/* * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include "testing/gtest/include/gtest/gtest.h" #include "webrtc/common_audio/wav_header.h" namespace webrtc { // Doesn't take ownership of the buffer. class ReadableWavBuffer : public ReadableWav { public: ReadableWavBuffer(const uint8_t* buf, size_t size) : buf_(buf), size_(size), pos_(0), buf_exhausted_(false), check_read_size_(true) {} ReadableWavBuffer(const uint8_t* buf, size_t size, bool check_read_size) : buf_(buf), size_(size), pos_(0), buf_exhausted_(false), check_read_size_(check_read_size) {} virtual ~ReadableWavBuffer() { // Verify the entire buffer has been read. if (check_read_size_) EXPECT_EQ(size_, pos_); } virtual size_t Read(void* buf, size_t num_bytes) { // Verify we don't try to read outside of a properly sized header. if (size_ >= kWavHeaderSize) EXPECT_GE(size_, pos_ + num_bytes); EXPECT_FALSE(buf_exhausted_); const size_t bytes_remaining = size_ - pos_; if (num_bytes > bytes_remaining) { // The caller is signalled about an exhausted buffer when we return fewer // bytes than requested. There should not be another read attempt after // this point. buf_exhausted_ = true; num_bytes = bytes_remaining; } memcpy(buf, &buf_[pos_], num_bytes); pos_ += num_bytes; return num_bytes; } private: const uint8_t* buf_; const size_t size_; size_t pos_; bool buf_exhausted_; const bool check_read_size_; }; // Try various choices of WAV header parameters, and make sure that the good // ones are accepted and the bad ones rejected. TEST(WavHeaderTest, CheckWavParameters) { // Try some really stupid values for one parameter at a time. EXPECT_TRUE(CheckWavParameters(1, 8000, kWavFormatPcm, 1, 0)); EXPECT_FALSE(CheckWavParameters(0, 8000, kWavFormatPcm, 1, 0)); EXPECT_FALSE(CheckWavParameters(0x10000, 8000, kWavFormatPcm, 1, 0)); EXPECT_FALSE(CheckWavParameters(1, 0, kWavFormatPcm, 1, 0)); EXPECT_FALSE(CheckWavParameters(1, 8000, WavFormat(0), 1, 0)); EXPECT_FALSE(CheckWavParameters(1, 8000, kWavFormatPcm, 0, 0)); // Try invalid format/bytes-per-sample combinations. EXPECT_TRUE(CheckWavParameters(1, 8000, kWavFormatPcm, 2, 0)); EXPECT_FALSE(CheckWavParameters(1, 8000, kWavFormatPcm, 4, 0)); EXPECT_FALSE(CheckWavParameters(1, 8000, kWavFormatALaw, 2, 0)); EXPECT_FALSE(CheckWavParameters(1, 8000, kWavFormatMuLaw, 2, 0)); // Too large values. EXPECT_FALSE(CheckWavParameters(1 << 20, 1 << 20, kWavFormatPcm, 1, 0)); EXPECT_FALSE(CheckWavParameters( 1, 8000, kWavFormatPcm, 1, std::numeric_limits::max())); // Not the same number of samples for each channel. EXPECT_FALSE(CheckWavParameters(3, 8000, kWavFormatPcm, 1, 5)); } TEST(WavHeaderTest, ReadWavHeaderWithErrors) { size_t num_channels = 0; int sample_rate = 0; WavFormat format = kWavFormatPcm; size_t bytes_per_sample = 0; size_t num_samples = 0; // Test a few ways the header can be invalid. We start with the valid header // used in WriteAndReadWavHeader, and invalidate one field per test. The // invalid field is indicated in the array name, and in the comments with // *BAD*. { static const uint8_t kBadRiffID[] = { 'R', 'i', 'f', 'f', // *BAD* 0xbd, 0xd0, 0x5b, 0x07, // size of whole file - 8: 123457689 + 44 - 8 'W', 'A', 'V', 'E', 'f', 'm', 't', ' ', 16, 0, 0, 0, // size of fmt block - 8: 24 - 8 6, 0, // format: A-law (6) 17, 0, // channels: 17 0x39, 0x30, 0, 0, // sample rate: 12345 0xc9, 0x33, 0x03, 0, // byte rate: 1 * 17 * 12345 17, 0, // block align: NumChannels * BytesPerSample 8, 0, // bits per sample: 1 * 8 'd', 'a', 't', 'a', 0x99, 0xd0, 0x5b, 0x07, // size of payload: 123457689 }; ReadableWavBuffer r(kBadRiffID, sizeof(kBadRiffID)); EXPECT_FALSE( ReadWavHeader(&r, &num_channels, &sample_rate, &format, &bytes_per_sample, &num_samples)); } { static const uint8_t kBadBitsPerSample[] = { 'R', 'I', 'F', 'F', 0xbd, 0xd0, 0x5b, 0x07, // size of whole file - 8: 123457689 + 44 - 8 'W', 'A', 'V', 'E', 'f', 'm', 't', ' ', 16, 0, 0, 0, // size of fmt block - 8: 24 - 8 6, 0, // format: A-law (6) 17, 0, // channels: 17 0x39, 0x30, 0, 0, // sample rate: 12345 0xc9, 0x33, 0x03, 0, // byte rate: 1 * 17 * 12345 17, 0, // block align: NumChannels * BytesPerSample 1, 0, // bits per sample: *BAD* 'd', 'a', 't', 'a', 0x99, 0xd0, 0x5b, 0x07, // size of payload: 123457689 }; ReadableWavBuffer r(kBadBitsPerSample, sizeof(kBadBitsPerSample)); EXPECT_FALSE( ReadWavHeader(&r, &num_channels, &sample_rate, &format, &bytes_per_sample, &num_samples)); } { static const uint8_t kBadByteRate[] = { 'R', 'I', 'F', 'F', 0xbd, 0xd0, 0x5b, 0x07, // size of whole file - 8: 123457689 + 44 - 8 'W', 'A', 'V', 'E', 'f', 'm', 't', ' ', 16, 0, 0, 0, // size of fmt block - 8: 24 - 8 6, 0, // format: A-law (6) 17, 0, // channels: 17 0x39, 0x30, 0, 0, // sample rate: 12345 0x00, 0x33, 0x03, 0, // byte rate: *BAD* 17, 0, // block align: NumChannels * BytesPerSample 8, 0, // bits per sample: 1 * 8 'd', 'a', 't', 'a', 0x99, 0xd0, 0x5b, 0x07, // size of payload: 123457689 }; ReadableWavBuffer r(kBadByteRate, sizeof(kBadByteRate)); EXPECT_FALSE( ReadWavHeader(&r, &num_channels, &sample_rate, &format, &bytes_per_sample, &num_samples)); } { static const uint8_t kBadFmtHeaderSize[] = { 'R', 'I', 'F', 'F', 0xbd, 0xd0, 0x5b, 0x07, // size of whole file - 8: 123457689 + 44 - 8 'W', 'A', 'V', 'E', 'f', 'm', 't', ' ', 17, 0, 0, 0, // size of fmt block *BAD*. Only 16 and 18 permitted. 6, 0, // format: A-law (6) 17, 0, // channels: 17 0x39, 0x30, 0, 0, // sample rate: 12345 0xc9, 0x33, 0x03, 0, // byte rate: 1 * 17 * 12345 17, 0, // block align: NumChannels * BytesPerSample 8, 0, // bits per sample: 1 * 8 0, // extra (though invalid) header byte 'd', 'a', 't', 'a', 0x99, 0xd0, 0x5b, 0x07, // size of payload: 123457689 }; ReadableWavBuffer r(kBadFmtHeaderSize, sizeof(kBadFmtHeaderSize), false); EXPECT_FALSE( ReadWavHeader(&r, &num_channels, &sample_rate, &format, &bytes_per_sample, &num_samples)); } { static const uint8_t kNonZeroExtensionField[] = { 'R', 'I', 'F', 'F', 0xbd, 0xd0, 0x5b, 0x07, // size of whole file - 8: 123457689 + 44 - 8 'W', 'A', 'V', 'E', 'f', 'm', 't', ' ', 18, 0, 0, 0, // size of fmt block - 8: 24 - 8 6, 0, // format: A-law (6) 17, 0, // channels: 17 0x39, 0x30, 0, 0, // sample rate: 12345 0xc9, 0x33, 0x03, 0, // byte rate: 1 * 17 * 12345 17, 0, // block align: NumChannels * BytesPerSample 8, 0, // bits per sample: 1 * 8 1, 0, // non-zero extension field *BAD* 'd', 'a', 't', 'a', 0x99, 0xd0, 0x5b, 0x07, // size of payload: 123457689 }; ReadableWavBuffer r(kNonZeroExtensionField, sizeof(kNonZeroExtensionField), false); EXPECT_FALSE( ReadWavHeader(&r, &num_channels, &sample_rate, &format, &bytes_per_sample, &num_samples)); } { static const uint8_t kMissingDataChunk[] = { 'R', 'I', 'F', 'F', 0xbd, 0xd0, 0x5b, 0x07, // size of whole file - 8: 123457689 + 44 - 8 'W', 'A', 'V', 'E', 'f', 'm', 't', ' ', 16, 0, 0, 0, // size of fmt block - 8: 24 - 8 6, 0, // format: A-law (6) 17, 0, // channels: 17 0x39, 0x30, 0, 0, // sample rate: 12345 0xc9, 0x33, 0x03, 0, // byte rate: 1 * 17 * 12345 17, 0, // block align: NumChannels * BytesPerSample 8, 0, // bits per sample: 1 * 8 }; ReadableWavBuffer r(kMissingDataChunk, sizeof(kMissingDataChunk)); EXPECT_FALSE( ReadWavHeader(&r, &num_channels, &sample_rate, &format, &bytes_per_sample, &num_samples)); } { static const uint8_t kMissingFmtAndDataChunks[] = { 'R', 'I', 'F', 'F', 0xbd, 0xd0, 0x5b, 0x07, // size of whole file - 8: 123457689 + 44 - 8 'W', 'A', 'V', 'E', }; ReadableWavBuffer r(kMissingFmtAndDataChunks, sizeof(kMissingFmtAndDataChunks)); EXPECT_FALSE( ReadWavHeader(&r, &num_channels, &sample_rate, &format, &bytes_per_sample, &num_samples)); } } // Try writing and reading a valid WAV header and make sure it looks OK. TEST(WavHeaderTest, WriteAndReadWavHeader) { static const int kSize = 4 + kWavHeaderSize + 4; uint8_t buf[kSize]; memset(buf, 0xa4, sizeof(buf)); WriteWavHeader(buf + 4, 17, 12345, kWavFormatALaw, 1, 123457689); static const uint8_t kExpectedBuf[] = { 0xa4, 0xa4, 0xa4, 0xa4, // untouched bytes before header 'R', 'I', 'F', 'F', 0xbd, 0xd0, 0x5b, 0x07, // size of whole file - 8: 123457689 + 44 - 8 'W', 'A', 'V', 'E', 'f', 'm', 't', ' ', 16, 0, 0, 0, // size of fmt block - 8: 24 - 8 6, 0, // format: A-law (6) 17, 0, // channels: 17 0x39, 0x30, 0, 0, // sample rate: 12345 0xc9, 0x33, 0x03, 0, // byte rate: 1 * 17 * 12345 17, 0, // block align: NumChannels * BytesPerSample 8, 0, // bits per sample: 1 * 8 'd', 'a', 't', 'a', 0x99, 0xd0, 0x5b, 0x07, // size of payload: 123457689 0xa4, 0xa4, 0xa4, 0xa4, // untouched bytes after header }; static_assert(sizeof(kExpectedBuf) == kSize, "buffer size"); EXPECT_EQ(0, memcmp(kExpectedBuf, buf, kSize)); size_t num_channels = 0; int sample_rate = 0; WavFormat format = kWavFormatPcm; size_t bytes_per_sample = 0; size_t num_samples = 0; ReadableWavBuffer r(buf + 4, sizeof(buf) - 8); EXPECT_TRUE( ReadWavHeader(&r, &num_channels, &sample_rate, &format, &bytes_per_sample, &num_samples)); EXPECT_EQ(17u, num_channels); EXPECT_EQ(12345, sample_rate); EXPECT_EQ(kWavFormatALaw, format); EXPECT_EQ(1u, bytes_per_sample); EXPECT_EQ(123457689u, num_samples); } // Try reading an atypical but valid WAV header and make sure it's parsed OK. TEST(WavHeaderTest, ReadAtypicalWavHeader) { static const uint8_t kBuf[] = { 'R', 'I', 'F', 'F', 0x3d, 0xd1, 0x5b, 0x07, // size of whole file - 8 + an extra 128 bytes of // "metadata": 123457689 + 44 - 8 + 128. (atypical) 'W', 'A', 'V', 'E', 'f', 'm', 't', ' ', 18, 0, 0, 0, // size of fmt block (with an atypical extension size field) 6, 0, // format: A-law (6) 17, 0, // channels: 17 0x39, 0x30, 0, 0, // sample rate: 12345 0xc9, 0x33, 0x03, 0, // byte rate: 1 * 17 * 12345 17, 0, // block align: NumChannels * BytesPerSample 8, 0, // bits per sample: 1 * 8 0, 0, // zero extension size field (atypical) 'd', 'a', 't', 'a', 0x99, 0xd0, 0x5b, 0x07, // size of payload: 123457689 }; size_t num_channels = 0; int sample_rate = 0; WavFormat format = kWavFormatPcm; size_t bytes_per_sample = 0; size_t num_samples = 0; ReadableWavBuffer r(kBuf, sizeof(kBuf)); EXPECT_TRUE( ReadWavHeader(&r, &num_channels, &sample_rate, &format, &bytes_per_sample, &num_samples)); EXPECT_EQ(17u, num_channels); EXPECT_EQ(12345, sample_rate); EXPECT_EQ(kWavFormatALaw, format); EXPECT_EQ(1u, bytes_per_sample); EXPECT_EQ(123457689u, num_samples); } } // namespace webrtc