Size, kVector16Size - 1, vector32, &scale)); EXPECT_EQ(3, scale); for (size_t i = 0; i < kVector16Size; ++i) { EXPECT_EQ(expected[i], vector32[i]); } } TEST_F(SplTest, SignalProcessingTest) { const size_t kVectorSize = 4; int A[] = {1, 2, 33, 100}; const int16_t kHanning[4] = { 2399, 8192, 13985, 16384 }; int16_t b16[kVectorSize]; int16_t bTmp16[kVectorSize]; int bScale = 0; for (size_t kk = 0; kk < kVectorSize; ++kk) { b16[kk] = A[kk]; } // TODO(bjornv): Activate the Reflection Coefficient tests when refactoring. // WebRtcSpl_ReflCoefToLpc(b16, kVectorSize, bTmp16); //// for (int kk = 0; kk < kVectorSize; ++kk) { //// EXPECT_EQ(aTmp16[kk], bTmp16[kk]); //// } // WebRtcSpl_LpcToReflCoef(bTmp16, kVectorSize, b16); //// for (int kk = 0; kk < kVectorSize; ++kk) { //// EXPECT_EQ(a16[kk], b16[kk]); //// } // WebRtcSpl_AutoCorrToReflCoef(b32, kVectorSize, bTmp16); //// for (int kk = 0; kk < kVectorSize; ++kk) { //// EXPECT_EQ(aTmp16[kk], bTmp16[kk]); //// } WebRtcSpl_GetHanningWindow(bTmp16, kVectorSize); for (size_t kk = 0; kk < kVectorSize; ++kk) { EXPECT_EQ(kHanning[kk], bTmp16[kk]); } for (size_t kk = 0; kk < kVectorSize; ++kk) { b16[kk] = A[kk]; } EXPECT_EQ(11094 , WebRtcSpl_Energy(b16, kVectorSize, &bScale)); EXPECT_EQ(0, bScale); } TEST_F(SplTest, FFTTest) { int16_t B[] = {1, 2, 33, 100, 2, 3, 34, 101, 3, 4, 35, 102, 4, 5, 36, 103}; EXPECT_EQ(0, WebRtcSpl_ComplexFFT(B, 3, 1)); // for (int kk = 0; kk < 16; ++kk) { // EXPECT_EQ(A[kk], B[kk]); // } EXPECT_EQ(0, WebRtcSpl_ComplexIFFT(B, 3, 1)); // for (int kk = 0; kk < 16; ++kk) { // EXPECT_EQ(A[kk], B[kk]); // } WebRtcSpl_ComplexBitReverse(B, 3); for (int kk = 0; kk < 16; ++kk) { //EXPECT_EQ(A[kk], B[kk]); } } TEST_F(SplTest, Resample48WithSaturationTest) { // The test resamples 3*kBlockSize number of samples to 2*kBlockSize number // of samples. const size_t kBlockSize = 16; // Saturated input vector of 48 samples. const int32_t kVectorSaturated[3 * kBlockSize + 7] = { -32768, -32768, -32768, -32768, -32768, -32768, -32768, -32768, -32768, -32768, -32768, -32768, -32768, -32768, -32768, -32768, -32768, -32768, -32768, -32768, -32768, -32768, -32768, -32768, 32767, 32767, 32767, 32767, 32767, 32767, 32767, 32767, 32767, 32767, 32767, 32767, 32767, 32767, 32767, 32767, 32767, 32767, 32767, 32767, 32767, 32767, 32767, 32767, 32767, 32767, 32767, 32767, 32767, 32767, 32767 }; // All values in |out_vector| should be |kRefValue32kHz|. const int32_t kRefValue32kHz1 = -1077493760; const int32_t kRefValue32kHz2 = 1077493645; // After bit shift with saturation, |out_vector_w16| is saturated. const int16_t kRefValue16kHz1 = -32768; const int16_t kRefValue16kHz2 = 32767; // Vector for storing output. int32_t out_vector[2 * kBlockSize]; int16_t out_vector_w16[2 * kBlockSize]; WebRtcSpl_Resample48khzTo32khz(kVectorSaturated, out_vector, kBlockSize); WebRtcSpl_VectorBitShiftW32ToW16(out_vector_w16, 2 * kBlockSize, out_vector, 15); // Comparing output values against references. The values at position // 12-15 are skipped to account for the filter lag. for (size_t i = 0; i < 12; ++i) { EXPECT_EQ(kRefValue32kHz1, out_vector[i]); EXPECT_EQ(kRefValue16kHz1, out_vector_w16[i]); } for (size_t i = 16; i < 2 * kBlockSize; ++i) { EXPECT_EQ(kRefValue32kHz2, out_vector[i]); EXPECT_EQ(kRefValue16kHz2, out_vector_w16[i]); } }