/* * Copyright (c) 2013 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ // Test to verify correct operation for externally created decoders. #include #include #include "testing/gmock/include/gmock/gmock.h" #include "testing/gtest/include/gtest/gtest.h" #include "webrtc/modules/audio_coding/neteq/interface/neteq.h" #include "webrtc/modules/audio_coding/neteq/mock/mock_external_decoder_pcm16b.h" #include "webrtc/modules/audio_coding/neteq/tools/input_audio_file.h" #include "webrtc/modules/audio_coding/neteq/tools/rtp_generator.h" #include "webrtc/system_wrappers/interface/compile_assert.h" #include "webrtc/system_wrappers/interface/scoped_ptr.h" #include "webrtc/test/testsupport/fileutils.h" #include "webrtc/test/testsupport/gtest_disable.h" namespace webrtc { using ::testing::_; using ::testing::Return; // This test encodes a few packets of PCM16b 32 kHz data and inserts it into two // different NetEq instances. The first instance uses the internal version of // the decoder object, while the second one uses an externally created decoder // object (ExternalPcm16B wrapped in MockExternalPcm16B, both defined above). // The test verifies that the output from both instances match. class NetEqExternalDecoderTest : public ::testing::Test { protected: static const int kTimeStepMs = 10; static const int kMaxBlockSize = 480; // 10 ms @ 48 kHz. static const uint8_t kPayloadType = 95; static const int kSampleRateHz = 32000; NetEqExternalDecoderTest() : sample_rate_hz_(kSampleRateHz), samples_per_ms_(sample_rate_hz_ / 1000), frame_size_ms_(10), frame_size_samples_(frame_size_ms_ * samples_per_ms_), output_size_samples_(frame_size_ms_ * samples_per_ms_), external_decoder_(new MockExternalPcm16B(kDecoderPCM16Bswb32kHz)), rtp_generator_(new test::RtpGenerator(samples_per_ms_)), payload_size_bytes_(0), last_send_time_(0), last_arrival_time_(0) { config_.sample_rate_hz = sample_rate_hz_; neteq_external_ = NetEq::Create(config_); neteq_ = NetEq::Create(config_); input_ = new int16_t[frame_size_samples_]; encoded_ = new uint8_t[2 * frame_size_samples_]; } ~NetEqExternalDecoderTest() { delete neteq_external_; delete neteq_; // We will now delete the decoder ourselves, so expecting Die to be called. EXPECT_CALL(*external_decoder_, Die()).Times(1); delete [] input_; delete [] encoded_; } virtual void SetUp() { const std::string file_name = webrtc::test::ResourcePath("audio_coding/testfile32kHz", "pcm"); input_file_.reset(new test::InputAudioFile(file_name)); assert(sample_rate_hz_ == 32000); NetEqDecoder decoder = kDecoderPCM16Bswb32kHz; EXPECT_CALL(*external_decoder_, Init()); // NetEq is not allowed to delete the external decoder (hence Times(0)). EXPECT_CALL(*external_decoder_, Die()).Times(0); ASSERT_EQ(NetEq::kOK, neteq_external_->RegisterExternalDecoder( external_decoder_.get(), decoder, kPayloadType)); ASSERT_EQ(NetEq::kOK, neteq_->RegisterPayloadType(decoder, kPayloadType)); } virtual void TearDown() {} int GetNewPackets() { if (!input_file_->Read(frame_size_samples_, input_)) { return -1; } payload_size_bytes_ = WebRtcPcm16b_Encode(input_, frame_size_samples_, encoded_); if (frame_size_samples_ * 2 != payload_size_bytes_) { return -1; } int next_send_time = rtp_generator_->GetRtpHeader( kPayloadType, frame_size_samples_, &rtp_header_); return next_send_time; } virtual void VerifyOutput(size_t num_samples) const { for (size_t i = 0; i < num_samples; ++i) { ASSERT_EQ(output_[i], output_external_[i]) << "Diff in sample " << i << "."; } } virtual int GetArrivalTime(int send_time) { int arrival_time = last_arrival_time_ + (send_time - last_send_time_); last_send_time_ = send_time; last_arrival_time_ = arrival_time; return arrival_time; } virtual bool Lost() { return false; } virtual void InsertPackets(int next_arrival_time) { // Insert packet in regular instance. ASSERT_EQ( NetEq::kOK, neteq_->InsertPacket( rtp_header_, encoded_, payload_size_bytes_, next_arrival_time)); // Insert packet in external decoder instance. EXPECT_CALL(*external_decoder_, IncomingPacket(_, payload_size_bytes_, rtp_header_.header.sequenceNumber, rtp_header_.header.timestamp, next_arrival_time)); ASSERT_EQ( NetEq::kOK, neteq_external_->InsertPacket( rtp_header_, encoded_, payload_size_bytes_, next_arrival_time)); } virtual void GetOutputAudio() { NetEqOutputType output_type; // Get audio from regular instance. int samples_per_channel; int num_channels; EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(kMaxBlockSize, output_, &samples_per_channel, &num_channels, &output_type)); EXPECT_EQ(1, num_channels); EXPECT_EQ(output_size_samples_, samples_per_channel); // Get audio from external decoder instance. ASSERT_EQ(NetEq::kOK, neteq_external_->GetAudio(kMaxBlockSize, output_external_, &samples_per_channel, &num_channels, &output_type)); EXPECT_EQ(1, num_channels); EXPECT_EQ(output_size_samples_, samples_per_channel); } virtual int NumExpectedDecodeCalls(int num_loops) const { return num_loops; } void RunTest(int num_loops) { // Get next input packets (mono and multi-channel). int next_send_time; int next_arrival_time; do { next_send_time = GetNewPackets(); ASSERT_NE(-1, next_send_time); next_arrival_time = GetArrivalTime(next_send_time); } while (Lost()); // If lost, immediately read the next packet. EXPECT_CALL(*external_decoder_, Decode(_, payload_size_bytes_, _, _)) .Times(NumExpectedDecodeCalls(num_loops)); int time_now = 0; for (int k = 0; k < num_loops; ++k) { while (time_now >= next_arrival_time) { InsertPackets(next_arrival_time); // Get next input packet. do { next_send_time = GetNewPackets(); ASSERT_NE(-1, next_send_time); next_arrival_time = GetArrivalTime(next_send_time); } while (Lost()); // If lost, immediately read the next packet. } GetOutputAudio(); std::ostringstream ss; ss << "Lap number " << k << "."; SCOPED_TRACE(ss.str()); // Print out the parameter values on failure. // Compare mono and multi-channel. ASSERT_NO_FATAL_FAILURE(VerifyOutput(output_size_samples_)); time_now += kTimeStepMs; } } NetEq::Config config_; int sample_rate_hz_; int samples_per_ms_; const int frame_size_ms_; int frame_size_samples_; int output_size_samples_; NetEq* neteq_external_; NetEq* neteq_; scoped_ptr external_decoder_; scoped_ptr rtp_generator_; int16_t* input_; uint8_t* encoded_; int16_t output_[kMaxBlockSize]; int16_t output_external_[kMaxBlockSize]; WebRtcRTPHeader rtp_header_; int payload_size_bytes_; int last_send_time_; int last_arrival_time_; scoped_ptr input_file_; }; TEST_F(NetEqExternalDecoderTest, RunTest) { RunTest(100); // Run 100 laps @ 10 ms each in the test loop. } class LargeTimestampJumpTest : public NetEqExternalDecoderTest { protected: enum TestStates { kInitialPhase, kNormalPhase, kExpandPhase, kFadedExpandPhase, kRecovered }; LargeTimestampJumpTest() : NetEqExternalDecoderTest(), test_state_(kInitialPhase) { sample_rate_hz_ = 8000; samples_per_ms_ = sample_rate_hz_ / 1000; frame_size_samples_ = frame_size_ms_ * samples_per_ms_; output_size_samples_ = frame_size_ms_ * samples_per_ms_; EXPECT_CALL(*external_decoder_, Die()).Times(1); external_decoder_.reset(new MockExternalPcm16B(kDecoderPCM16B)); } void SetUp() OVERRIDE { const std::string file_name = webrtc::test::ResourcePath("audio_coding/testfile32kHz", "pcm"); input_file_.reset(new test::InputAudioFile(file_name)); assert(sample_rate_hz_ == 8000); NetEqDecoder decoder = kDecoderPCM16B; EXPECT_CALL(*external_decoder_, Init()); EXPECT_CALL(*external_decoder_, HasDecodePlc()) .WillRepeatedly(Return(false)); // NetEq is not allowed to delete the external decoder (hence Times(0)). EXPECT_CALL(*external_decoder_, Die()).Times(0); ASSERT_EQ(NetEq::kOK, neteq_external_->RegisterExternalDecoder( external_decoder_.get(), decoder, kPayloadType)); ASSERT_EQ(NetEq::kOK, neteq_->RegisterPayloadType(decoder, kPayloadType)); } void InsertPackets(int next_arrival_time) OVERRIDE { // Insert packet in external decoder instance. EXPECT_CALL(*external_decoder_, IncomingPacket(_, payload_size_bytes_, rtp_header_.header.sequenceNumber, rtp_header_.header.timestamp, next_arrival_time)); ASSERT_EQ( NetEq::kOK, neteq_external_->InsertPacket( rtp_header_, encoded_, payload_size_bytes_, next_arrival_time)); } void GetOutputAudio() OVERRIDE { NetEqOutputType output_type; int samples_per_channel; int num_channels; // Get audio from external decoder instance. ASSERT_EQ(NetEq::kOK, neteq_external_->GetAudio(kMaxBlockSize, output_external_, &samples_per_channel, &num_channels, &output_type)); EXPECT_EQ(1, num_channels); EXPECT_EQ(output_size_samples_, samples_per_channel); UpdateState(output_type); } virtual void UpdateState(NetEqOutputType output_type) { switch (test_state_) { case kInitialPhase: { if (output_type == kOutputNormal) { test_state_ = kNormalPhase; } break; } case kNormalPhase: { if (output_type == kOutputPLC) { test_state_ = kExpandPhase; } break; } case kExpandPhase: { if (output_type == kOutputPLCtoCNG) { test_state_ = kFadedExpandPhase; } break; } case kFadedExpandPhase: { if (output_type == kOutputNormal) { test_state_ = kRecovered; } break; } case kRecovered: { break; } } } void VerifyOutput(size_t num_samples) const OVERRIDE { if (test_state_ == kExpandPhase || test_state_ == kFadedExpandPhase) { // Don't verify the output in this phase of the test. return; } for (size_t i = 0; i < num_samples; ++i) { if (output_external_[i] != 0) return; } EXPECT_TRUE(false) << "Expected at least one non-zero sample in each output block."; } int NumExpectedDecodeCalls(int num_loops) const OVERRIDE { // Some packets won't be decoded because of the buffer being flushed after // the timestamp jump. return num_loops - (config_.max_packets_in_buffer + 1); } TestStates test_state_; }; TEST_F(LargeTimestampJumpTest, JumpLongerThanHalfRange) { // Set the timestamp series to start at 2880, increase to 7200, then jump to // 2869342376. The sequence numbers start at 42076 and increase by 1 for each // packet, also when the timestamp jumps. static const uint16_t kStartSeqeunceNumber = 42076; static const uint32_t kStartTimestamp = 2880; static const uint32_t kJumpFromTimestamp = 7200; static const uint32_t kJumpToTimestamp = 2869342376; COMPILE_ASSERT(kJumpFromTimestamp < kJumpToTimestamp, timestamp_jump_should_not_result_in_wrap); COMPILE_ASSERT( static_cast(kJumpToTimestamp - kJumpFromTimestamp) > 0x7FFFFFFF, jump_should_be_larger_than_half_range); // Replace the default RTP generator with one that jumps in timestamp. rtp_generator_.reset(new test::TimestampJumpRtpGenerator(samples_per_ms_, kStartSeqeunceNumber, kStartTimestamp, kJumpFromTimestamp, kJumpToTimestamp)); RunTest(130); // Run 130 laps @ 10 ms each in the test loop. EXPECT_EQ(kRecovered, test_state_); } TEST_F(LargeTimestampJumpTest, JumpLongerThanHalfRangeAndWrap) { // Make a jump larger than half the 32-bit timestamp range. Set the start // timestamp such that the jump will result in a wrap around. static const uint16_t kStartSeqeunceNumber = 42076; // Set the jump length slightly larger than 2^31. static const uint32_t kStartTimestamp = 3221223116; static const uint32_t kJumpFromTimestamp = 3221223216; static const uint32_t kJumpToTimestamp = 1073744278; COMPILE_ASSERT(kJumpToTimestamp < kJumpFromTimestamp, timestamp_jump_should_result_in_wrap); COMPILE_ASSERT( static_cast(kJumpToTimestamp - kJumpFromTimestamp) > 0x7FFFFFFF, jump_should_be_larger_than_half_range); // Replace the default RTP generator with one that jumps in timestamp. rtp_generator_.reset(new test::TimestampJumpRtpGenerator(samples_per_ms_, kStartSeqeunceNumber, kStartTimestamp, kJumpFromTimestamp, kJumpToTimestamp)); RunTest(130); // Run 130 laps @ 10 ms each in the test loop. EXPECT_EQ(kRecovered, test_state_); } class ShortTimestampJumpTest : public LargeTimestampJumpTest { protected: void UpdateState(NetEqOutputType output_type) OVERRIDE { switch (test_state_) { case kInitialPhase: { if (output_type == kOutputNormal) { test_state_ = kNormalPhase; } break; } case kNormalPhase: { if (output_type == kOutputPLC) { test_state_ = kExpandPhase; } break; } case kExpandPhase: { if (output_type == kOutputNormal) { test_state_ = kRecovered; } break; } case kRecovered: { break; } default: { FAIL(); } } } int NumExpectedDecodeCalls(int num_loops) const OVERRIDE { // Some packets won't be decoded because of the timestamp jump. return num_loops - 2; } }; TEST_F(ShortTimestampJumpTest, JumpShorterThanHalfRange) { // Make a jump shorter than half the 32-bit timestamp range. Set the start // timestamp such that the jump will not result in a wrap around. static const uint16_t kStartSeqeunceNumber = 42076; // Set the jump length slightly smaller than 2^31. static const uint32_t kStartTimestamp = 4711; static const uint32_t kJumpFromTimestamp = 4811; static const uint32_t kJumpToTimestamp = 2147483747; COMPILE_ASSERT(kJumpFromTimestamp < kJumpToTimestamp, timestamp_jump_should_not_result_in_wrap); COMPILE_ASSERT( static_cast(kJumpToTimestamp - kJumpFromTimestamp) < 0x7FFFFFFF, jump_should_be_smaller_than_half_range); // Replace the default RTP generator with one that jumps in timestamp. rtp_generator_.reset(new test::TimestampJumpRtpGenerator(samples_per_ms_, kStartSeqeunceNumber, kStartTimestamp, kJumpFromTimestamp, kJumpToTimestamp)); RunTest(130); // Run 130 laps @ 10 ms each in the test loop. EXPECT_EQ(kRecovered, test_state_); } TEST_F(ShortTimestampJumpTest, JumpShorterThanHalfRangeAndWrap) { // Make a jump shorter than half the 32-bit timestamp range. Set the start // timestamp such that the jump will result in a wrap around. static const uint16_t kStartSeqeunceNumber = 42076; // Set the jump length slightly smaller than 2^31. static const uint32_t kStartTimestamp = 3221227827; static const uint32_t kJumpFromTimestamp = 3221227927; static const uint32_t kJumpToTimestamp = 1073739567; COMPILE_ASSERT(kJumpToTimestamp < kJumpFromTimestamp, timestamp_jump_should_result_in_wrap); COMPILE_ASSERT( static_cast(kJumpToTimestamp - kJumpFromTimestamp) < 0x7FFFFFFF, jump_should_be_smaller_than_half_range); // Replace the default RTP generator with one that jumps in timestamp. rtp_generator_.reset(new test::TimestampJumpRtpGenerator(samples_per_ms_, kStartSeqeunceNumber, kStartTimestamp, kJumpFromTimestamp, kJumpToTimestamp)); RunTest(130); // Run 130 laps @ 10 ms each in the test loop. EXPECT_EQ(kRecovered, test_state_); } } // namespace webrtc