/* * Copyright (c) 2013 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ // Test to verify correct operation for externally created decoders. #include "testing/gmock/include/gmock/gmock.h" #include "webrtc/base/scoped_ptr.h" #include "webrtc/modules/audio_coding/neteq/mock/mock_external_decoder_pcm16b.h" #include "webrtc/modules/audio_coding/neteq/tools/input_audio_file.h" #include "webrtc/modules/audio_coding/neteq/tools/neteq_external_decoder_test.h" #include "webrtc/modules/audio_coding/neteq/tools/rtp_generator.h" #include "webrtc/test/testsupport/fileutils.h" namespace webrtc { using ::testing::_; using ::testing::Return; class NetEqExternalDecoderUnitTest : public test::NetEqExternalDecoderTest { protected: static const int kFrameSizeMs = 10; // Frame size of Pcm16B. NetEqExternalDecoderUnitTest(NetEqDecoder codec, MockExternalPcm16B* decoder) : NetEqExternalDecoderTest(codec, decoder), external_decoder_(decoder), samples_per_ms_(CodecSampleRateHz(codec) / 1000), frame_size_samples_(kFrameSizeMs * samples_per_ms_), rtp_generator_(new test::RtpGenerator(samples_per_ms_)), input_(new int16_t[frame_size_samples_]), // Payload should be no larger than input. encoded_(new uint8_t[2 * frame_size_samples_]), payload_size_bytes_(0), last_send_time_(0), last_arrival_time_(0) { // NetEq is not allowed to delete the external decoder (hence Times(0)). EXPECT_CALL(*external_decoder_, Die()).Times(0); Init(); const std::string file_name = webrtc::test::ResourcePath("audio_coding/testfile32kHz", "pcm"); input_file_.reset(new test::InputAudioFile(file_name)); } virtual ~NetEqExternalDecoderUnitTest() { delete [] input_; delete [] encoded_; // ~NetEqExternalDecoderTest() will delete |external_decoder_|, so expecting // Die() to be called. EXPECT_CALL(*external_decoder_, Die()).Times(1); } // Method to draw kFrameSizeMs audio and verify the output. // Use gTest methods. e.g. ASSERT_EQ() inside to trigger errors. virtual void GetAndVerifyOutput() = 0; // Method to get the number of calls to the Decode() method of the external // decoder. virtual int NumExpectedDecodeCalls(int num_loops) = 0; // Method to generate packets and return the send time of the packet. int GetNewPacket() { if (!input_file_->Read(frame_size_samples_, input_)) { return -1; } payload_size_bytes_ = WebRtcPcm16b_Encode(input_, frame_size_samples_, encoded_); int next_send_time = rtp_generator_->GetRtpHeader( kPayloadType, frame_size_samples_, &rtp_header_); return next_send_time; } // Method to decide packet losses. virtual bool Lost() { return false; } // Method to calculate packet arrival time. int GetArrivalTime(int send_time) { int arrival_time = last_arrival_time_ + (send_time - last_send_time_); last_send_time_ = send_time; last_arrival_time_ = arrival_time; return arrival_time; } void RunTest(int num_loops) { // Get next input packets (mono and multi-channel). uint32_t next_send_time; uint32_t next_arrival_time; do { next_send_time = GetNewPacket(); next_arrival_time = GetArrivalTime(next_send_time); } while (Lost()); // If lost, immediately read the next packet. EXPECT_CALL( *external_decoder_, DecodeInternal(_, payload_size_bytes_, 1000 * samples_per_ms_, _, _)) .Times(NumExpectedDecodeCalls(num_loops)); uint32_t time_now = 0; for (int k = 0; k < num_loops; ++k) { while (time_now >= next_arrival_time) { InsertPacket(rtp_header_, rtc::ArrayView( encoded_, payload_size_bytes_), next_arrival_time); // Get next input packet. do { next_send_time = GetNewPacket(); next_arrival_time = GetArrivalTime(next_send_time); } while (Lost()); // If lost, immediately read the next packet. } std::ostringstream ss; ss << "Lap number " << k << "."; SCOPED_TRACE(ss.str()); // Print out the parameter values on failure. // Compare mono and multi-channel. ASSERT_NO_FATAL_FAILURE(GetAndVerifyOutput()); time_now += kOutputLengthMs; } } void InsertPacket(WebRtcRTPHeader rtp_header, rtc::ArrayView payload, uint32_t receive_timestamp) override { EXPECT_CALL( *external_decoder_, IncomingPacket(_, payload.size(), rtp_header.header.sequenceNumber, rtp_header.header.timestamp, receive_timestamp)); NetEqExternalDecoderTest::InsertPacket(rtp_header, payload, receive_timestamp); } MockExternalPcm16B* external_decoder() { return external_decoder_.get(); } void ResetRtpGenerator(test::RtpGenerator* rtp_generator) { rtp_generator_.reset(rtp_generator); } int samples_per_ms() const { return samples_per_ms_; } private: rtc::scoped_ptr external_decoder_; int samples_per_ms_; size_t frame_size_samples_; rtc::scoped_ptr rtp_generator_; int16_t* input_; uint8_t* encoded_; size_t payload_size_bytes_; uint32_t last_send_time_; uint32_t last_arrival_time_; rtc::scoped_ptr input_file_; WebRtcRTPHeader rtp_header_; }; // This test encodes a few packets of PCM16b 32 kHz data and inserts it into two // different NetEq instances. The first instance uses the internal version of // the decoder object, while the second one uses an externally created decoder // object (ExternalPcm16B wrapped in MockExternalPcm16B, both defined above). // The test verifies that the output from both instances match. class NetEqExternalVsInternalDecoderTest : public NetEqExternalDecoderUnitTest, public ::testing::Test { protected: static const size_t kMaxBlockSize = 480; // 10 ms @ 48 kHz. NetEqExternalVsInternalDecoderTest() : NetEqExternalDecoderUnitTest(NetEqDecoder::kDecoderPCM16Bswb32kHz, new MockExternalPcm16B), sample_rate_hz_( CodecSampleRateHz(NetEqDecoder::kDecoderPCM16Bswb32kHz)) { NetEq::Config config; config.sample_rate_hz = CodecSampleRateHz(NetEqDecoder::kDecoderPCM16Bswb32kHz); neteq_internal_.reset(NetEq::Create(config)); } void SetUp() override { ASSERT_EQ(NetEq::kOK, neteq_internal_->RegisterPayloadType( NetEqDecoder::kDecoderPCM16Bswb32kHz, "pcm16-swb32", kPayloadType)); } void GetAndVerifyOutput() override { NetEqOutputType output_type; size_t samples_per_channel; size_t num_channels; // Get audio from internal decoder instance. EXPECT_EQ(NetEq::kOK, neteq_internal_->GetAudio(kMaxBlockSize, output_internal_, &samples_per_channel, &num_channels, &output_type)); EXPECT_EQ(1u, num_channels); EXPECT_EQ(static_cast(kOutputLengthMs * sample_rate_hz_ / 1000), samples_per_channel); // Get audio from external decoder instance. samples_per_channel = GetOutputAudio(kMaxBlockSize, output_, &output_type); for (size_t i = 0; i < samples_per_channel; ++i) { ASSERT_EQ(output_[i], output_internal_[i]) << "Diff in sample " << i << "."; } } void InsertPacket(WebRtcRTPHeader rtp_header, rtc::ArrayView payload, uint32_t receive_timestamp) override { // Insert packet in internal decoder. ASSERT_EQ(NetEq::kOK, neteq_internal_->InsertPacket(rtp_header, payload, receive_timestamp)); // Insert packet in external decoder instance. NetEqExternalDecoderUnitTest::InsertPacket(rtp_header, payload, receive_timestamp); } int NumExpectedDecodeCalls(int num_loops) override { return num_loops; } private: int sample_rate_hz_; rtc::scoped_ptr neteq_internal_; int16_t output_internal_[kMaxBlockSize]; int16_t output_[kMaxBlockSize]; }; TEST_F(NetEqExternalVsInternalDecoderTest, RunTest) { RunTest(100); // Run 100 laps @ 10 ms each in the test loop. } class LargeTimestampJumpTest : public NetEqExternalDecoderUnitTest, public ::testing::Test { protected: static const size_t kMaxBlockSize = 480; // 10 ms @ 48 kHz. enum TestStates { kInitialPhase, kNormalPhase, kExpandPhase, kFadedExpandPhase, kRecovered }; LargeTimestampJumpTest() : NetEqExternalDecoderUnitTest(NetEqDecoder::kDecoderPCM16B, new MockExternalPcm16B), test_state_(kInitialPhase) { EXPECT_CALL(*external_decoder(), HasDecodePlc()) .WillRepeatedly(Return(false)); } virtual void UpdateState(NetEqOutputType output_type) { switch (test_state_) { case kInitialPhase: { if (output_type == kOutputNormal) { test_state_ = kNormalPhase; } break; } case kNormalPhase: { if (output_type == kOutputPLC) { test_state_ = kExpandPhase; } break; } case kExpandPhase: { if (output_type == kOutputPLCtoCNG) { test_state_ = kFadedExpandPhase; } else if (output_type == kOutputNormal) { test_state_ = kRecovered; } break; } case kFadedExpandPhase: { if (output_type == kOutputNormal) { test_state_ = kRecovered; } break; } case kRecovered: { break; } } } void GetAndVerifyOutput() override { size_t num_samples; NetEqOutputType output_type; num_samples = GetOutputAudio(kMaxBlockSize, output_, &output_type); UpdateState(output_type); if (test_state_ == kExpandPhase || test_state_ == kFadedExpandPhase) { // Don't verify the output in this phase of the test. return; } for (size_t i = 0; i < num_samples; ++i) { if (output_[i] != 0) return; } EXPECT_TRUE(false) << "Expected at least one non-zero sample in each output block."; } int NumExpectedDecodeCalls(int num_loops) override { // Some packets at the end of the stream won't be decoded. When the jump in // timestamp happens, NetEq will do Expand during one GetAudio call. In the // next call it will decode the packet after the jump, but the net result is // that the delay increased by 1 packet. In another call, a Pre-emptive // Expand operation is performed, leading to delay increase by 1 packet. In // total, the test will end with a 2-packet delay, which results in the 2 // last packets not being decoded. return num_loops - 2; } TestStates test_state_; private: int16_t output_[kMaxBlockSize]; }; TEST_F(LargeTimestampJumpTest, JumpLongerThanHalfRange) { // Set the timestamp series to start at 2880, increase to 7200, then jump to // 2869342376. The sequence numbers start at 42076 and increase by 1 for each // packet, also when the timestamp jumps. static const uint16_t kStartSeqeunceNumber = 42076; static const uint32_t kStartTimestamp = 2880; static const uint32_t kJumpFromTimestamp = 7200; static const uint32_t kJumpToTimestamp = 2869342376; static_assert(kJumpFromTimestamp < kJumpToTimestamp, "timestamp jump should not result in wrap"); static_assert( static_cast(kJumpToTimestamp - kJumpFromTimestamp) > 0x7FFFFFFF, "jump should be larger than half range"); // Replace the default RTP generator with one that jumps in timestamp. ResetRtpGenerator(new test::TimestampJumpRtpGenerator(samples_per_ms(), kStartSeqeunceNumber, kStartTimestamp, kJumpFromTimestamp, kJumpToTimestamp)); RunTest(130); // Run 130 laps @ 10 ms each in the test loop. EXPECT_EQ(kRecovered, test_state_); } TEST_F(LargeTimestampJumpTest, JumpLongerThanHalfRangeAndWrap) { // Make a jump larger than half the 32-bit timestamp range. Set the start // timestamp such that the jump will result in a wrap around. static const uint16_t kStartSeqeunceNumber = 42076; // Set the jump length slightly larger than 2^31. static const uint32_t kStartTimestamp = 3221223116; static const uint32_t kJumpFromTimestamp = 3221223216; static const uint32_t kJumpToTimestamp = 1073744278; static_assert(kJumpToTimestamp < kJumpFromTimestamp, "timestamp jump should result in wrap"); static_assert( static_cast(kJumpToTimestamp - kJumpFromTimestamp) > 0x7FFFFFFF, "jump should be larger than half range"); // Replace the default RTP generator with one that jumps in timestamp. ResetRtpGenerator(new test::TimestampJumpRtpGenerator(samples_per_ms(), kStartSeqeunceNumber, kStartTimestamp, kJumpFromTimestamp, kJumpToTimestamp)); RunTest(130); // Run 130 laps @ 10 ms each in the test loop. EXPECT_EQ(kRecovered, test_state_); } class ShortTimestampJumpTest : public LargeTimestampJumpTest { protected: void UpdateState(NetEqOutputType output_type) override { switch (test_state_) { case kInitialPhase: { if (output_type == kOutputNormal) { test_state_ = kNormalPhase; } break; } case kNormalPhase: { if (output_type == kOutputPLC) { test_state_ = kExpandPhase; } break; } case kExpandPhase: { if (output_type == kOutputNormal) { test_state_ = kRecovered; } break; } case kRecovered: { break; } default: { FAIL(); } } } int NumExpectedDecodeCalls(int num_loops) override { // Some packets won't be decoded because of the timestamp jump. return num_loops - 2; } }; TEST_F(ShortTimestampJumpTest, JumpShorterThanHalfRange) { // Make a jump shorter than half the 32-bit timestamp range. Set the start // timestamp such that the jump will not result in a wrap around. static const uint16_t kStartSeqeunceNumber = 42076; // Set the jump length slightly smaller than 2^31. static const uint32_t kStartTimestamp = 4711; static const uint32_t kJumpFromTimestamp = 4811; static const uint32_t kJumpToTimestamp = 2147483747; static_assert(kJumpFromTimestamp < kJumpToTimestamp, "timestamp jump should not result in wrap"); static_assert( static_cast(kJumpToTimestamp - kJumpFromTimestamp) < 0x7FFFFFFF, "jump should be smaller than half range"); // Replace the default RTP generator with one that jumps in timestamp. ResetRtpGenerator(new test::TimestampJumpRtpGenerator(samples_per_ms(), kStartSeqeunceNumber, kStartTimestamp, kJumpFromTimestamp, kJumpToTimestamp)); RunTest(130); // Run 130 laps @ 10 ms each in the test loop. EXPECT_EQ(kRecovered, test_state_); } TEST_F(ShortTimestampJumpTest, JumpShorterThanHalfRangeAndWrap) { // Make a jump shorter than half the 32-bit timestamp range. Set the start // timestamp such that the jump will result in a wrap around. static const uint16_t kStartSeqeunceNumber = 42076; // Set the jump length slightly smaller than 2^31. static const uint32_t kStartTimestamp = 3221227827; static const uint32_t kJumpFromTimestamp = 3221227927; static const uint32_t kJumpToTimestamp = 1073739567; static_assert(kJumpToTimestamp < kJumpFromTimestamp, "timestamp jump should result in wrap"); static_assert( static_cast(kJumpToTimestamp - kJumpFromTimestamp) < 0x7FFFFFFF, "jump should be smaller than half range"); // Replace the default RTP generator with one that jumps in timestamp. ResetRtpGenerator(new test::TimestampJumpRtpGenerator(samples_per_ms(), kStartSeqeunceNumber, kStartTimestamp, kJumpFromTimestamp, kJumpToTimestamp)); RunTest(130); // Run 130 laps @ 10 ms each in the test loop. EXPECT_EQ(kRecovered, test_state_); } } // namespace webrtc