/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "webrtc/modules/audio_coding/neteq/audio_decoder_impl.h" #include #include #include #include "testing/gtest/include/gtest/gtest.h" #include "webrtc/common_audio/resampler/include/resampler.h" #ifdef WEBRTC_CODEC_CELT #include "webrtc/modules/audio_coding/codecs/celt/include/celt_interface.h" #endif #include "webrtc/modules/audio_coding/codecs/g711/include/g711_interface.h" #include "webrtc/modules/audio_coding/codecs/g722/include/g722_interface.h" #include "webrtc/modules/audio_coding/codecs/ilbc/interface/ilbc.h" #include "webrtc/modules/audio_coding/codecs/isac/fix/interface/isacfix.h" #include "webrtc/modules/audio_coding/codecs/isac/main/interface/isac.h" #include "webrtc/modules/audio_coding/codecs/opus/interface/opus_interface.h" #include "webrtc/modules/audio_coding/codecs/pcm16b/include/pcm16b.h" #include "webrtc/system_wrappers/interface/data_log.h" #include "webrtc/test/testsupport/fileutils.h" namespace webrtc { class AudioDecoderTest : public ::testing::Test { protected: AudioDecoderTest() : input_fp_(NULL), input_(NULL), encoded_(NULL), decoded_(NULL), frame_size_(0), data_length_(0), encoded_bytes_(0), channels_(1), decoder_(NULL) { input_file_ = webrtc::test::ProjectRootPath() + "resources/audio_coding/testfile32kHz.pcm"; } virtual ~AudioDecoderTest() {} virtual void SetUp() { // Create arrays. ASSERT_GT(data_length_, 0u) << "The test must set data_length_ > 0"; input_ = new int16_t[data_length_]; // Longest encoded data is produced by PCM16b with 2 bytes per sample. encoded_ = new uint8_t[data_length_ * 2]; decoded_ = new int16_t[data_length_ * channels_]; // Open input file. input_fp_ = fopen(input_file_.c_str(), "rb"); ASSERT_TRUE(input_fp_ != NULL) << "Failed to open file " << input_file_; // Read data to |input_|. ASSERT_EQ(data_length_, fread(input_, sizeof(int16_t), data_length_, input_fp_)) << "Could not read enough data from file"; // Logging to view input and output in Matlab. // Use 'gyp -Denable_data_logging=1' to enable logging. DataLog::CreateLog(); DataLog::AddTable("CodecTest"); DataLog::AddColumn("CodecTest", "input", 1); DataLog::AddColumn("CodecTest", "output", 1); } virtual void TearDown() { delete decoder_; decoder_ = NULL; // Close input file. fclose(input_fp_); // Delete arrays. delete [] input_; input_ = NULL; delete [] encoded_; encoded_ = NULL; delete [] decoded_; decoded_ = NULL; // Close log. DataLog::ReturnLog(); } virtual void InitEncoder() { } // This method must be implemented for all tests derived from this class. virtual int EncodeFrame(const int16_t* input, size_t input_len, uint8_t* output) = 0; // Encodes and decodes audio. The absolute difference between the input and // output is compared vs |tolerance|, and the mean-squared error is compared // with |mse|. The encoded stream should contain |expected_bytes|. For stereo // audio, the absolute difference between the two channels is compared vs // |channel_diff_tolerance|. void EncodeDecodeTest(size_t expected_bytes, int tolerance, double mse, int delay = 0, int channel_diff_tolerance = 0) { ASSERT_GE(tolerance, 0) << "Test must define a tolerance >= 0"; ASSERT_GE(channel_diff_tolerance, 0) << "Test must define a channel_diff_tolerance >= 0"; size_t processed_samples = 0u; encoded_bytes_ = 0u; InitEncoder(); EXPECT_EQ(0, decoder_->Init()); while (processed_samples + frame_size_ <= data_length_) { size_t enc_len = EncodeFrame(&input_[processed_samples], frame_size_, &encoded_[encoded_bytes_]); AudioDecoder::SpeechType speech_type; size_t dec_len = decoder_->Decode(&encoded_[encoded_bytes_], enc_len, &decoded_[processed_samples * channels_], &speech_type); EXPECT_EQ(frame_size_ * channels_, dec_len); encoded_bytes_ += enc_len; processed_samples += frame_size_; } // For some codecs it doesn't make sense to check expected number of bytes, // since the number can vary for different platforms. Opus and iSAC are // such codecs. In this case expected_bytes is set to 0. if (expected_bytes) { EXPECT_EQ(expected_bytes, encoded_bytes_); } CompareInputOutput(processed_samples, tolerance, delay); if (channels_ == 2) CompareTwoChannels(processed_samples, channel_diff_tolerance); EXPECT_LE(MseInputOutput(processed_samples, delay), mse); } // The absolute difference between the input and output (the first channel) is // compared vs |tolerance|. The parameter |delay| is used to correct for codec // delays. virtual void CompareInputOutput(size_t num_samples, int tolerance, int delay) const { assert(num_samples <= data_length_); for (unsigned int n = 0; n < num_samples - delay; ++n) { ASSERT_NEAR(input_[n], decoded_[channels_ * n + delay], tolerance) << "Exit test on first diff; n = " << n; DataLog::InsertCell("CodecTest", "input", input_[n]); DataLog::InsertCell("CodecTest", "output", decoded_[channels_ * n]); DataLog::NextRow("CodecTest"); } } // The absolute difference between the two channels in a stereo is compared vs // |tolerance|. virtual void CompareTwoChannels(size_t samples_per_channel, int tolerance) const { assert(samples_per_channel <= data_length_); for (unsigned int n = 0; n < samples_per_channel; ++n) ASSERT_NEAR(decoded_[channels_ * n], decoded_[channels_ * n + 1], tolerance) << "Stereo samples differ."; } // Calculates mean-squared error between input and output (the first channel). // The parameter |delay| is used to correct for codec delays. virtual double MseInputOutput(size_t num_samples, int delay) const { assert(num_samples <= data_length_); if (num_samples == 0) return 0.0; double squared_sum = 0.0; for (unsigned int n = 0; n < num_samples - delay; ++n) { squared_sum += (input_[n] - decoded_[channels_ * n + delay]) * (input_[n] - decoded_[channels_ * n + delay]); } return squared_sum / (num_samples - delay); } // Encodes a payload and decodes it twice with decoder re-init before each // decode. Verifies that the decoded result is the same. void ReInitTest() { int16_t* output1 = decoded_; int16_t* output2 = decoded_ + frame_size_; InitEncoder(); size_t enc_len = EncodeFrame(input_, frame_size_, encoded_); size_t dec_len; AudioDecoder::SpeechType speech_type1, speech_type2; EXPECT_EQ(0, decoder_->Init()); dec_len = decoder_->Decode(encoded_, enc_len, output1, &speech_type1); EXPECT_EQ(frame_size_ * channels_, dec_len); // Re-init decoder and decode again. EXPECT_EQ(0, decoder_->Init()); dec_len = decoder_->Decode(encoded_, enc_len, output2, &speech_type2); EXPECT_EQ(frame_size_ * channels_, dec_len); for (unsigned int n = 0; n < frame_size_; ++n) { ASSERT_EQ(output1[n], output2[n]) << "Exit test on first diff; n = " << n; } EXPECT_EQ(speech_type1, speech_type2); } // Call DecodePlc and verify that the correct number of samples is produced. void DecodePlcTest() { InitEncoder(); size_t enc_len = EncodeFrame(input_, frame_size_, encoded_); AudioDecoder::SpeechType speech_type; EXPECT_EQ(0, decoder_->Init()); size_t dec_len = decoder_->Decode(encoded_, enc_len, decoded_, &speech_type); EXPECT_EQ(frame_size_ * channels_, dec_len); // Call DecodePlc and verify that we get one frame of data. // (Overwrite the output from the above Decode call, but that does not // matter.) dec_len = decoder_->DecodePlc(1, decoded_); EXPECT_EQ(frame_size_ * channels_, dec_len); } std::string input_file_; FILE* input_fp_; int16_t* input_; uint8_t* encoded_; int16_t* decoded_; size_t frame_size_; size_t data_length_; size_t encoded_bytes_; size_t channels_; AudioDecoder* decoder_; }; class AudioDecoderPcmUTest : public AudioDecoderTest { protected: AudioDecoderPcmUTest() : AudioDecoderTest() { frame_size_ = 160; data_length_ = 10 * frame_size_; decoder_ = new AudioDecoderPcmU; assert(decoder_); } virtual int EncodeFrame(const int16_t* input, size_t input_len_samples, uint8_t* output) { int enc_len_bytes = WebRtcG711_EncodeU(NULL, const_cast(input), static_cast(input_len_samples), reinterpret_cast(output)); EXPECT_EQ(input_len_samples, static_cast(enc_len_bytes)); return enc_len_bytes; } }; class AudioDecoderPcmATest : public AudioDecoderTest { protected: AudioDecoderPcmATest() : AudioDecoderTest() { frame_size_ = 160; data_length_ = 10 * frame_size_; decoder_ = new AudioDecoderPcmA; assert(decoder_); } virtual int EncodeFrame(const int16_t* input, size_t input_len_samples, uint8_t* output) { int enc_len_bytes = WebRtcG711_EncodeA(NULL, const_cast(input), static_cast(input_len_samples), reinterpret_cast(output)); EXPECT_EQ(input_len_samples, static_cast(enc_len_bytes)); return enc_len_bytes; } }; class AudioDecoderPcm16BTest : public AudioDecoderTest { protected: AudioDecoderPcm16BTest() : AudioDecoderTest() { frame_size_ = 160; data_length_ = 10 * frame_size_; decoder_ = new AudioDecoderPcm16B(kDecoderPCM16B); assert(decoder_); } virtual int EncodeFrame(const int16_t* input, size_t input_len_samples, uint8_t* output) { int enc_len_bytes = WebRtcPcm16b_EncodeW16( const_cast(input), static_cast(input_len_samples), reinterpret_cast(output)); EXPECT_EQ(2 * input_len_samples, static_cast(enc_len_bytes)); return enc_len_bytes; } }; class AudioDecoderIlbcTest : public AudioDecoderTest { protected: AudioDecoderIlbcTest() : AudioDecoderTest() { frame_size_ = 240; data_length_ = 10 * frame_size_; decoder_ = new AudioDecoderIlbc; assert(decoder_); WebRtcIlbcfix_EncoderCreate(&encoder_); } ~AudioDecoderIlbcTest() { WebRtcIlbcfix_EncoderFree(encoder_); } virtual void InitEncoder() { ASSERT_EQ(0, WebRtcIlbcfix_EncoderInit(encoder_, 30)); // 30 ms. } virtual int EncodeFrame(const int16_t* input, size_t input_len_samples, uint8_t* output) { int enc_len_bytes = WebRtcIlbcfix_Encode(encoder_, input, static_cast(input_len_samples), reinterpret_cast(output)); EXPECT_EQ(50, enc_len_bytes); return enc_len_bytes; } // Overload the default test since iLBC's function WebRtcIlbcfix_NetEqPlc does // not return any data. It simply resets a few states and returns 0. void DecodePlcTest() { InitEncoder(); size_t enc_len = EncodeFrame(input_, frame_size_, encoded_); AudioDecoder::SpeechType speech_type; EXPECT_EQ(0, decoder_->Init()); size_t dec_len = decoder_->Decode(encoded_, enc_len, decoded_, &speech_type); EXPECT_EQ(frame_size_, dec_len); // Simply call DecodePlc and verify that we get 0 as return value. EXPECT_EQ(0, decoder_->DecodePlc(1, decoded_)); } iLBC_encinst_t* encoder_; }; class AudioDecoderIsacFloatTest : public AudioDecoderTest { protected: AudioDecoderIsacFloatTest() : AudioDecoderTest() { input_size_ = 160; frame_size_ = 480; data_length_ = 10 * frame_size_; decoder_ = new AudioDecoderIsac; assert(decoder_); WebRtcIsac_Create(&encoder_); WebRtcIsac_SetEncSampRate(encoder_, 16000); } ~AudioDecoderIsacFloatTest() { WebRtcIsac_Free(encoder_); } virtual void InitEncoder() { ASSERT_EQ(0, WebRtcIsac_EncoderInit(encoder_, 1)); // Fixed mode. ASSERT_EQ(0, WebRtcIsac_Control(encoder_, 32000, 30)); // 32 kbps, 30 ms. } virtual int EncodeFrame(const int16_t* input, size_t input_len_samples, uint8_t* output) { // Insert 3 * 10 ms. Expect non-zero output on third call. EXPECT_EQ(0, WebRtcIsac_Encode(encoder_, input, output)); input += input_size_; EXPECT_EQ(0, WebRtcIsac_Encode(encoder_, input, output)); input += input_size_; int enc_len_bytes = WebRtcIsac_Encode(encoder_, input, output); EXPECT_GT(enc_len_bytes, 0); return enc_len_bytes; } ISACStruct* encoder_; int input_size_; }; class AudioDecoderIsacSwbTest : public AudioDecoderTest { protected: AudioDecoderIsacSwbTest() : AudioDecoderTest() { input_size_ = 320; frame_size_ = 960; data_length_ = 10 * frame_size_; decoder_ = new AudioDecoderIsacSwb; assert(decoder_); WebRtcIsac_Create(&encoder_); WebRtcIsac_SetEncSampRate(encoder_, 32000); } ~AudioDecoderIsacSwbTest() { WebRtcIsac_Free(encoder_); } virtual void InitEncoder() { ASSERT_EQ(0, WebRtcIsac_EncoderInit(encoder_, 1)); // Fixed mode. ASSERT_EQ(0, WebRtcIsac_Control(encoder_, 32000, 30)); // 32 kbps, 30 ms. } virtual int EncodeFrame(const int16_t* input, size_t input_len_samples, uint8_t* output) { // Insert 3 * 10 ms. Expect non-zero output on third call. EXPECT_EQ(0, WebRtcIsac_Encode(encoder_, input, output)); input += input_size_; EXPECT_EQ(0, WebRtcIsac_Encode(encoder_, input, output)); input += input_size_; int enc_len_bytes = WebRtcIsac_Encode(encoder_, input, output); EXPECT_GT(enc_len_bytes, 0); return enc_len_bytes; } ISACStruct* encoder_; int input_size_; }; // This test is identical to AudioDecoderIsacSwbTest, except that it creates // an AudioDecoderIsacFb decoder object. class AudioDecoderIsacFbTest : public AudioDecoderIsacSwbTest { protected: AudioDecoderIsacFbTest() : AudioDecoderIsacSwbTest() { // Delete the |decoder_| that was created by AudioDecoderIsacSwbTest and // create an AudioDecoderIsacFb object instead. delete decoder_; decoder_ = new AudioDecoderIsacFb; assert(decoder_); } }; class AudioDecoderIsacFixTest : public AudioDecoderTest { protected: AudioDecoderIsacFixTest() : AudioDecoderTest() { input_size_ = 160; frame_size_ = 480; data_length_ = 10 * frame_size_; decoder_ = new AudioDecoderIsacFix; assert(decoder_); WebRtcIsacfix_Create(&encoder_); } ~AudioDecoderIsacFixTest() { WebRtcIsacfix_Free(encoder_); } virtual void InitEncoder() { ASSERT_EQ(0, WebRtcIsacfix_EncoderInit(encoder_, 1)); // Fixed mode. ASSERT_EQ(0, WebRtcIsacfix_Control(encoder_, 32000, 30)); // 32 kbps, 30 ms. } virtual int EncodeFrame(const int16_t* input, size_t input_len_samples, uint8_t* output) { // Insert 3 * 10 ms. Expect non-zero output on third call. EXPECT_EQ(0, WebRtcIsacfix_Encode(encoder_, input, output)); input += input_size_; EXPECT_EQ(0, WebRtcIsacfix_Encode(encoder_, input, output)); input += input_size_; int enc_len_bytes = WebRtcIsacfix_Encode(encoder_, input, output); EXPECT_GT(enc_len_bytes, 0); return enc_len_bytes; } ISACFIX_MainStruct* encoder_; int input_size_; }; class AudioDecoderG722Test : public AudioDecoderTest { protected: AudioDecoderG722Test() : AudioDecoderTest() { frame_size_ = 160; data_length_ = 10 * frame_size_; decoder_ = new AudioDecoderG722; assert(decoder_); WebRtcG722_CreateEncoder(&encoder_); } ~AudioDecoderG722Test() { WebRtcG722_FreeEncoder(encoder_); } virtual void InitEncoder() { ASSERT_EQ(0, WebRtcG722_EncoderInit(encoder_)); } virtual int EncodeFrame(const int16_t* input, size_t input_len_samples, uint8_t* output) { int enc_len_bytes = WebRtcG722_Encode(encoder_, const_cast(input), static_cast(input_len_samples), reinterpret_cast(output)); EXPECT_EQ(80, enc_len_bytes); return enc_len_bytes; } G722EncInst* encoder_; }; class AudioDecoderG722StereoTest : public AudioDecoderG722Test { protected: AudioDecoderG722StereoTest() : AudioDecoderG722Test() { channels_ = 2; // Delete the |decoder_| that was created by AudioDecoderG722Test and // create an AudioDecoderG722Stereo object instead. delete decoder_; decoder_ = new AudioDecoderG722Stereo; assert(decoder_); } virtual int EncodeFrame(const int16_t* input, size_t input_len_samples, uint8_t* output) { uint8_t* temp_output = new uint8_t[data_length_ * 2]; // Encode a mono payload using the base test class. int mono_enc_len_bytes = AudioDecoderG722Test::EncodeFrame(input, input_len_samples, temp_output); // The bit-stream consists of 4-bit samples: // +--------+--------+--------+ // | s0 s1 | s2 s3 | s4 s5 | // +--------+--------+--------+ // // Duplicate them to the |output| such that the stereo stream becomes: // +--------+--------+--------+ // | s0 s0 | s1 s1 | s2 s2 | // +--------+--------+--------+ EXPECT_LE(mono_enc_len_bytes * 2, static_cast(data_length_ * 2)); uint8_t* output_ptr = output; for (int i = 0; i < mono_enc_len_bytes; ++i) { *output_ptr = (temp_output[i] & 0xF0) + (temp_output[i] >> 4); ++output_ptr; *output_ptr = (temp_output[i] << 4) + (temp_output[i] & 0x0F); ++output_ptr; } delete [] temp_output; return mono_enc_len_bytes * 2; } }; #ifdef WEBRTC_CODEC_CELT class AudioDecoderCeltTest : public AudioDecoderTest { protected: static const int kEncodingRateBitsPerSecond = 64000; AudioDecoderCeltTest() : AudioDecoderTest(), encoder_(NULL) { frame_size_ = 640; data_length_ = 10 * frame_size_; decoder_ = AudioDecoder::CreateAudioDecoder(kDecoderCELT_32); assert(decoder_); WebRtcCelt_CreateEnc(&encoder_, static_cast(channels_)); } ~AudioDecoderCeltTest() { WebRtcCelt_FreeEnc(encoder_); } virtual void InitEncoder() { assert(encoder_); ASSERT_EQ(0, WebRtcCelt_EncoderInit( encoder_, static_cast(channels_), kEncodingRateBitsPerSecond)); } virtual int EncodeFrame(const int16_t* input, size_t input_len_samples, uint8_t* output) { assert(encoder_); return WebRtcCelt_Encode(encoder_, input, output); } CELT_encinst_t* encoder_; }; class AudioDecoderCeltStereoTest : public AudioDecoderTest { protected: static const int kEncodingRateBitsPerSecond = 64000; AudioDecoderCeltStereoTest() : AudioDecoderTest(), encoder_(NULL) { channels_ = 2; frame_size_ = 640; data_length_ = 10 * frame_size_; decoder_ = AudioDecoder::CreateAudioDecoder(kDecoderCELT_32_2ch); assert(decoder_); stereo_input_ = new int16_t[frame_size_ * channels_]; WebRtcCelt_CreateEnc(&encoder_, static_cast(channels_)); } ~AudioDecoderCeltStereoTest() { delete [] stereo_input_; WebRtcCelt_FreeEnc(encoder_); } virtual void InitEncoder() { assert(encoder_); ASSERT_EQ(0, WebRtcCelt_EncoderInit( encoder_, static_cast(channels_), kEncodingRateBitsPerSecond)); } virtual int EncodeFrame(const int16_t* input, size_t input_len_samples, uint8_t* output) { assert(encoder_); assert(stereo_input_); for (size_t n = 0; n < frame_size_; ++n) { stereo_input_[n * 2] = stereo_input_[n * 2 + 1] = input[n]; } return WebRtcCelt_Encode(encoder_, stereo_input_, output); } int16_t* stereo_input_; CELT_encinst_t* encoder_; }; #endif class AudioDecoderOpusTest : public AudioDecoderTest { protected: AudioDecoderOpusTest() : AudioDecoderTest() { frame_size_ = 480; data_length_ = 10 * frame_size_; decoder_ = new AudioDecoderOpus(kDecoderOpus); assert(decoder_); WebRtcOpus_EncoderCreate(&encoder_, 1); } ~AudioDecoderOpusTest() { WebRtcOpus_EncoderFree(encoder_); } virtual void SetUp() OVERRIDE { AudioDecoderTest::SetUp(); // Upsample from 32 to 48 kHz. // Because Opus is 48 kHz codec but the input file is 32 kHz, so the data // read in |AudioDecoderTest::SetUp| has to be upsampled. // |AudioDecoderTest::SetUp| has read |data_length_| samples, which is more // than necessary after upsampling, so the end of audio that has been read // is unused and the end of the buffer is overwritten by the resampled data. Resampler rs; rs.Reset(32000, 48000, kResamplerSynchronous); const int before_resamp_len_samples = static_cast(data_length_) * 2 / 3; int16_t* before_resamp_input = new int16_t[before_resamp_len_samples]; memcpy(before_resamp_input, input_, sizeof(int16_t) * before_resamp_len_samples); int resamp_len_samples; EXPECT_EQ(0, rs.Push(before_resamp_input, before_resamp_len_samples, input_, static_cast(data_length_), resamp_len_samples)); EXPECT_EQ(static_cast(data_length_), resamp_len_samples); delete[] before_resamp_input; } virtual void InitEncoder() {} virtual int EncodeFrame(const int16_t* input, size_t input_len_samples, uint8_t* output) OVERRIDE { int enc_len_bytes = WebRtcOpus_Encode(encoder_, const_cast(input), static_cast(input_len_samples), static_cast(data_length_), output); EXPECT_GT(enc_len_bytes, 0); return enc_len_bytes; } OpusEncInst* encoder_; }; class AudioDecoderOpusStereoTest : public AudioDecoderOpusTest { protected: AudioDecoderOpusStereoTest() : AudioDecoderOpusTest() { channels_ = 2; WebRtcOpus_EncoderFree(encoder_); delete decoder_; decoder_ = new AudioDecoderOpus(kDecoderOpus_2ch); assert(decoder_); WebRtcOpus_EncoderCreate(&encoder_, 2); } virtual int EncodeFrame(const int16_t* input, size_t input_len_samples, uint8_t* output) OVERRIDE { // Create stereo by duplicating each sample in |input|. const int input_stereo_samples = static_cast(input_len_samples) * 2; int16_t* input_stereo = new int16_t[input_stereo_samples]; for (size_t i = 0; i < input_len_samples; i++) input_stereo[i * 2] = input_stereo[i * 2 + 1] = input[i]; int enc_len_bytes = WebRtcOpus_Encode( encoder_, input_stereo, static_cast(input_len_samples), static_cast(data_length_), output); EXPECT_GT(enc_len_bytes, 0); delete[] input_stereo; return enc_len_bytes; } }; TEST_F(AudioDecoderPcmUTest, EncodeDecode) { int tolerance = 251; double mse = 1734.0; EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderPCMu)); EncodeDecodeTest(data_length_, tolerance, mse); ReInitTest(); EXPECT_FALSE(decoder_->HasDecodePlc()); } TEST_F(AudioDecoderPcmATest, EncodeDecode) { int tolerance = 308; double mse = 1931.0; EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderPCMa)); EncodeDecodeTest(data_length_, tolerance, mse); ReInitTest(); EXPECT_FALSE(decoder_->HasDecodePlc()); } TEST_F(AudioDecoderPcm16BTest, EncodeDecode) { int tolerance = 0; double mse = 0.0; EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderPCM16B)); EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderPCM16Bwb)); EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderPCM16Bswb32kHz)); EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderPCM16Bswb48kHz)); EncodeDecodeTest(2 * data_length_, tolerance, mse); ReInitTest(); EXPECT_FALSE(decoder_->HasDecodePlc()); } TEST_F(AudioDecoderIlbcTest, EncodeDecode) { int tolerance = 6808; double mse = 2.13e6; int delay = 80; // Delay from input to output. EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderILBC)); EncodeDecodeTest(500, tolerance, mse, delay); ReInitTest(); EXPECT_TRUE(decoder_->HasDecodePlc()); DecodePlcTest(); } TEST_F(AudioDecoderIsacFloatTest, EncodeDecode) { int tolerance = 3399; double mse = 434951.0; int delay = 48; // Delay from input to output. EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderISAC)); EncodeDecodeTest(0, tolerance, mse, delay); ReInitTest(); EXPECT_TRUE(decoder_->HasDecodePlc()); DecodePlcTest(); } TEST_F(AudioDecoderIsacSwbTest, EncodeDecode) { int tolerance = 19757; double mse = 8.18e6; int delay = 160; // Delay from input to output. EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderISACswb)); EncodeDecodeTest(0, tolerance, mse, delay); ReInitTest(); EXPECT_TRUE(decoder_->HasDecodePlc()); DecodePlcTest(); } TEST_F(AudioDecoderIsacFbTest, EncodeDecode) { int tolerance = 19757; double mse = 8.18e6; int delay = 160; // Delay from input to output. EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderISACswb)); EncodeDecodeTest(0, tolerance, mse, delay); ReInitTest(); EXPECT_TRUE(decoder_->HasDecodePlc()); DecodePlcTest(); } TEST_F(AudioDecoderIsacFixTest, DISABLED_EncodeDecode) { int tolerance = 11034; double mse = 3.46e6; int delay = 54; // Delay from input to output. EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderISAC)); EncodeDecodeTest(735, tolerance, mse, delay); ReInitTest(); EXPECT_FALSE(decoder_->HasDecodePlc()); } TEST_F(AudioDecoderG722Test, EncodeDecode) { int tolerance = 6176; double mse = 238630.0; int delay = 22; // Delay from input to output. EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderG722)); EncodeDecodeTest(data_length_ / 2, tolerance, mse, delay); ReInitTest(); EXPECT_FALSE(decoder_->HasDecodePlc()); } TEST_F(AudioDecoderG722StereoTest, CreateAndDestroy) { EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderG722_2ch)); } TEST_F(AudioDecoderG722StereoTest, EncodeDecode) { int tolerance = 6176; int channel_diff_tolerance = 0; double mse = 238630.0; int delay = 22; // Delay from input to output. EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderG722_2ch)); EncodeDecodeTest(data_length_, tolerance, mse, delay, channel_diff_tolerance); ReInitTest(); EXPECT_FALSE(decoder_->HasDecodePlc()); } TEST_F(AudioDecoderOpusTest, EncodeDecode) { int tolerance = 6176; double mse = 238630.0; int delay = 22; // Delay from input to output. EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderOpus)); EncodeDecodeTest(0, tolerance, mse, delay); ReInitTest(); EXPECT_FALSE(decoder_->HasDecodePlc()); } TEST_F(AudioDecoderOpusStereoTest, EncodeDecode) { int tolerance = 6176; int channel_diff_tolerance = 0; double mse = 238630.0; int delay = 22; // Delay from input to output. EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderOpus_2ch)); EncodeDecodeTest(0, tolerance, mse, delay, channel_diff_tolerance); ReInitTest(); EXPECT_FALSE(decoder_->HasDecodePlc()); } #ifdef WEBRTC_CODEC_CELT // In the two following CELT tests, the low amplitude of the test signal allow // us to have such low error thresholds, i.e. |tolerance|, |mse|. Furthermore, // in general, stereo signals with identical channels do not result in identical // encoded channels. TEST_F(AudioDecoderCeltTest, EncodeDecode) { int tolerance = 20; double mse = 17.0; int delay = 80; // Delay from input to output in samples. EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderCELT_32)); EncodeDecodeTest(1600, tolerance, mse, delay); ReInitTest(); EXPECT_TRUE(decoder_->HasDecodePlc()); DecodePlcTest(); } TEST_F(AudioDecoderCeltStereoTest, EncodeDecode) { int tolerance = 20; // If both channels are identical, CELT not necessarily decodes identical // channels. However, for this input this is the case. int channel_diff_tolerance = 0; double mse = 20.0; // Delay from input to output in samples, accounting for stereo. int delay = 160; EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderCELT_32_2ch)); EncodeDecodeTest(1600, tolerance, mse, delay, channel_diff_tolerance); ReInitTest(); EXPECT_TRUE(decoder_->HasDecodePlc()); DecodePlcTest(); } #endif TEST(AudioDecoder, CodecSampleRateHz) { EXPECT_EQ(8000, AudioDecoder::CodecSampleRateHz(kDecoderPCMu)); EXPECT_EQ(8000, AudioDecoder::CodecSampleRateHz(kDecoderPCMa)); EXPECT_EQ(8000, AudioDecoder::CodecSampleRateHz(kDecoderPCMu_2ch)); EXPECT_EQ(8000, AudioDecoder::CodecSampleRateHz(kDecoderPCMa_2ch)); EXPECT_EQ(8000, AudioDecoder::CodecSampleRateHz(kDecoderILBC)); EXPECT_EQ(16000, AudioDecoder::CodecSampleRateHz(kDecoderISAC)); EXPECT_EQ(32000, AudioDecoder::CodecSampleRateHz(kDecoderISACswb)); EXPECT_EQ(32000, AudioDecoder::CodecSampleRateHz(kDecoderISACfb)); EXPECT_EQ(8000, AudioDecoder::CodecSampleRateHz(kDecoderPCM16B)); EXPECT_EQ(16000, AudioDecoder::CodecSampleRateHz(kDecoderPCM16Bwb)); EXPECT_EQ(32000, AudioDecoder::CodecSampleRateHz(kDecoderPCM16Bswb32kHz)); EXPECT_EQ(48000, AudioDecoder::CodecSampleRateHz(kDecoderPCM16Bswb48kHz)); EXPECT_EQ(8000, AudioDecoder::CodecSampleRateHz(kDecoderPCM16B_2ch)); EXPECT_EQ(16000, AudioDecoder::CodecSampleRateHz(kDecoderPCM16Bwb_2ch)); EXPECT_EQ(32000, AudioDecoder::CodecSampleRateHz(kDecoderPCM16Bswb32kHz_2ch)); EXPECT_EQ(48000, AudioDecoder::CodecSampleRateHz(kDecoderPCM16Bswb48kHz_2ch)); EXPECT_EQ(8000, AudioDecoder::CodecSampleRateHz(kDecoderPCM16B_5ch)); EXPECT_EQ(16000, AudioDecoder::CodecSampleRateHz(kDecoderG722)); EXPECT_EQ(16000, AudioDecoder::CodecSampleRateHz(kDecoderG722_2ch)); EXPECT_EQ(-1, AudioDecoder::CodecSampleRateHz(kDecoderRED)); EXPECT_EQ(-1, AudioDecoder::CodecSampleRateHz(kDecoderAVT)); EXPECT_EQ(8000, AudioDecoder::CodecSampleRateHz(kDecoderCNGnb)); EXPECT_EQ(16000, AudioDecoder::CodecSampleRateHz(kDecoderCNGwb)); EXPECT_EQ(32000, AudioDecoder::CodecSampleRateHz(kDecoderCNGswb32kHz)); EXPECT_EQ(48000, AudioDecoder::CodecSampleRateHz(kDecoderOpus)); EXPECT_EQ(48000, AudioDecoder::CodecSampleRateHz(kDecoderOpus_2ch)); // TODO(tlegrand): Change 32000 to 48000 below once ACM has 48 kHz support. EXPECT_EQ(32000, AudioDecoder::CodecSampleRateHz(kDecoderCNGswb48kHz)); EXPECT_EQ(-1, AudioDecoder::CodecSampleRateHz(kDecoderArbitrary)); #ifdef WEBRTC_CODEC_CELT EXPECT_EQ(32000, AudioDecoder::CodecSampleRateHz(kDecoderCELT_32)); EXPECT_EQ(32000, AudioDecoder::CodecSampleRateHz(kDecoderCELT_32_2ch)); #else EXPECT_EQ(-1, AudioDecoder::CodecSampleRateHz(kDecoderCELT_32)); EXPECT_EQ(-1, AudioDecoder::CodecSampleRateHz(kDecoderCELT_32_2ch)); #endif } TEST(AudioDecoder, CodecSupported) { EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderPCMu)); EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderPCMa)); EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderPCMu_2ch)); EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderPCMa_2ch)); EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderILBC)); EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderISAC)); EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderISACswb)); EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderISACfb)); EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderPCM16B)); EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderPCM16Bwb)); EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderPCM16Bswb32kHz)); EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderPCM16Bswb48kHz)); EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderPCM16B_2ch)); EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderPCM16Bwb_2ch)); EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderPCM16Bswb32kHz_2ch)); EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderPCM16Bswb48kHz_2ch)); EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderPCM16B_5ch)); EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderG722)); EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderG722_2ch)); EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderRED)); EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderAVT)); EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderCNGnb)); EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderCNGwb)); EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderCNGswb32kHz)); EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderCNGswb48kHz)); EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderArbitrary)); EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderOpus)); EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderOpus_2ch)); #ifdef WEBRTC_CODEC_CELT EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderCELT_32)); EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderCELT_32_2ch)); #else EXPECT_FALSE(AudioDecoder::CodecSupported(kDecoderCELT_32)); EXPECT_FALSE(AudioDecoder::CodecSupported(kDecoderCELT_32_2ch)); #endif } } // namespace webrtc