/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "webrtc/modules/audio_coding/neteq/delay_manager.h" #include #include #include // max, min #include "webrtc/common_audio/signal_processing/include/signal_processing_library.h" #include "webrtc/modules/audio_coding/neteq/delay_peak_detector.h" #include "webrtc/modules/include/module_common_types.h" #include "webrtc/system_wrappers/include/logging.h" namespace webrtc { DelayManager::DelayManager(size_t max_packets_in_buffer, DelayPeakDetector* peak_detector) : first_packet_received_(false), max_packets_in_buffer_(max_packets_in_buffer), iat_vector_(kMaxIat + 1, 0), iat_factor_(0), packet_iat_count_ms_(0), base_target_level_(4), // In Q0 domain. target_level_(base_target_level_ << 8), // In Q8 domain. packet_len_ms_(0), streaming_mode_(false), last_seq_no_(0), last_timestamp_(0), minimum_delay_ms_(0), least_required_delay_ms_(target_level_), maximum_delay_ms_(target_level_), iat_cumulative_sum_(0), max_iat_cumulative_sum_(0), max_timer_ms_(0), peak_detector_(*peak_detector), last_pack_cng_or_dtmf_(1) { assert(peak_detector); // Should never be NULL. Reset(); } DelayManager::~DelayManager() {} const DelayManager::IATVector& DelayManager::iat_vector() const { return iat_vector_; } // Set the histogram vector to an exponentially decaying distribution // iat_vector_[i] = 0.5^(i+1), i = 0, 1, 2, ... // iat_vector_ is in Q30. void DelayManager::ResetHistogram() { // Set temp_prob to (slightly more than) 1 in Q14. This ensures that the sum // of iat_vector_ is 1. uint16_t temp_prob = 0x4002; // 16384 + 2 = 100000000000010 binary. IATVector::iterator it = iat_vector_.begin(); for (; it < iat_vector_.end(); it++) { temp_prob >>= 1; (*it) = temp_prob << 16; } base_target_level_ = 4; target_level_ = base_target_level_ << 8; } int DelayManager::Update(uint16_t sequence_number, uint32_t timestamp, int sample_rate_hz) { if (sample_rate_hz <= 0) { return -1; } if (!first_packet_received_) { // Prepare for next packet arrival. packet_iat_count_ms_ = 0; last_seq_no_ = sequence_number; last_timestamp_ = timestamp; first_packet_received_ = true; return 0; } // Try calculating packet length from current and previous timestamps. int packet_len_ms; if (!IsNewerTimestamp(timestamp, last_timestamp_) || !IsNewerSequenceNumber(sequence_number, last_seq_no_)) { // Wrong timestamp or sequence order; use stored value. packet_len_ms = packet_len_ms_; } else { // Calculate timestamps per packet and derive packet length in ms. int packet_len_samp = static_cast(timestamp - last_timestamp_) / static_cast(sequence_number - last_seq_no_); packet_len_ms = (1000 * packet_len_samp) / sample_rate_hz; } if (packet_len_ms > 0) { // Cannot update statistics unless |packet_len_ms| is valid. // Calculate inter-arrival time (IAT) in integer "packet times" // (rounding down). This is the value used as index to the histogram // vector |iat_vector_|. int iat_packets = packet_iat_count_ms_ / packet_len_ms; if (streaming_mode_) { UpdateCumulativeSums(packet_len_ms, sequence_number); } // Check for discontinuous packet sequence and re-ordering. if (IsNewerSequenceNumber(sequence_number, last_seq_no_ + 1)) { // Compensate for gap in the sequence numbers. Reduce IAT with the // expected extra time due to lost packets, but ensure that the IAT is // not negative. iat_packets -= static_cast(sequence_number - last_seq_no_ - 1); iat_packets = std::max(iat_packets, 0); } else if (!IsNewerSequenceNumber(sequence_number, last_seq_no_)) { iat_packets += static_cast(last_seq_no_ + 1 - sequence_number); } // Saturate IAT at maximum value. const int max_iat = kMaxIat; iat_packets = std::min(iat_packets, max_iat); UpdateHistogram(iat_packets); // Calculate new |target_level_| based on updated statistics. target_level_ = CalculateTargetLevel(iat_packets); if (streaming_mode_) { target_level_ = std::max(target_level_, max_iat_cumulative_sum_); } LimitTargetLevel(); } // End if (packet_len_ms > 0). // Prepare for next packet arrival. packet_iat_count_ms_ = 0; last_seq_no_ = sequence_number; last_timestamp_ = timestamp; return 0; } void DelayManager::UpdateCumulativeSums(int packet_len_ms, uint16_t sequence_number) { // Calculate IAT in Q8, including fractions of a packet (i.e., more // accurate than |iat_packets|. int iat_packets_q8 = (packet_iat_count_ms_ << 8) / packet_len_ms; // Calculate cumulative sum IAT with sequence number compensation. The sum // is zero if there is no clock-drift. iat_cumulative_sum_ += (iat_packets_q8 - (static_cast(sequence_number - last_seq_no_) << 8)); // Subtract drift term. iat_cumulative_sum_ -= kCumulativeSumDrift; // Ensure not negative. iat_cumulative_sum_ = std::max(iat_cumulative_sum_, 0); if (iat_cumulative_sum_ > max_iat_cumulative_sum_) { // Found a new maximum. max_iat_cumulative_sum_ = iat_cumulative_sum_; max_timer_ms_ = 0; } if (max_timer_ms_ > kMaxStreamingPeakPeriodMs) { // Too long since the last maximum was observed; decrease max value. max_iat_cumulative_sum_ -= kCumulativeSumDrift; } } // Each element in the vector is first multiplied by the forgetting factor // |iat_factor_|. Then the vector element indicated by |iat_packets| is then // increased (additive) by 1 - |iat_factor_|. This way, the probability of // |iat_packets| is slightly increased, while the sum of the histogram remains // constant (=1). // Due to inaccuracies in the fixed-point arithmetic, the histogram may no // longer sum up to 1 (in Q30) after the update. To correct this, a correction // term is added or subtracted from the first element (or elements) of the // vector. // The forgetting factor |iat_factor_| is also updated. When the DelayManager // is reset, the factor is set to 0 to facilitate rapid convergence in the // beginning. With each update of the histogram, the factor is increased towards // the steady-state value |kIatFactor_|. void DelayManager::UpdateHistogram(size_t iat_packets) { assert(iat_packets < iat_vector_.size()); int vector_sum = 0; // Sum up the vector elements as they are processed. // Multiply each element in |iat_vector_| with |iat_factor_|. for (IATVector::iterator it = iat_vector_.begin(); it != iat_vector_.end(); ++it) { *it = (static_cast(*it) * iat_factor_) >> 15; vector_sum += *it; } // Increase the probability for the currently observed inter-arrival time // by 1 - |iat_factor_|. The factor is in Q15, |iat_vector_| in Q30. // Thus, left-shift 15 steps to obtain result in Q30. iat_vector_[iat_packets] += (32768 - iat_factor_) << 15; vector_sum += (32768 - iat_factor_) << 15; // Add to vector sum. // |iat_vector_| should sum up to 1 (in Q30), but it may not due to // fixed-point rounding errors. vector_sum -= 1 << 30; // Should be zero. Compensate if not. if (vector_sum != 0) { // Modify a few values early in |iat_vector_|. int flip_sign = vector_sum > 0 ? -1 : 1; IATVector::iterator it = iat_vector_.begin(); while (it != iat_vector_.end() && abs(vector_sum) > 0) { // Add/subtract 1/16 of the element, but not more than |vector_sum|. int correction = flip_sign * std::min(abs(vector_sum), (*it) >> 4); *it += correction; vector_sum += correction; ++it; } } assert(vector_sum == 0); // Verify that the above is correct. // Update |iat_factor_| (changes only during the first seconds after a reset). // The factor converges to |kIatFactor_|. iat_factor_ += (kIatFactor_ - iat_factor_ + 3) >> 2; } // Enforces upper and lower limits for |target_level_|. The upper limit is // chosen to be minimum of i) 75% of |max_packets_in_buffer_|, to leave some // headroom for natural fluctuations around the target, and ii) equivalent of // |maximum_delay_ms_| in packets. Note that in practice, if no // |maximum_delay_ms_| is specified, this does not have any impact, since the // target level is far below the buffer capacity in all reasonable cases. // The lower limit is equivalent of |minimum_delay_ms_| in packets. We update // |least_required_level_| while the above limits are applied. // TODO(hlundin): Move this check to the buffer logistics class. void DelayManager::LimitTargetLevel() { least_required_delay_ms_ = (target_level_ * packet_len_ms_) >> 8; if (packet_len_ms_ > 0 && minimum_delay_ms_ > 0) { int minimum_delay_packet_q8 = (minimum_delay_ms_ << 8) / packet_len_ms_; target_level_ = std::max(target_level_, minimum_delay_packet_q8); } if (maximum_delay_ms_ > 0 && packet_len_ms_ > 0) { int maximum_delay_packet_q8 = (maximum_delay_ms_ << 8) / packet_len_ms_; target_level_ = std::min(target_level_, maximum_delay_packet_q8); } // Shift to Q8, then 75%.; int max_buffer_packets_q8 = static_cast((3 * (max_packets_in_buffer_ << 8)) / 4); target_level_ = std::min(target_level_, max_buffer_packets_q8); // Sanity check, at least 1 packet (in Q8). target_level_ = std::max(target_level_, 1 << 8); } int DelayManager::CalculateTargetLevel(int iat_packets) { int limit_probability = kLimitProbability; if (streaming_mode_) { limit_probability = kLimitProbabilityStreaming; } // Calculate target buffer level from inter-arrival time histogram. // Find the |iat_index| for which the probability of observing an // inter-arrival time larger than or equal to |iat_index| is less than or // equal to |limit_probability|. The sought probability is estimated using // the histogram as the reverse cumulant PDF, i.e., the sum of elements from // the end up until |iat_index|. Now, since the sum of all elements is 1 // (in Q30) by definition, and since the solution is often a low value for // |iat_index|, it is more efficient to start with |sum| = 1 and subtract // elements from the start of the histogram. size_t index = 0; // Start from the beginning of |iat_vector_|. int sum = 1 << 30; // Assign to 1 in Q30. sum -= iat_vector_[index]; // Ensure that target level is >= 1. do { // Subtract the probabilities one by one until the sum is no longer greater // than limit_probability. ++index; sum -= iat_vector_[index]; } while ((sum > limit_probability) && (index < iat_vector_.size() - 1)); // This is the base value for the target buffer level. int target_level = static_cast(index); base_target_level_ = static_cast(index); // Update detector for delay peaks. bool delay_peak_found = peak_detector_.Update(iat_packets, target_level); if (delay_peak_found) { target_level = std::max(target_level, peak_detector_.MaxPeakHeight()); } // Sanity check. |target_level| must be strictly positive. target_level = std::max(target_level, 1); // Scale to Q8 and assign to member variable. target_level_ = target_level << 8; return target_level_; } int DelayManager::SetPacketAudioLength(int length_ms) { if (length_ms <= 0) { LOG_F(LS_ERROR) << "length_ms = " << length_ms; return -1; } packet_len_ms_ = length_ms; peak_detector_.SetPacketAudioLength(packet_len_ms_); packet_iat_count_ms_ = 0; last_pack_cng_or_dtmf_ = 1; // TODO(hlundin): Legacy. Remove? return 0; } void DelayManager::Reset() { packet_len_ms_ = 0; // Packet size unknown. streaming_mode_ = false; peak_detector_.Reset(); ResetHistogram(); // Resets target levels too. iat_factor_ = 0; // Adapt the histogram faster for the first few packets. packet_iat_count_ms_ = 0; max_timer_ms_ = 0; iat_cumulative_sum_ = 0; max_iat_cumulative_sum_ = 0; last_pack_cng_or_dtmf_ = 1; } int DelayManager::AverageIAT() const { int32_t sum_q24 = 0; // Using an int for the upper limit of the following for-loop so the // loop-counter can be int. Otherwise we need a cast where |sum_q24| is // updated. const int iat_vec_size = static_cast(iat_vector_.size()); assert(iat_vector_.size() == 65); // Algorithm is hard-coded for this size. for (int i = 0; i < iat_vec_size; ++i) { // Shift 6 to fit worst case: 2^30 * 64. sum_q24 += (iat_vector_[i] >> 6) * i; } // Subtract the nominal inter-arrival time 1 = 2^24 in Q24. sum_q24 -= (1 << 24); // Multiply with 1000000 / 2^24 = 15625 / 2^18 to get in parts-per-million. // Shift 7 to Q17 first, then multiply with 15625 and shift another 11. return ((sum_q24 >> 7) * 15625) >> 11; } bool DelayManager::PeakFound() const { return peak_detector_.peak_found(); } void DelayManager::UpdateCounters(int elapsed_time_ms) { packet_iat_count_ms_ += elapsed_time_ms; peak_detector_.IncrementCounter(elapsed_time_ms); max_timer_ms_ += elapsed_time_ms; } void DelayManager::ResetPacketIatCount() { packet_iat_count_ms_ = 0; } // Note that |low_limit| and |higher_limit| are not assigned to // |minimum_delay_ms_| and |maximum_delay_ms_| defined by the client of this // class. They are computed from |target_level_| and used for decision making. void DelayManager::BufferLimits(int* lower_limit, int* higher_limit) const { if (!lower_limit || !higher_limit) { LOG_F(LS_ERROR) << "NULL pointers supplied as input"; assert(false); return; } int window_20ms = 0x7FFF; // Default large value for legacy bit-exactness. if (packet_len_ms_ > 0) { window_20ms = (20 << 8) / packet_len_ms_; } // |target_level_| is in Q8 already. *lower_limit = (target_level_ * 3) / 4; // |higher_limit| is equal to |target_level_|, but should at // least be 20 ms higher than |lower_limit_|. *higher_limit = std::max(target_level_, *lower_limit + window_20ms); } int DelayManager::TargetLevel() const { return target_level_; } void DelayManager::LastDecoderType(NetEqDecoder decoder_type) { if (decoder_type == NetEqDecoder::kDecoderAVT || decoder_type == NetEqDecoder::kDecoderCNGnb || decoder_type == NetEqDecoder::kDecoderCNGwb || decoder_type == NetEqDecoder::kDecoderCNGswb32kHz || decoder_type == NetEqDecoder::kDecoderCNGswb48kHz) { last_pack_cng_or_dtmf_ = 1; } else if (last_pack_cng_or_dtmf_ != 0) { last_pack_cng_or_dtmf_ = -1; } } bool DelayManager::SetMinimumDelay(int delay_ms) { // Minimum delay shouldn't be more than maximum delay, if any maximum is set. // Also, if possible check |delay| to less than 75% of // |max_packets_in_buffer_|. if ((maximum_delay_ms_ > 0 && delay_ms > maximum_delay_ms_) || (packet_len_ms_ > 0 && delay_ms > static_cast(3 * max_packets_in_buffer_ * packet_len_ms_ / 4))) { return false; } minimum_delay_ms_ = delay_ms; return true; } bool DelayManager::SetMaximumDelay(int delay_ms) { if (delay_ms == 0) { // Zero input unsets the maximum delay. maximum_delay_ms_ = 0; return true; } else if (delay_ms < minimum_delay_ms_ || delay_ms < packet_len_ms_) { // Maximum delay shouldn't be less than minimum delay or less than a packet. return false; } maximum_delay_ms_ = delay_ms; return true; } int DelayManager::least_required_delay_ms() const { return least_required_delay_ms_; } int DelayManager::base_target_level() const { return base_target_level_; } void DelayManager::set_streaming_mode(bool value) { streaming_mode_ = value; } int DelayManager::last_pack_cng_or_dtmf() const { return last_pack_cng_or_dtmf_; } void DelayManager::set_last_pack_cng_or_dtmf(int value) { last_pack_cng_or_dtmf_ = value; } } // namespace webrtc