/* * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ // MSVC++ requires this to be set before any other includes to get M_PI. #define _USE_MATH_DEFINES #include #include #include "testing/gtest/include/gtest/gtest.h" #include "webrtc/common_audio/wav_header.h" #include "webrtc/common_audio/wav_file.h" #include "webrtc/test/testsupport/fileutils.h" namespace webrtc { static const float kSamples[] = {0.0, 10.0, 4e4, -1e9}; // Write a tiny WAV file with the C++ interface and verify the result. TEST(WavWriterTest, CPP) { const std::string outfile = test::OutputPath() + "wavtest1.wav"; static const uint32_t kNumSamples = 3; { WavWriter w(outfile, 14099, 1); EXPECT_EQ(14099, w.sample_rate()); EXPECT_EQ(1, w.num_channels()); EXPECT_EQ(0u, w.num_samples()); w.WriteSamples(kSamples, kNumSamples); EXPECT_EQ(kNumSamples, w.num_samples()); } // Write some extra "metadata" to the file that should be silently ignored // by WavReader. We don't use WavWriter directly for this because it doesn't // support metadata. static const uint8_t kMetadata[] = {101, 202}; { FILE* f = fopen(outfile.c_str(), "ab"); ASSERT_TRUE(f); ASSERT_EQ(1u, fwrite(kMetadata, sizeof(kMetadata), 1, f)); fclose(f); } static const uint8_t kExpectedContents[] = { 'R', 'I', 'F', 'F', 42, 0, 0, 0, // size of whole file - 8: 6 + 44 - 8 'W', 'A', 'V', 'E', 'f', 'm', 't', ' ', 16, 0, 0, 0, // size of fmt block - 8: 24 - 8 1, 0, // format: PCM (1) 1, 0, // channels: 1 0x13, 0x37, 0, 0, // sample rate: 14099 0x26, 0x6e, 0, 0, // byte rate: 2 * 14099 2, 0, // block align: NumChannels * BytesPerSample 16, 0, // bits per sample: 2 * 8 'd', 'a', 't', 'a', 6, 0, 0, 0, // size of payload: 6 0, 0, // first sample: 0.0 10, 0, // second sample: 10.0 0xff, 0x7f, // third sample: 4e4 (saturated) kMetadata[0], kMetadata[1], }; static const int kContentSize = kWavHeaderSize + kNumSamples * sizeof(int16_t) + sizeof(kMetadata); static_assert(sizeof(kExpectedContents) == kContentSize, "content size"); EXPECT_EQ(size_t(kContentSize), test::GetFileSize(outfile)); FILE* f = fopen(outfile.c_str(), "rb"); ASSERT_TRUE(f); uint8_t contents[kContentSize]; ASSERT_EQ(1u, fread(contents, kContentSize, 1, f)); EXPECT_EQ(0, fclose(f)); EXPECT_EQ(0, memcmp(kExpectedContents, contents, kContentSize)); { WavReader r(outfile); EXPECT_EQ(14099, r.sample_rate()); EXPECT_EQ(1, r.num_channels()); EXPECT_EQ(kNumSamples, r.num_samples()); static const float kTruncatedSamples[] = {0.0, 10.0, 32767.0}; float samples[kNumSamples]; EXPECT_EQ(kNumSamples, r.ReadSamples(kNumSamples, samples)); EXPECT_EQ(0, memcmp(kTruncatedSamples, samples, sizeof(samples))); EXPECT_EQ(0u, r.ReadSamples(kNumSamples, samples)); } } // Write a tiny WAV file with the C interface and verify the result. TEST(WavWriterTest, C) { const std::string outfile = test::OutputPath() + "wavtest2.wav"; rtc_WavWriter* w = rtc_WavOpen(outfile.c_str(), 11904, 2); EXPECT_EQ(11904, rtc_WavSampleRate(w)); EXPECT_EQ(2, rtc_WavNumChannels(w)); EXPECT_EQ(0u, rtc_WavNumSamples(w)); static const uint32_t kNumSamples = 4; rtc_WavWriteSamples(w, &kSamples[0], 2); EXPECT_EQ(2u, rtc_WavNumSamples(w)); rtc_WavWriteSamples(w, &kSamples[2], kNumSamples - 2); EXPECT_EQ(kNumSamples, rtc_WavNumSamples(w)); rtc_WavClose(w); static const uint8_t kExpectedContents[] = { 'R', 'I', 'F', 'F', 44, 0, 0, 0, // size of whole file - 8: 8 + 44 - 8 'W', 'A', 'V', 'E', 'f', 'm', 't', ' ', 16, 0, 0, 0, // size of fmt block - 8: 24 - 8 1, 0, // format: PCM (1) 2, 0, // channels: 2 0x80, 0x2e, 0, 0, // sample rate: 11904 0, 0xba, 0, 0, // byte rate: 2 * 2 * 11904 4, 0, // block align: NumChannels * BytesPerSample 16, 0, // bits per sample: 2 * 8 'd', 'a', 't', 'a', 8, 0, 0, 0, // size of payload: 8 0, 0, // first sample: 0.0 10, 0, // second sample: 10.0 0xff, 0x7f, // third sample: 4e4 (saturated) 0, 0x80, // fourth sample: -1e9 (saturated) }; static const int kContentSize = kWavHeaderSize + kNumSamples * sizeof(int16_t); static_assert(sizeof(kExpectedContents) == kContentSize, "content size"); EXPECT_EQ(size_t(kContentSize), test::GetFileSize(outfile)); FILE* f = fopen(outfile.c_str(), "rb"); ASSERT_TRUE(f); uint8_t contents[kContentSize]; ASSERT_EQ(1u, fread(contents, kContentSize, 1, f)); EXPECT_EQ(0, fclose(f)); EXPECT_EQ(0, memcmp(kExpectedContents, contents, kContentSize)); } // Write a larger WAV file. You can listen to this file to sanity-check it. TEST(WavWriterTest, LargeFile) { std::string outfile = test::OutputPath() + "wavtest3.wav"; static const int kSampleRate = 8000; static const int kNumChannels = 2; static const uint32_t kNumSamples = 3 * kSampleRate * kNumChannels; float samples[kNumSamples]; for (uint32_t i = 0; i < kNumSamples; i += kNumChannels) { // A nice periodic beeping sound. static const double kToneHz = 440; const double t = static_cast(i) / (kNumChannels * kSampleRate); const double x = std::numeric_limits::max() * std::sin(t * kToneHz * 2 * M_PI); samples[i] = std::pow(std::sin(t * 2 * 2 * M_PI), 10) * x; samples[i + 1] = std::pow(std::cos(t * 2 * 2 * M_PI), 10) * x; } { WavWriter w(outfile, kSampleRate, kNumChannels); EXPECT_EQ(kSampleRate, w.sample_rate()); EXPECT_EQ(kNumChannels, w.num_channels()); EXPECT_EQ(0u, w.num_samples()); w.WriteSamples(samples, kNumSamples); EXPECT_EQ(kNumSamples, w.num_samples()); } EXPECT_EQ(sizeof(int16_t) * kNumSamples + kWavHeaderSize, test::GetFileSize(outfile)); { WavReader r(outfile); EXPECT_EQ(kSampleRate, r.sample_rate()); EXPECT_EQ(kNumChannels, r.num_channels()); EXPECT_EQ(kNumSamples, r.num_samples()); float read_samples[kNumSamples]; EXPECT_EQ(kNumSamples, r.ReadSamples(kNumSamples, read_samples)); for (size_t i = 0; i < kNumSamples; ++i) EXPECT_NEAR(samples[i], read_samples[i], 1); EXPECT_EQ(0u, r.ReadSamples(kNumSamples, read_samples)); } } } // namespace webrtc