/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "webrtc/modules/audio_coding/neteq/neteq_impl.h" #include #include // memset #include #include "webrtc/base/checks.h" #include "webrtc/base/logging.h" #include "webrtc/base/safe_conversions.h" #include "webrtc/common_audio/signal_processing/include/signal_processing_library.h" #include "webrtc/modules/audio_coding/codecs/audio_decoder.h" #include "webrtc/modules/audio_coding/neteq/accelerate.h" #include "webrtc/modules/audio_coding/neteq/background_noise.h" #include "webrtc/modules/audio_coding/neteq/buffer_level_filter.h" #include "webrtc/modules/audio_coding/neteq/comfort_noise.h" #include "webrtc/modules/audio_coding/neteq/decision_logic.h" #include "webrtc/modules/audio_coding/neteq/decoder_database.h" #include "webrtc/modules/audio_coding/neteq/defines.h" #include "webrtc/modules/audio_coding/neteq/delay_manager.h" #include "webrtc/modules/audio_coding/neteq/delay_peak_detector.h" #include "webrtc/modules/audio_coding/neteq/dtmf_buffer.h" #include "webrtc/modules/audio_coding/neteq/dtmf_tone_generator.h" #include "webrtc/modules/audio_coding/neteq/expand.h" #include "webrtc/modules/audio_coding/neteq/merge.h" #include "webrtc/modules/audio_coding/neteq/nack.h" #include "webrtc/modules/audio_coding/neteq/normal.h" #include "webrtc/modules/audio_coding/neteq/packet_buffer.h" #include "webrtc/modules/audio_coding/neteq/packet.h" #include "webrtc/modules/audio_coding/neteq/payload_splitter.h" #include "webrtc/modules/audio_coding/neteq/post_decode_vad.h" #include "webrtc/modules/audio_coding/neteq/preemptive_expand.h" #include "webrtc/modules/audio_coding/neteq/sync_buffer.h" #include "webrtc/modules/audio_coding/neteq/timestamp_scaler.h" #include "webrtc/modules/interface/module_common_types.h" #include "webrtc/system_wrappers/include/critical_section_wrapper.h" // Modify the code to obtain backwards bit-exactness. Once bit-exactness is no // longer required, this #define should be removed (and the code that it // enables). #define LEGACY_BITEXACT namespace webrtc { NetEqImpl::NetEqImpl(const NetEq::Config& config, BufferLevelFilter* buffer_level_filter, DecoderDatabase* decoder_database, DelayManager* delay_manager, DelayPeakDetector* delay_peak_detector, DtmfBuffer* dtmf_buffer, DtmfToneGenerator* dtmf_tone_generator, PacketBuffer* packet_buffer, PayloadSplitter* payload_splitter, TimestampScaler* timestamp_scaler, AccelerateFactory* accelerate_factory, ExpandFactory* expand_factory, PreemptiveExpandFactory* preemptive_expand_factory, bool create_components) : crit_sect_(CriticalSectionWrapper::CreateCriticalSection()), buffer_level_filter_(buffer_level_filter), decoder_database_(decoder_database), delay_manager_(delay_manager), delay_peak_detector_(delay_peak_detector), dtmf_buffer_(dtmf_buffer), dtmf_tone_generator_(dtmf_tone_generator), packet_buffer_(packet_buffer), payload_splitter_(payload_splitter), timestamp_scaler_(timestamp_scaler), vad_(new PostDecodeVad()), expand_factory_(expand_factory), accelerate_factory_(accelerate_factory), preemptive_expand_factory_(preemptive_expand_factory), last_mode_(kModeNormal), decoded_buffer_length_(kMaxFrameSize), decoded_buffer_(new int16_t[decoded_buffer_length_]), playout_timestamp_(0), new_codec_(false), timestamp_(0), reset_decoder_(false), current_rtp_payload_type_(0xFF), // Invalid RTP payload type. current_cng_rtp_payload_type_(0xFF), // Invalid RTP payload type. ssrc_(0), first_packet_(true), error_code_(0), decoder_error_code_(0), background_noise_mode_(config.background_noise_mode), playout_mode_(config.playout_mode), enable_fast_accelerate_(config.enable_fast_accelerate), nack_enabled_(false) { LOG(LS_INFO) << "NetEq config: " << config.ToString(); int fs = config.sample_rate_hz; if (fs != 8000 && fs != 16000 && fs != 32000 && fs != 48000) { LOG(LS_ERROR) << "Sample rate " << fs << " Hz not supported. " << "Changing to 8000 Hz."; fs = 8000; } fs_hz_ = fs; fs_mult_ = fs / 8000; output_size_samples_ = static_cast(kOutputSizeMs * 8 * fs_mult_); decoder_frame_length_ = 3 * output_size_samples_; WebRtcSpl_Init(); if (create_components) { SetSampleRateAndChannels(fs, 1); // Default is 1 channel. } } NetEqImpl::~NetEqImpl() = default; int NetEqImpl::InsertPacket(const WebRtcRTPHeader& rtp_header, const uint8_t* payload, size_t length_bytes, uint32_t receive_timestamp) { CriticalSectionScoped lock(crit_sect_.get()); LOG(LS_VERBOSE) << "InsertPacket: ts=" << rtp_header.header.timestamp << ", sn=" << rtp_header.header.sequenceNumber << ", pt=" << static_cast(rtp_header.header.payloadType) << ", ssrc=" << rtp_header.header.ssrc << ", len=" << length_bytes; int error = InsertPacketInternal(rtp_header, payload, length_bytes, receive_timestamp, false); if (error != 0) { error_code_ = error; return kFail; } return kOK; } int NetEqImpl::InsertSyncPacket(const WebRtcRTPHeader& rtp_header, uint32_t receive_timestamp) { CriticalSectionScoped lock(crit_sect_.get()); LOG(LS_VERBOSE) << "InsertPacket-Sync: ts=" << rtp_header.header.timestamp << ", sn=" << rtp_header.header.sequenceNumber << ", pt=" << static_cast(rtp_header.header.payloadType) << ", ssrc=" << rtp_header.header.ssrc; const uint8_t kSyncPayload[] = { 's', 'y', 'n', 'c' }; int error = InsertPacketInternal( rtp_header, kSyncPayload, sizeof(kSyncPayload), receive_timestamp, true); if (error != 0) { error_code_ = error; return kFail; } return kOK; } int NetEqImpl::GetAudio(size_t max_length, int16_t* output_audio, size_t* samples_per_channel, int* num_channels, NetEqOutputType* type) { CriticalSectionScoped lock(crit_sect_.get()); LOG(LS_VERBOSE) << "GetAudio"; int error = GetAudioInternal(max_length, output_audio, samples_per_channel, num_channels); LOG(LS_VERBOSE) << "Produced " << *samples_per_channel << " samples/channel for " << *num_channels << " channel(s)"; if (error != 0) { error_code_ = error; return kFail; } if (type) { *type = LastOutputType(); } return kOK; } int NetEqImpl::RegisterPayloadType(NetEqDecoder codec, uint8_t rtp_payload_type) { CriticalSectionScoped lock(crit_sect_.get()); LOG(LS_VERBOSE) << "RegisterPayloadType " << static_cast(rtp_payload_type) << " " << static_cast(codec); int ret = decoder_database_->RegisterPayload(rtp_payload_type, codec); if (ret != DecoderDatabase::kOK) { switch (ret) { case DecoderDatabase::kInvalidRtpPayloadType: error_code_ = kInvalidRtpPayloadType; break; case DecoderDatabase::kCodecNotSupported: error_code_ = kCodecNotSupported; break; case DecoderDatabase::kDecoderExists: error_code_ = kDecoderExists; break; default: error_code_ = kOtherError; } return kFail; } return kOK; } int NetEqImpl::RegisterExternalDecoder(AudioDecoder* decoder, NetEqDecoder codec, uint8_t rtp_payload_type, int sample_rate_hz) { CriticalSectionScoped lock(crit_sect_.get()); LOG(LS_VERBOSE) << "RegisterExternalDecoder " << static_cast(rtp_payload_type) << " " << static_cast(codec); if (!decoder) { LOG(LS_ERROR) << "Cannot register external decoder with NULL pointer"; assert(false); return kFail; } int ret = decoder_database_->InsertExternal(rtp_payload_type, codec, sample_rate_hz, decoder); if (ret != DecoderDatabase::kOK) { switch (ret) { case DecoderDatabase::kInvalidRtpPayloadType: error_code_ = kInvalidRtpPayloadType; break; case DecoderDatabase::kCodecNotSupported: error_code_ = kCodecNotSupported; break; case DecoderDatabase::kDecoderExists: error_code_ = kDecoderExists; break; case DecoderDatabase::kInvalidSampleRate: error_code_ = kInvalidSampleRate; break; case DecoderDatabase::kInvalidPointer: error_code_ = kInvalidPointer; break; default: error_code_ = kOtherError; } return kFail; } return kOK; } int NetEqImpl::RemovePayloadType(uint8_t rtp_payload_type) { CriticalSectionScoped lock(crit_sect_.get()); int ret = decoder_database_->Remove(rtp_payload_type); if (ret == DecoderDatabase::kOK) { return kOK; } else if (ret == DecoderDatabase::kDecoderNotFound) { error_code_ = kDecoderNotFound; } else { error_code_ = kOtherError; } return kFail; } bool NetEqImpl::SetMinimumDelay(int delay_ms) { CriticalSectionScoped lock(crit_sect_.get()); if (delay_ms >= 0 && delay_ms < 10000) { assert(delay_manager_.get()); return delay_manager_->SetMinimumDelay(delay_ms); } return false; } bool NetEqImpl::SetMaximumDelay(int delay_ms) { CriticalSectionScoped lock(crit_sect_.get()); if (delay_ms >= 0 && delay_ms < 10000) { assert(delay_manager_.get()); return delay_manager_->SetMaximumDelay(delay_ms); } return false; } int NetEqImpl::LeastRequiredDelayMs() const { CriticalSectionScoped lock(crit_sect_.get()); assert(delay_manager_.get()); return delay_manager_->least_required_delay_ms(); } int NetEqImpl::SetTargetDelay() { return kNotImplemented; } int NetEqImpl::TargetDelay() { return kNotImplemented; } int NetEqImpl::CurrentDelayMs() const { CriticalSectionScoped lock(crit_sect_.get()); if (fs_hz_ == 0) return 0; // Sum up the samples in the packet buffer with the future length of the sync // buffer, and divide the sum by the sample rate. const size_t delay_samples = packet_buffer_->NumSamplesInBuffer(decoder_database_.get(), decoder_frame_length_) + sync_buffer_->FutureLength(); // The division below will truncate. const int delay_ms = static_cast(delay_samples) / rtc::CheckedDivExact(fs_hz_, 1000); return delay_ms; } // Deprecated. // TODO(henrik.lundin) Delete. void NetEqImpl::SetPlayoutMode(NetEqPlayoutMode mode) { CriticalSectionScoped lock(crit_sect_.get()); if (mode != playout_mode_) { playout_mode_ = mode; CreateDecisionLogic(); } } // Deprecated. // TODO(henrik.lundin) Delete. NetEqPlayoutMode NetEqImpl::PlayoutMode() const { CriticalSectionScoped lock(crit_sect_.get()); return playout_mode_; } int NetEqImpl::NetworkStatistics(NetEqNetworkStatistics* stats) { CriticalSectionScoped lock(crit_sect_.get()); assert(decoder_database_.get()); const size_t total_samples_in_buffers = packet_buffer_->NumSamplesInBuffer(decoder_database_.get(), decoder_frame_length_) + sync_buffer_->FutureLength(); assert(delay_manager_.get()); assert(decision_logic_.get()); stats_.GetNetworkStatistics(fs_hz_, total_samples_in_buffers, decoder_frame_length_, *delay_manager_.get(), *decision_logic_.get(), stats); return 0; } void NetEqImpl::GetRtcpStatistics(RtcpStatistics* stats) { CriticalSectionScoped lock(crit_sect_.get()); if (stats) { rtcp_.GetStatistics(false, stats); } } void NetEqImpl::GetRtcpStatisticsNoReset(RtcpStatistics* stats) { CriticalSectionScoped lock(crit_sect_.get()); if (stats) { rtcp_.GetStatistics(true, stats); } } void NetEqImpl::EnableVad() { CriticalSectionScoped lock(crit_sect_.get()); assert(vad_.get()); vad_->Enable(); } void NetEqImpl::DisableVad() { CriticalSectionScoped lock(crit_sect_.get()); assert(vad_.get()); vad_->Disable(); } bool NetEqImpl::GetPlayoutTimestamp(uint32_t* timestamp) { CriticalSectionScoped lock(crit_sect_.get()); if (first_packet_) { // We don't have a valid RTP timestamp until we have decoded our first // RTP packet. return false; } *timestamp = timestamp_scaler_->ToExternal(playout_timestamp_); return true; } int NetEqImpl::SetTargetNumberOfChannels() { return kNotImplemented; } int NetEqImpl::SetTargetSampleRate() { return kNotImplemented; } int NetEqImpl::LastError() const { CriticalSectionScoped lock(crit_sect_.get()); return error_code_; } int NetEqImpl::LastDecoderError() { CriticalSectionScoped lock(crit_sect_.get()); return decoder_error_code_; } void NetEqImpl::FlushBuffers() { CriticalSectionScoped lock(crit_sect_.get()); LOG(LS_VERBOSE) << "FlushBuffers"; packet_buffer_->Flush(); assert(sync_buffer_.get()); assert(expand_.get()); sync_buffer_->Flush(); sync_buffer_->set_next_index(sync_buffer_->next_index() - expand_->overlap_length()); // Set to wait for new codec. first_packet_ = true; } void NetEqImpl::PacketBufferStatistics(int* current_num_packets, int* max_num_packets) const { CriticalSectionScoped lock(crit_sect_.get()); packet_buffer_->BufferStat(current_num_packets, max_num_packets); } void NetEqImpl::EnableNack(size_t max_nack_list_size) { CriticalSectionScoped lock(crit_sect_.get()); if (!nack_enabled_) { const int kNackThresholdPackets = 2; nack_.reset(Nack::Create(kNackThresholdPackets)); nack_enabled_ = true; nack_->UpdateSampleRate(fs_hz_); } nack_->SetMaxNackListSize(max_nack_list_size); } void NetEqImpl::DisableNack() { CriticalSectionScoped lock(crit_sect_.get()); nack_.reset(); nack_enabled_ = false; } std::vector NetEqImpl::GetNackList(int64_t round_trip_time_ms) const { CriticalSectionScoped lock(crit_sect_.get()); if (!nack_enabled_) { return std::vector(); } RTC_DCHECK(nack_.get()); return nack_->GetNackList(round_trip_time_ms); } const SyncBuffer* NetEqImpl::sync_buffer_for_test() const { CriticalSectionScoped lock(crit_sect_.get()); return sync_buffer_.get(); } // Methods below this line are private. int NetEqImpl::InsertPacketInternal(const WebRtcRTPHeader& rtp_header, const uint8_t* payload, size_t length_bytes, uint32_t receive_timestamp, bool is_sync_packet) { if (!payload) { LOG_F(LS_ERROR) << "payload == NULL"; return kInvalidPointer; } // Sanity checks for sync-packets. if (is_sync_packet) { if (decoder_database_->IsDtmf(rtp_header.header.payloadType) || decoder_database_->IsRed(rtp_header.header.payloadType) || decoder_database_->IsComfortNoise(rtp_header.header.payloadType)) { LOG_F(LS_ERROR) << "Sync-packet with an unacceptable payload type " << static_cast(rtp_header.header.payloadType); return kSyncPacketNotAccepted; } if (first_packet_ || rtp_header.header.payloadType != current_rtp_payload_type_ || rtp_header.header.ssrc != ssrc_) { // Even if |current_rtp_payload_type_| is 0xFF, sync-packet isn't // accepted. LOG_F(LS_ERROR) << "Changing codec, SSRC or first packet with sync-packet."; return kSyncPacketNotAccepted; } } PacketList packet_list; RTPHeader main_header; { // Convert to Packet. // Create |packet| within this separate scope, since it should not be used // directly once it's been inserted in the packet list. This way, |packet| // is not defined outside of this block. Packet* packet = new Packet; packet->header.markerBit = false; packet->header.payloadType = rtp_header.header.payloadType; packet->header.sequenceNumber = rtp_header.header.sequenceNumber; packet->header.timestamp = rtp_header.header.timestamp; packet->header.ssrc = rtp_header.header.ssrc; packet->header.numCSRCs = 0; packet->payload_length = length_bytes; packet->primary = true; packet->waiting_time = 0; packet->payload = new uint8_t[packet->payload_length]; packet->sync_packet = is_sync_packet; if (!packet->payload) { LOG_F(LS_ERROR) << "Payload pointer is NULL."; } assert(payload); // Already checked above. memcpy(packet->payload, payload, packet->payload_length); // Insert packet in a packet list. packet_list.push_back(packet); // Save main payloads header for later. memcpy(&main_header, &packet->header, sizeof(main_header)); } bool update_sample_rate_and_channels = false; // Reinitialize NetEq if it's needed (changed SSRC or first call). if ((main_header.ssrc != ssrc_) || first_packet_) { // Note: |first_packet_| will be cleared further down in this method, once // the packet has been successfully inserted into the packet buffer. rtcp_.Init(main_header.sequenceNumber); // Flush the packet buffer and DTMF buffer. packet_buffer_->Flush(); dtmf_buffer_->Flush(); // Store new SSRC. ssrc_ = main_header.ssrc; // Update audio buffer timestamp. sync_buffer_->IncreaseEndTimestamp(main_header.timestamp - timestamp_); // Update codecs. timestamp_ = main_header.timestamp; current_rtp_payload_type_ = main_header.payloadType; // Reset timestamp scaling. timestamp_scaler_->Reset(); // Trigger an update of sampling rate and the number of channels. update_sample_rate_and_channels = true; } // Update RTCP statistics, only for regular packets. if (!is_sync_packet) rtcp_.Update(main_header, receive_timestamp); // Check for RED payload type, and separate payloads into several packets. if (decoder_database_->IsRed(main_header.payloadType)) { assert(!is_sync_packet); // We had a sanity check for this. if (payload_splitter_->SplitRed(&packet_list) != PayloadSplitter::kOK) { PacketBuffer::DeleteAllPackets(&packet_list); return kRedundancySplitError; } // Only accept a few RED payloads of the same type as the main data, // DTMF events and CNG. payload_splitter_->CheckRedPayloads(&packet_list, *decoder_database_); // Update the stored main payload header since the main payload has now // changed. memcpy(&main_header, &packet_list.front()->header, sizeof(main_header)); } // Check payload types. if (decoder_database_->CheckPayloadTypes(packet_list) == DecoderDatabase::kDecoderNotFound) { PacketBuffer::DeleteAllPackets(&packet_list); return kUnknownRtpPayloadType; } // Scale timestamp to internal domain (only for some codecs). timestamp_scaler_->ToInternal(&packet_list); // Process DTMF payloads. Cycle through the list of packets, and pick out any // DTMF payloads found. PacketList::iterator it = packet_list.begin(); while (it != packet_list.end()) { Packet* current_packet = (*it); assert(current_packet); assert(current_packet->payload); if (decoder_database_->IsDtmf(current_packet->header.payloadType)) { assert(!current_packet->sync_packet); // We had a sanity check for this. DtmfEvent event; int ret = DtmfBuffer::ParseEvent( current_packet->header.timestamp, current_packet->payload, current_packet->payload_length, &event); if (ret != DtmfBuffer::kOK) { PacketBuffer::DeleteAllPackets(&packet_list); return kDtmfParsingError; } if (dtmf_buffer_->InsertEvent(event) != DtmfBuffer::kOK) { PacketBuffer::DeleteAllPackets(&packet_list); return kDtmfInsertError; } // TODO(hlundin): Let the destructor of Packet handle the payload. delete [] current_packet->payload; delete current_packet; it = packet_list.erase(it); } else { ++it; } } // Check for FEC in packets, and separate payloads into several packets. int ret = payload_splitter_->SplitFec(&packet_list, decoder_database_.get()); if (ret != PayloadSplitter::kOK) { PacketBuffer::DeleteAllPackets(&packet_list); switch (ret) { case PayloadSplitter::kUnknownPayloadType: return kUnknownRtpPayloadType; default: return kOtherError; } } // Split payloads into smaller chunks. This also verifies that all payloads // are of a known payload type. SplitAudio() method is protected against // sync-packets. ret = payload_splitter_->SplitAudio(&packet_list, *decoder_database_); if (ret != PayloadSplitter::kOK) { PacketBuffer::DeleteAllPackets(&packet_list); switch (ret) { case PayloadSplitter::kUnknownPayloadType: return kUnknownRtpPayloadType; case PayloadSplitter::kFrameSplitError: return kFrameSplitError; default: return kOtherError; } } // Update bandwidth estimate, if the packet is not sync-packet. if (!packet_list.empty() && !packet_list.front()->sync_packet) { // The list can be empty here if we got nothing but DTMF payloads. AudioDecoder* decoder = decoder_database_->GetDecoder(main_header.payloadType); assert(decoder); // Should always get a valid object, since we have // already checked that the payload types are known. decoder->IncomingPacket(packet_list.front()->payload, packet_list.front()->payload_length, packet_list.front()->header.sequenceNumber, packet_list.front()->header.timestamp, receive_timestamp); } if (nack_enabled_) { RTC_DCHECK(nack_); if (update_sample_rate_and_channels) { nack_->Reset(); } nack_->UpdateLastReceivedPacket(packet_list.front()->header.sequenceNumber, packet_list.front()->header.timestamp); } // Insert packets in buffer. const size_t buffer_length_before_insert = packet_buffer_->NumPacketsInBuffer(); ret = packet_buffer_->InsertPacketList( &packet_list, *decoder_database_, ¤t_rtp_payload_type_, ¤t_cng_rtp_payload_type_); if (ret == PacketBuffer::kFlushed) { // Reset DSP timestamp etc. if packet buffer flushed. new_codec_ = true; update_sample_rate_and_channels = true; } else if (ret != PacketBuffer::kOK) { PacketBuffer::DeleteAllPackets(&packet_list); return kOtherError; } if (first_packet_) { first_packet_ = false; // Update the codec on the next GetAudio call. new_codec_ = true; } if (current_rtp_payload_type_ != 0xFF) { const DecoderDatabase::DecoderInfo* dec_info = decoder_database_->GetDecoderInfo(current_rtp_payload_type_); if (!dec_info) { assert(false); // Already checked that the payload type is known. } } if (update_sample_rate_and_channels && !packet_buffer_->Empty()) { // We do not use |current_rtp_payload_type_| to |set payload_type|, but // get the next RTP header from |packet_buffer_| to obtain the payload type. // The reason for it is the following corner case. If NetEq receives a // CNG packet with a sample rate different than the current CNG then it // flushes its buffer, assuming send codec must have been changed. However, // payload type of the hypothetically new send codec is not known. const RTPHeader* rtp_header = packet_buffer_->NextRtpHeader(); assert(rtp_header); int payload_type = rtp_header->payloadType; AudioDecoder* decoder = decoder_database_->GetDecoder(payload_type); assert(decoder); // Payloads are already checked to be valid. const DecoderDatabase::DecoderInfo* decoder_info = decoder_database_->GetDecoderInfo(payload_type); assert(decoder_info); if (decoder_info->fs_hz != fs_hz_ || decoder->Channels() != algorithm_buffer_->Channels()) { SetSampleRateAndChannels(decoder_info->fs_hz, decoder->Channels()); } if (nack_enabled_) { RTC_DCHECK(nack_); // Update the sample rate even if the rate is not new, because of Reset(). nack_->UpdateSampleRate(fs_hz_); } } // TODO(hlundin): Move this code to DelayManager class. const DecoderDatabase::DecoderInfo* dec_info = decoder_database_->GetDecoderInfo(main_header.payloadType); assert(dec_info); // Already checked that the payload type is known. delay_manager_->LastDecoderType(dec_info->codec_type); if (delay_manager_->last_pack_cng_or_dtmf() == 0) { // Calculate the total speech length carried in each packet. const size_t buffer_length_after_insert = packet_buffer_->NumPacketsInBuffer(); if (buffer_length_after_insert > buffer_length_before_insert) { const size_t packet_length_samples = (buffer_length_after_insert - buffer_length_before_insert) * decoder_frame_length_; if (packet_length_samples != decision_logic_->packet_length_samples()) { decision_logic_->set_packet_length_samples(packet_length_samples); delay_manager_->SetPacketAudioLength( rtc::checked_cast((1000 * packet_length_samples) / fs_hz_)); } } // Update statistics. if ((int32_t) (main_header.timestamp - timestamp_) >= 0 && !new_codec_) { // Only update statistics if incoming packet is not older than last played // out packet, and if new codec flag is not set. delay_manager_->Update(main_header.sequenceNumber, main_header.timestamp, fs_hz_); } } else if (delay_manager_->last_pack_cng_or_dtmf() == -1) { // This is first "normal" packet after CNG or DTMF. // Reset packet time counter and measure time until next packet, // but don't update statistics. delay_manager_->set_last_pack_cng_or_dtmf(0); delay_manager_->ResetPacketIatCount(); } return 0; } int NetEqImpl::GetAudioInternal(size_t max_length, int16_t* output, size_t* samples_per_channel, int* num_channels) { PacketList packet_list; DtmfEvent dtmf_event; Operations operation; bool play_dtmf; int return_value = GetDecision(&operation, &packet_list, &dtmf_event, &play_dtmf); if (return_value != 0) { last_mode_ = kModeError; return return_value; } LOG(LS_VERBOSE) << "GetDecision returned operation=" << operation << " and " << packet_list.size() << " packet(s)"; AudioDecoder::SpeechType speech_type; int length = 0; int decode_return_value = Decode(&packet_list, &operation, &length, &speech_type); assert(vad_.get()); bool sid_frame_available = (operation == kRfc3389Cng && !packet_list.empty()); vad_->Update(decoded_buffer_.get(), static_cast(length), speech_type, sid_frame_available, fs_hz_); algorithm_buffer_->Clear(); switch (operation) { case kNormal: { DoNormal(decoded_buffer_.get(), length, speech_type, play_dtmf); break; } case kMerge: { DoMerge(decoded_buffer_.get(), length, speech_type, play_dtmf); break; } case kExpand: { return_value = DoExpand(play_dtmf); break; } case kAccelerate: case kFastAccelerate: { const bool fast_accelerate = enable_fast_accelerate_ && (operation == kFastAccelerate); return_value = DoAccelerate(decoded_buffer_.get(), length, speech_type, play_dtmf, fast_accelerate); break; } case kPreemptiveExpand: { return_value = DoPreemptiveExpand(decoded_buffer_.get(), length, speech_type, play_dtmf); break; } case kRfc3389Cng: case kRfc3389CngNoPacket: { return_value = DoRfc3389Cng(&packet_list, play_dtmf); break; } case kCodecInternalCng: { // This handles the case when there is no transmission and the decoder // should produce internal comfort noise. // TODO(hlundin): Write test for codec-internal CNG. DoCodecInternalCng(decoded_buffer_.get(), length); break; } case kDtmf: { // TODO(hlundin): Write test for this. return_value = DoDtmf(dtmf_event, &play_dtmf); break; } case kAlternativePlc: { // TODO(hlundin): Write test for this. DoAlternativePlc(false); break; } case kAlternativePlcIncreaseTimestamp: { // TODO(hlundin): Write test for this. DoAlternativePlc(true); break; } case kAudioRepetitionIncreaseTimestamp: { // TODO(hlundin): Write test for this. sync_buffer_->IncreaseEndTimestamp( static_cast(output_size_samples_)); // Skipping break on purpose. Execution should move on into the // next case. FALLTHROUGH(); } case kAudioRepetition: { // TODO(hlundin): Write test for this. // Copy last |output_size_samples_| from |sync_buffer_| to // |algorithm_buffer|. algorithm_buffer_->PushBackFromIndex( *sync_buffer_, sync_buffer_->Size() - output_size_samples_); expand_->Reset(); break; } case kUndefined: { LOG(LS_ERROR) << "Invalid operation kUndefined."; assert(false); // This should not happen. last_mode_ = kModeError; return kInvalidOperation; } } // End of switch. if (return_value < 0) { return return_value; } if (last_mode_ != kModeRfc3389Cng) { comfort_noise_->Reset(); } // Copy from |algorithm_buffer| to |sync_buffer_|. sync_buffer_->PushBack(*algorithm_buffer_); // Extract data from |sync_buffer_| to |output|. size_t num_output_samples_per_channel = output_size_samples_; size_t num_output_samples = output_size_samples_ * sync_buffer_->Channels(); if (num_output_samples > max_length) { LOG(LS_WARNING) << "Output array is too short. " << max_length << " < " << output_size_samples_ << " * " << sync_buffer_->Channels(); num_output_samples = max_length; num_output_samples_per_channel = max_length / sync_buffer_->Channels(); } const size_t samples_from_sync = sync_buffer_->GetNextAudioInterleaved(num_output_samples_per_channel, output); *num_channels = static_cast(sync_buffer_->Channels()); LOG(LS_VERBOSE) << "Sync buffer (" << *num_channels << " channel(s)):" << " insert " << algorithm_buffer_->Size() << " samples, extract " << samples_from_sync << " samples"; if (sync_buffer_->FutureLength() < expand_->overlap_length()) { // The sync buffer should always contain |overlap_length| samples, but now // too many samples have been extracted. Reinstall the |overlap_length| // lookahead by moving the index. const size_t missing_lookahead_samples = expand_->overlap_length() - sync_buffer_->FutureLength(); RTC_DCHECK_GE(sync_buffer_->next_index(), missing_lookahead_samples); sync_buffer_->set_next_index(sync_buffer_->next_index() - missing_lookahead_samples); } if (samples_from_sync != output_size_samples_) { LOG(LS_ERROR) << "samples_from_sync (" << samples_from_sync << ") != output_size_samples_ (" << output_size_samples_ << ")"; // TODO(minyue): treatment of under-run, filling zeros memset(output, 0, num_output_samples * sizeof(int16_t)); *samples_per_channel = output_size_samples_; return kSampleUnderrun; } *samples_per_channel = output_size_samples_; // Should always have overlap samples left in the |sync_buffer_|. RTC_DCHECK_GE(sync_buffer_->FutureLength(), expand_->overlap_length()); if (play_dtmf) { return_value = DtmfOverdub(dtmf_event, sync_buffer_->Channels(), output); } // Update the background noise parameters if last operation wrote data // straight from the decoder to the |sync_buffer_|. That is, none of the // operations that modify the signal can be followed by a parameter update. if ((last_mode_ == kModeNormal) || (last_mode_ == kModeAccelerateFail) || (last_mode_ == kModePreemptiveExpandFail) || (last_mode_ == kModeRfc3389Cng) || (last_mode_ == kModeCodecInternalCng)) { background_noise_->Update(*sync_buffer_, *vad_.get()); } if (operation == kDtmf) { // DTMF data was written the end of |sync_buffer_|. // Update index to end of DTMF data in |sync_buffer_|. sync_buffer_->set_dtmf_index(sync_buffer_->Size()); } if (last_mode_ != kModeExpand) { // If last operation was not expand, calculate the |playout_timestamp_| from // the |sync_buffer_|. However, do not update the |playout_timestamp_| if it // would be moved "backwards". uint32_t temp_timestamp = sync_buffer_->end_timestamp() - static_cast(sync_buffer_->FutureLength()); if (static_cast(temp_timestamp - playout_timestamp_) > 0) { playout_timestamp_ = temp_timestamp; } } else { // Use dead reckoning to estimate the |playout_timestamp_|. playout_timestamp_ += static_cast(output_size_samples_); } if (decode_return_value) return decode_return_value; return return_value; } int NetEqImpl::GetDecision(Operations* operation, PacketList* packet_list, DtmfEvent* dtmf_event, bool* play_dtmf) { // Initialize output variables. *play_dtmf = false; *operation = kUndefined; // Increment time counters. packet_buffer_->IncrementWaitingTimes(); stats_.IncreaseCounter(output_size_samples_, fs_hz_); assert(sync_buffer_.get()); uint32_t end_timestamp = sync_buffer_->end_timestamp(); if (!new_codec_) { const uint32_t five_seconds_samples = 5 * fs_hz_; packet_buffer_->DiscardOldPackets(end_timestamp, five_seconds_samples); } const RTPHeader* header = packet_buffer_->NextRtpHeader(); if (decision_logic_->CngRfc3389On() || last_mode_ == kModeRfc3389Cng) { // Because of timestamp peculiarities, we have to "manually" disallow using // a CNG packet with the same timestamp as the one that was last played. // This can happen when using redundancy and will cause the timing to shift. while (header && decoder_database_->IsComfortNoise(header->payloadType) && (end_timestamp >= header->timestamp || end_timestamp + decision_logic_->generated_noise_samples() > header->timestamp)) { // Don't use this packet, discard it. if (packet_buffer_->DiscardNextPacket() != PacketBuffer::kOK) { assert(false); // Must be ok by design. } // Check buffer again. if (!new_codec_) { packet_buffer_->DiscardOldPackets(end_timestamp, 5 * fs_hz_); } header = packet_buffer_->NextRtpHeader(); } } assert(expand_.get()); const int samples_left = static_cast(sync_buffer_->FutureLength() - expand_->overlap_length()); if (last_mode_ == kModeAccelerateSuccess || last_mode_ == kModeAccelerateLowEnergy || last_mode_ == kModePreemptiveExpandSuccess || last_mode_ == kModePreemptiveExpandLowEnergy) { // Subtract (samples_left + output_size_samples_) from sampleMemory. decision_logic_->AddSampleMemory( -(samples_left + rtc::checked_cast(output_size_samples_))); } // Check if it is time to play a DTMF event. if (dtmf_buffer_->GetEvent( static_cast( end_timestamp + decision_logic_->generated_noise_samples()), dtmf_event)) { *play_dtmf = true; } // Get instruction. assert(sync_buffer_.get()); assert(expand_.get()); *operation = decision_logic_->GetDecision(*sync_buffer_, *expand_, decoder_frame_length_, header, last_mode_, *play_dtmf, &reset_decoder_); // Check if we already have enough samples in the |sync_buffer_|. If so, // change decision to normal, unless the decision was merge, accelerate, or // preemptive expand. if (samples_left >= rtc::checked_cast(output_size_samples_) && *operation != kMerge && *operation != kAccelerate && *operation != kFastAccelerate && *operation != kPreemptiveExpand) { *operation = kNormal; return 0; } decision_logic_->ExpandDecision(*operation); // Check conditions for reset. if (new_codec_ || *operation == kUndefined) { // The only valid reason to get kUndefined is that new_codec_ is set. assert(new_codec_); if (*play_dtmf && !header) { timestamp_ = dtmf_event->timestamp; } else { if (!header) { LOG(LS_ERROR) << "Packet missing where it shouldn't."; return -1; } timestamp_ = header->timestamp; if (*operation == kRfc3389CngNoPacket #ifndef LEGACY_BITEXACT // Without this check, it can happen that a non-CNG packet is sent to // the CNG decoder as if it was a SID frame. This is clearly a bug, // but is kept for now to maintain bit-exactness with the test // vectors. && decoder_database_->IsComfortNoise(header->payloadType) #endif ) { // Change decision to CNG packet, since we do have a CNG packet, but it // was considered too early to use. Now, use it anyway. *operation = kRfc3389Cng; } else if (*operation != kRfc3389Cng) { *operation = kNormal; } } // Adjust |sync_buffer_| timestamp before setting |end_timestamp| to the // new value. sync_buffer_->IncreaseEndTimestamp(timestamp_ - end_timestamp); end_timestamp = timestamp_; new_codec_ = false; decision_logic_->SoftReset(); buffer_level_filter_->Reset(); delay_manager_->Reset(); stats_.ResetMcu(); } size_t required_samples = output_size_samples_; const size_t samples_10_ms = static_cast(80 * fs_mult_); const size_t samples_20_ms = 2 * samples_10_ms; const size_t samples_30_ms = 3 * samples_10_ms; switch (*operation) { case kExpand: { timestamp_ = end_timestamp; return 0; } case kRfc3389CngNoPacket: case kCodecInternalCng: { return 0; } case kDtmf: { // TODO(hlundin): Write test for this. // Update timestamp. timestamp_ = end_timestamp; if (decision_logic_->generated_noise_samples() > 0 && last_mode_ != kModeDtmf) { // Make a jump in timestamp due to the recently played comfort noise. uint32_t timestamp_jump = static_cast(decision_logic_->generated_noise_samples()); sync_buffer_->IncreaseEndTimestamp(timestamp_jump); timestamp_ += timestamp_jump; } decision_logic_->set_generated_noise_samples(0); return 0; } case kAccelerate: case kFastAccelerate: { // In order to do an accelerate we need at least 30 ms of audio data. if (samples_left >= static_cast(samples_30_ms)) { // Already have enough data, so we do not need to extract any more. decision_logic_->set_sample_memory(samples_left); decision_logic_->set_prev_time_scale(true); return 0; } else if (samples_left >= static_cast(samples_10_ms) && decoder_frame_length_ >= samples_30_ms) { // Avoid decoding more data as it might overflow the playout buffer. *operation = kNormal; return 0; } else if (samples_left < static_cast(samples_20_ms) && decoder_frame_length_ < samples_30_ms) { // Build up decoded data by decoding at least 20 ms of audio data. Do // not perform accelerate yet, but wait until we only need to do one // decoding. required_samples = 2 * output_size_samples_; *operation = kNormal; } // If none of the above is true, we have one of two possible situations: // (1) 20 ms <= samples_left < 30 ms and decoder_frame_length_ < 30 ms; or // (2) samples_left < 10 ms and decoder_frame_length_ >= 30 ms. // In either case, we move on with the accelerate decision, and decode one // frame now. break; } case kPreemptiveExpand: { // In order to do a preemptive expand we need at least 30 ms of decoded // audio data. if ((samples_left >= static_cast(samples_30_ms)) || (samples_left >= static_cast(samples_10_ms) && decoder_frame_length_ >= samples_30_ms)) { // Already have enough data, so we do not need to extract any more. // Or, avoid decoding more data as it might overflow the playout buffer. // Still try preemptive expand, though. decision_logic_->set_sample_memory(samples_left); decision_logic_->set_prev_time_scale(true); return 0; } if (samples_left < static_cast(samples_20_ms) && decoder_frame_length_ < samples_30_ms) { // Build up decoded data by decoding at least 20 ms of audio data. // Still try to perform preemptive expand. required_samples = 2 * output_size_samples_; } // Move on with the preemptive expand decision. break; } case kMerge: { required_samples = std::max(merge_->RequiredFutureSamples(), required_samples); break; } default: { // Do nothing. } } // Get packets from buffer. int extracted_samples = 0; if (header && *operation != kAlternativePlc && *operation != kAlternativePlcIncreaseTimestamp && *operation != kAudioRepetition && *operation != kAudioRepetitionIncreaseTimestamp) { sync_buffer_->IncreaseEndTimestamp(header->timestamp - end_timestamp); if (decision_logic_->CngOff()) { // Adjustment of timestamp only corresponds to an actual packet loss // if comfort noise is not played. If comfort noise was just played, // this adjustment of timestamp is only done to get back in sync with the // stream timestamp; no loss to report. stats_.LostSamples(header->timestamp - end_timestamp); } if (*operation != kRfc3389Cng) { // We are about to decode and use a non-CNG packet. decision_logic_->SetCngOff(); } // Reset CNG timestamp as a new packet will be delivered. // (Also if this is a CNG packet, since playedOutTS is updated.) decision_logic_->set_generated_noise_samples(0); extracted_samples = ExtractPackets(required_samples, packet_list); if (extracted_samples < 0) { return kPacketBufferCorruption; } } if (*operation == kAccelerate || *operation == kFastAccelerate || *operation == kPreemptiveExpand) { decision_logic_->set_sample_memory(samples_left + extracted_samples); decision_logic_->set_prev_time_scale(true); } if (*operation == kAccelerate || *operation == kFastAccelerate) { // Check that we have enough data (30ms) to do accelerate. if (extracted_samples + samples_left < static_cast(samples_30_ms)) { // TODO(hlundin): Write test for this. // Not enough, do normal operation instead. *operation = kNormal; } } timestamp_ = end_timestamp; return 0; } int NetEqImpl::Decode(PacketList* packet_list, Operations* operation, int* decoded_length, AudioDecoder::SpeechType* speech_type) { *speech_type = AudioDecoder::kSpeech; // When packet_list is empty, we may be in kCodecInternalCng mode, and for // that we use current active decoder. AudioDecoder* decoder = decoder_database_->GetActiveDecoder(); if (!packet_list->empty()) { const Packet* packet = packet_list->front(); uint8_t payload_type = packet->header.payloadType; if (!decoder_database_->IsComfortNoise(payload_type)) { decoder = decoder_database_->GetDecoder(payload_type); assert(decoder); if (!decoder) { LOG(LS_WARNING) << "Unknown payload type " << static_cast(payload_type); PacketBuffer::DeleteAllPackets(packet_list); return kDecoderNotFound; } bool decoder_changed; decoder_database_->SetActiveDecoder(payload_type, &decoder_changed); if (decoder_changed) { // We have a new decoder. Re-init some values. const DecoderDatabase::DecoderInfo* decoder_info = decoder_database_ ->GetDecoderInfo(payload_type); assert(decoder_info); if (!decoder_info) { LOG(LS_WARNING) << "Unknown payload type " << static_cast(payload_type); PacketBuffer::DeleteAllPackets(packet_list); return kDecoderNotFound; } // If sampling rate or number of channels has changed, we need to make // a reset. if (decoder_info->fs_hz != fs_hz_ || decoder->Channels() != algorithm_buffer_->Channels()) { // TODO(tlegrand): Add unittest to cover this event. SetSampleRateAndChannels(decoder_info->fs_hz, decoder->Channels()); } sync_buffer_->set_end_timestamp(timestamp_); playout_timestamp_ = timestamp_; } } } if (reset_decoder_) { // TODO(hlundin): Write test for this. if (decoder) decoder->Reset(); // Reset comfort noise decoder. AudioDecoder* cng_decoder = decoder_database_->GetActiveCngDecoder(); if (cng_decoder) cng_decoder->Reset(); reset_decoder_ = false; } #ifdef LEGACY_BITEXACT // Due to a bug in old SignalMCU, it could happen that CNG operation was // decided, but a speech packet was provided. The speech packet will be used // to update the comfort noise decoder, as if it was a SID frame, which is // clearly wrong. if (*operation == kRfc3389Cng) { return 0; } #endif *decoded_length = 0; // Update codec-internal PLC state. if ((*operation == kMerge) && decoder && decoder->HasDecodePlc()) { decoder->DecodePlc(1, &decoded_buffer_[*decoded_length]); } int return_value; if (*operation == kCodecInternalCng) { RTC_DCHECK(packet_list->empty()); return_value = DecodeCng(decoder, decoded_length, speech_type); } else { return_value = DecodeLoop(packet_list, *operation, decoder, decoded_length, speech_type); } if (*decoded_length < 0) { // Error returned from the decoder. *decoded_length = 0; sync_buffer_->IncreaseEndTimestamp( static_cast(decoder_frame_length_)); int error_code = 0; if (decoder) error_code = decoder->ErrorCode(); if (error_code != 0) { // Got some error code from the decoder. decoder_error_code_ = error_code; return_value = kDecoderErrorCode; LOG(LS_WARNING) << "Decoder returned error code: " << error_code; } else { // Decoder does not implement error codes. Return generic error. return_value = kOtherDecoderError; LOG(LS_WARNING) << "Decoder error (no error code)"; } *operation = kExpand; // Do expansion to get data instead. } if (*speech_type != AudioDecoder::kComfortNoise) { // Don't increment timestamp if codec returned CNG speech type // since in this case, the we will increment the CNGplayedTS counter. // Increase with number of samples per channel. assert(*decoded_length == 0 || (decoder && decoder->Channels() == sync_buffer_->Channels())); sync_buffer_->IncreaseEndTimestamp( *decoded_length / static_cast(sync_buffer_->Channels())); } return return_value; } int NetEqImpl::DecodeCng(AudioDecoder* decoder, int* decoded_length, AudioDecoder::SpeechType* speech_type) { if (!decoder) { // This happens when active decoder is not defined. *decoded_length = -1; return 0; } while (*decoded_length < rtc::checked_cast(output_size_samples_)) { const int length = decoder->Decode( nullptr, 0, fs_hz_, (decoded_buffer_length_ - *decoded_length) * sizeof(int16_t), &decoded_buffer_[*decoded_length], speech_type); if (length > 0) { *decoded_length += length; LOG(LS_VERBOSE) << "Decoded " << length << " CNG samples"; } else { // Error. LOG(LS_WARNING) << "Failed to decode CNG"; *decoded_length = -1; break; } if (*decoded_length > static_cast(decoded_buffer_length_)) { // Guard against overflow. LOG(LS_WARNING) << "Decoded too much CNG."; return kDecodedTooMuch; } } return 0; } int NetEqImpl::DecodeLoop(PacketList* packet_list, const Operations& operation, AudioDecoder* decoder, int* decoded_length, AudioDecoder::SpeechType* speech_type) { Packet* packet = NULL; if (!packet_list->empty()) { packet = packet_list->front(); } // Do decoding. while (packet && !decoder_database_->IsComfortNoise(packet->header.payloadType)) { assert(decoder); // At this point, we must have a decoder object. // The number of channels in the |sync_buffer_| should be the same as the // number decoder channels. assert(sync_buffer_->Channels() == decoder->Channels()); assert(decoded_buffer_length_ >= kMaxFrameSize * decoder->Channels()); assert(operation == kNormal || operation == kAccelerate || operation == kFastAccelerate || operation == kMerge || operation == kPreemptiveExpand); packet_list->pop_front(); size_t payload_length = packet->payload_length; int decode_length; if (packet->sync_packet) { // Decode to silence with the same frame size as the last decode. LOG(LS_VERBOSE) << "Decoding sync-packet: " << " ts=" << packet->header.timestamp << ", sn=" << packet->header.sequenceNumber << ", pt=" << static_cast(packet->header.payloadType) << ", ssrc=" << packet->header.ssrc << ", len=" << packet->payload_length; memset(&decoded_buffer_[*decoded_length], 0, decoder_frame_length_ * decoder->Channels() * sizeof(decoded_buffer_[0])); decode_length = rtc::checked_cast(decoder_frame_length_); } else if (!packet->primary) { // This is a redundant payload; call the special decoder method. LOG(LS_VERBOSE) << "Decoding packet (redundant):" << " ts=" << packet->header.timestamp << ", sn=" << packet->header.sequenceNumber << ", pt=" << static_cast(packet->header.payloadType) << ", ssrc=" << packet->header.ssrc << ", len=" << packet->payload_length; decode_length = decoder->DecodeRedundant( packet->payload, packet->payload_length, fs_hz_, (decoded_buffer_length_ - *decoded_length) * sizeof(int16_t), &decoded_buffer_[*decoded_length], speech_type); } else { LOG(LS_VERBOSE) << "Decoding packet: ts=" << packet->header.timestamp << ", sn=" << packet->header.sequenceNumber << ", pt=" << static_cast(packet->header.payloadType) << ", ssrc=" << packet->header.ssrc << ", len=" << packet->payload_length; decode_length = decoder->Decode( packet->payload, packet->payload_length, fs_hz_, (decoded_buffer_length_ - *decoded_length) * sizeof(int16_t), &decoded_buffer_[*decoded_length], speech_type); } delete[] packet->payload; delete packet; packet = NULL; if (decode_length > 0) { *decoded_length += decode_length; // Update |decoder_frame_length_| with number of samples per channel. decoder_frame_length_ = static_cast(decode_length) / decoder->Channels(); LOG(LS_VERBOSE) << "Decoded " << decode_length << " samples (" << decoder->Channels() << " channel(s) -> " << decoder_frame_length_ << " samples per channel)"; } else if (decode_length < 0) { // Error. LOG(LS_WARNING) << "Decode " << decode_length << " " << payload_length; *decoded_length = -1; PacketBuffer::DeleteAllPackets(packet_list); break; } if (*decoded_length > static_cast(decoded_buffer_length_)) { // Guard against overflow. LOG(LS_WARNING) << "Decoded too much."; PacketBuffer::DeleteAllPackets(packet_list); return kDecodedTooMuch; } if (!packet_list->empty()) { packet = packet_list->front(); } else { packet = NULL; } } // End of decode loop. // If the list is not empty at this point, either a decoding error terminated // the while-loop, or list must hold exactly one CNG packet. assert(packet_list->empty() || *decoded_length < 0 || (packet_list->size() == 1 && packet && decoder_database_->IsComfortNoise(packet->header.payloadType))); return 0; } void NetEqImpl::DoNormal(const int16_t* decoded_buffer, size_t decoded_length, AudioDecoder::SpeechType speech_type, bool play_dtmf) { assert(normal_.get()); assert(mute_factor_array_.get()); normal_->Process(decoded_buffer, decoded_length, last_mode_, mute_factor_array_.get(), algorithm_buffer_.get()); if (decoded_length != 0) { last_mode_ = kModeNormal; } // If last packet was decoded as an inband CNG, set mode to CNG instead. if ((speech_type == AudioDecoder::kComfortNoise) || ((last_mode_ == kModeCodecInternalCng) && (decoded_length == 0))) { // TODO(hlundin): Remove second part of || statement above. last_mode_ = kModeCodecInternalCng; } if (!play_dtmf) { dtmf_tone_generator_->Reset(); } } void NetEqImpl::DoMerge(int16_t* decoded_buffer, size_t decoded_length, AudioDecoder::SpeechType speech_type, bool play_dtmf) { assert(mute_factor_array_.get()); assert(merge_.get()); size_t new_length = merge_->Process(decoded_buffer, decoded_length, mute_factor_array_.get(), algorithm_buffer_.get()); size_t expand_length_correction = new_length - decoded_length / algorithm_buffer_->Channels(); // Update in-call and post-call statistics. if (expand_->MuteFactor(0) == 0) { // Expand generates only noise. stats_.ExpandedNoiseSamples(expand_length_correction); } else { // Expansion generates more than only noise. stats_.ExpandedVoiceSamples(expand_length_correction); } last_mode_ = kModeMerge; // If last packet was decoded as an inband CNG, set mode to CNG instead. if (speech_type == AudioDecoder::kComfortNoise) { last_mode_ = kModeCodecInternalCng; } expand_->Reset(); if (!play_dtmf) { dtmf_tone_generator_->Reset(); } } int NetEqImpl::DoExpand(bool play_dtmf) { while ((sync_buffer_->FutureLength() - expand_->overlap_length()) < output_size_samples_) { algorithm_buffer_->Clear(); int return_value = expand_->Process(algorithm_buffer_.get()); size_t length = algorithm_buffer_->Size(); // Update in-call and post-call statistics. if (expand_->MuteFactor(0) == 0) { // Expand operation generates only noise. stats_.ExpandedNoiseSamples(length); } else { // Expand operation generates more than only noise. stats_.ExpandedVoiceSamples(length); } last_mode_ = kModeExpand; if (return_value < 0) { return return_value; } sync_buffer_->PushBack(*algorithm_buffer_); algorithm_buffer_->Clear(); } if (!play_dtmf) { dtmf_tone_generator_->Reset(); } return 0; } int NetEqImpl::DoAccelerate(int16_t* decoded_buffer, size_t decoded_length, AudioDecoder::SpeechType speech_type, bool play_dtmf, bool fast_accelerate) { const size_t required_samples = static_cast(240 * fs_mult_); // Must have 30 ms. size_t borrowed_samples_per_channel = 0; size_t num_channels = algorithm_buffer_->Channels(); size_t decoded_length_per_channel = decoded_length / num_channels; if (decoded_length_per_channel < required_samples) { // Must move data from the |sync_buffer_| in order to get 30 ms. borrowed_samples_per_channel = static_cast(required_samples - decoded_length_per_channel); memmove(&decoded_buffer[borrowed_samples_per_channel * num_channels], decoded_buffer, sizeof(int16_t) * decoded_length); sync_buffer_->ReadInterleavedFromEnd(borrowed_samples_per_channel, decoded_buffer); decoded_length = required_samples * num_channels; } size_t samples_removed; Accelerate::ReturnCodes return_code = accelerate_->Process(decoded_buffer, decoded_length, fast_accelerate, algorithm_buffer_.get(), &samples_removed); stats_.AcceleratedSamples(samples_removed); switch (return_code) { case Accelerate::kSuccess: last_mode_ = kModeAccelerateSuccess; break; case Accelerate::kSuccessLowEnergy: last_mode_ = kModeAccelerateLowEnergy; break; case Accelerate::kNoStretch: last_mode_ = kModeAccelerateFail; break; case Accelerate::kError: // TODO(hlundin): Map to kModeError instead? last_mode_ = kModeAccelerateFail; return kAccelerateError; } if (borrowed_samples_per_channel > 0) { // Copy borrowed samples back to the |sync_buffer_|. size_t length = algorithm_buffer_->Size(); if (length < borrowed_samples_per_channel) { // This destroys the beginning of the buffer, but will not cause any // problems. sync_buffer_->ReplaceAtIndex(*algorithm_buffer_, sync_buffer_->Size() - borrowed_samples_per_channel); sync_buffer_->PushFrontZeros(borrowed_samples_per_channel - length); algorithm_buffer_->PopFront(length); assert(algorithm_buffer_->Empty()); } else { sync_buffer_->ReplaceAtIndex(*algorithm_buffer_, borrowed_samples_per_channel, sync_buffer_->Size() - borrowed_samples_per_channel); algorithm_buffer_->PopFront(borrowed_samples_per_channel); } } // If last packet was decoded as an inband CNG, set mode to CNG instead. if (speech_type == AudioDecoder::kComfortNoise) { last_mode_ = kModeCodecInternalCng; } if (!play_dtmf) { dtmf_tone_generator_->Reset(); } expand_->Reset(); return 0; } int NetEqImpl::DoPreemptiveExpand(int16_t* decoded_buffer, size_t decoded_length, AudioDecoder::SpeechType speech_type, bool play_dtmf) { const size_t required_samples = static_cast(240 * fs_mult_); // Must have 30 ms. size_t num_channels = algorithm_buffer_->Channels(); size_t borrowed_samples_per_channel = 0; size_t old_borrowed_samples_per_channel = 0; size_t decoded_length_per_channel = decoded_length / num_channels; if (decoded_length_per_channel < required_samples) { // Must move data from the |sync_buffer_| in order to get 30 ms. borrowed_samples_per_channel = required_samples - decoded_length_per_channel; // Calculate how many of these were already played out. old_borrowed_samples_per_channel = (borrowed_samples_per_channel > sync_buffer_->FutureLength()) ? (borrowed_samples_per_channel - sync_buffer_->FutureLength()) : 0; memmove(&decoded_buffer[borrowed_samples_per_channel * num_channels], decoded_buffer, sizeof(int16_t) * decoded_length); sync_buffer_->ReadInterleavedFromEnd(borrowed_samples_per_channel, decoded_buffer); decoded_length = required_samples * num_channels; } size_t samples_added; PreemptiveExpand::ReturnCodes return_code = preemptive_expand_->Process( decoded_buffer, decoded_length, old_borrowed_samples_per_channel, algorithm_buffer_.get(), &samples_added); stats_.PreemptiveExpandedSamples(samples_added); switch (return_code) { case PreemptiveExpand::kSuccess: last_mode_ = kModePreemptiveExpandSuccess; break; case PreemptiveExpand::kSuccessLowEnergy: last_mode_ = kModePreemptiveExpandLowEnergy; break; case PreemptiveExpand::kNoStretch: last_mode_ = kModePreemptiveExpandFail; break; case PreemptiveExpand::kError: // TODO(hlundin): Map to kModeError instead? last_mode_ = kModePreemptiveExpandFail; return kPreemptiveExpandError; } if (borrowed_samples_per_channel > 0) { // Copy borrowed samples back to the |sync_buffer_|. sync_buffer_->ReplaceAtIndex( *algorithm_buffer_, borrowed_samples_per_channel, sync_buffer_->Size() - borrowed_samples_per_channel); algorithm_buffer_->PopFront(borrowed_samples_per_channel); } // If last packet was decoded as an inband CNG, set mode to CNG instead. if (speech_type == AudioDecoder::kComfortNoise) { last_mode_ = kModeCodecInternalCng; } if (!play_dtmf) { dtmf_tone_generator_->Reset(); } expand_->Reset(); return 0; } int NetEqImpl::DoRfc3389Cng(PacketList* packet_list, bool play_dtmf) { if (!packet_list->empty()) { // Must have exactly one SID frame at this point. assert(packet_list->size() == 1); Packet* packet = packet_list->front(); packet_list->pop_front(); if (!decoder_database_->IsComfortNoise(packet->header.payloadType)) { #ifdef LEGACY_BITEXACT // This can happen due to a bug in GetDecision. Change the payload type // to a CNG type, and move on. Note that this means that we are in fact // sending a non-CNG payload to the comfort noise decoder for decoding. // Clearly wrong, but will maintain bit-exactness with legacy. if (fs_hz_ == 8000) { packet->header.payloadType = decoder_database_->GetRtpPayloadType(NetEqDecoder::kDecoderCNGnb); } else if (fs_hz_ == 16000) { packet->header.payloadType = decoder_database_->GetRtpPayloadType(NetEqDecoder::kDecoderCNGwb); } else if (fs_hz_ == 32000) { packet->header.payloadType = decoder_database_->GetRtpPayloadType( NetEqDecoder::kDecoderCNGswb32kHz); } else if (fs_hz_ == 48000) { packet->header.payloadType = decoder_database_->GetRtpPayloadType( NetEqDecoder::kDecoderCNGswb48kHz); } assert(decoder_database_->IsComfortNoise(packet->header.payloadType)); #else LOG(LS_ERROR) << "Trying to decode non-CNG payload as CNG."; return kOtherError; #endif } // UpdateParameters() deletes |packet|. if (comfort_noise_->UpdateParameters(packet) == ComfortNoise::kInternalError) { algorithm_buffer_->Zeros(output_size_samples_); return -comfort_noise_->internal_error_code(); } } int cn_return = comfort_noise_->Generate(output_size_samples_, algorithm_buffer_.get()); expand_->Reset(); last_mode_ = kModeRfc3389Cng; if (!play_dtmf) { dtmf_tone_generator_->Reset(); } if (cn_return == ComfortNoise::kInternalError) { decoder_error_code_ = comfort_noise_->internal_error_code(); return kComfortNoiseErrorCode; } else if (cn_return == ComfortNoise::kUnknownPayloadType) { return kUnknownRtpPayloadType; } return 0; } void NetEqImpl::DoCodecInternalCng(const int16_t* decoded_buffer, size_t decoded_length) { RTC_DCHECK(normal_.get()); RTC_DCHECK(mute_factor_array_.get()); normal_->Process(decoded_buffer, decoded_length, last_mode_, mute_factor_array_.get(), algorithm_buffer_.get()); last_mode_ = kModeCodecInternalCng; expand_->Reset(); } int NetEqImpl::DoDtmf(const DtmfEvent& dtmf_event, bool* play_dtmf) { // This block of the code and the block further down, handling |dtmf_switch| // are commented out. Otherwise playing out-of-band DTMF would fail in VoE // test, DtmfTest.ManualSuccessfullySendsOutOfBandTelephoneEvents. This is // equivalent to |dtmf_switch| always be false. // // See http://webrtc-codereview.appspot.com/1195004/ for discussion // On this issue. This change might cause some glitches at the point of // switch from audio to DTMF. Issue 1545 is filed to track this. // // bool dtmf_switch = false; // if ((last_mode_ != kModeDtmf) && dtmf_tone_generator_->initialized()) { // // Special case; see below. // // We must catch this before calling Generate, since |initialized| is // // modified in that call. // dtmf_switch = true; // } int dtmf_return_value = 0; if (!dtmf_tone_generator_->initialized()) { // Initialize if not already done. dtmf_return_value = dtmf_tone_generator_->Init(fs_hz_, dtmf_event.event_no, dtmf_event.volume); } if (dtmf_return_value == 0) { // Generate DTMF signal. dtmf_return_value = dtmf_tone_generator_->Generate(output_size_samples_, algorithm_buffer_.get()); } if (dtmf_return_value < 0) { algorithm_buffer_->Zeros(output_size_samples_); return dtmf_return_value; } // if (dtmf_switch) { // // This is the special case where the previous operation was DTMF // // overdub, but the current instruction is "regular" DTMF. We must make // // sure that the DTMF does not have any discontinuities. The first DTMF // // sample that we generate now must be played out immediately, therefore // // it must be copied to the speech buffer. // // TODO(hlundin): This code seems incorrect. (Legacy.) Write test and // // verify correct operation. // assert(false); // // Must generate enough data to replace all of the |sync_buffer_| // // "future". // int required_length = sync_buffer_->FutureLength(); // assert(dtmf_tone_generator_->initialized()); // dtmf_return_value = dtmf_tone_generator_->Generate(required_length, // algorithm_buffer_); // assert((size_t) required_length == algorithm_buffer_->Size()); // if (dtmf_return_value < 0) { // algorithm_buffer_->Zeros(output_size_samples_); // return dtmf_return_value; // } // // // Overwrite the "future" part of the speech buffer with the new DTMF // // data. // // TODO(hlundin): It seems that this overwriting has gone lost. // // Not adapted for multi-channel yet. // assert(algorithm_buffer_->Channels() == 1); // if (algorithm_buffer_->Channels() != 1) { // LOG(LS_WARNING) << "DTMF not supported for more than one channel"; // return kStereoNotSupported; // } // // Shuffle the remaining data to the beginning of algorithm buffer. // algorithm_buffer_->PopFront(sync_buffer_->FutureLength()); // } sync_buffer_->IncreaseEndTimestamp( static_cast(output_size_samples_)); expand_->Reset(); last_mode_ = kModeDtmf; // Set to false because the DTMF is already in the algorithm buffer. *play_dtmf = false; return 0; } void NetEqImpl::DoAlternativePlc(bool increase_timestamp) { AudioDecoder* decoder = decoder_database_->GetActiveDecoder(); size_t length; if (decoder && decoder->HasDecodePlc()) { // Use the decoder's packet-loss concealment. // TODO(hlundin): Will probably need a longer buffer for multi-channel. int16_t decoded_buffer[kMaxFrameSize]; length = decoder->DecodePlc(1, decoded_buffer); if (length > 0) algorithm_buffer_->PushBackInterleaved(decoded_buffer, length); } else { // Do simple zero-stuffing. length = output_size_samples_; algorithm_buffer_->Zeros(length); // By not advancing the timestamp, NetEq inserts samples. stats_.AddZeros(length); } if (increase_timestamp) { sync_buffer_->IncreaseEndTimestamp(static_cast(length)); } expand_->Reset(); } int NetEqImpl::DtmfOverdub(const DtmfEvent& dtmf_event, size_t num_channels, int16_t* output) const { size_t out_index = 0; size_t overdub_length = output_size_samples_; // Default value. if (sync_buffer_->dtmf_index() > sync_buffer_->next_index()) { // Special operation for transition from "DTMF only" to "DTMF overdub". out_index = std::min( sync_buffer_->dtmf_index() - sync_buffer_->next_index(), output_size_samples_); overdub_length = output_size_samples_ - out_index; } AudioMultiVector dtmf_output(num_channels); int dtmf_return_value = 0; if (!dtmf_tone_generator_->initialized()) { dtmf_return_value = dtmf_tone_generator_->Init(fs_hz_, dtmf_event.event_no, dtmf_event.volume); } if (dtmf_return_value == 0) { dtmf_return_value = dtmf_tone_generator_->Generate(overdub_length, &dtmf_output); assert(overdub_length == dtmf_output.Size()); } dtmf_output.ReadInterleaved(overdub_length, &output[out_index]); return dtmf_return_value < 0 ? dtmf_return_value : 0; } int NetEqImpl::ExtractPackets(size_t required_samples, PacketList* packet_list) { bool first_packet = true; uint8_t prev_payload_type = 0; uint32_t prev_timestamp = 0; uint16_t prev_sequence_number = 0; bool next_packet_available = false; const RTPHeader* header = packet_buffer_->NextRtpHeader(); assert(header); if (!header) { LOG(LS_ERROR) << "Packet buffer unexpectedly empty."; return -1; } uint32_t first_timestamp = header->timestamp; int extracted_samples = 0; // Packet extraction loop. do { timestamp_ = header->timestamp; size_t discard_count = 0; Packet* packet = packet_buffer_->GetNextPacket(&discard_count); // |header| may be invalid after the |packet_buffer_| operation. header = NULL; if (!packet) { LOG(LS_ERROR) << "Should always be able to extract a packet here"; assert(false); // Should always be able to extract a packet here. return -1; } stats_.PacketsDiscarded(discard_count); // Store waiting time in ms; packets->waiting_time is in "output blocks". stats_.StoreWaitingTime(packet->waiting_time * kOutputSizeMs); assert(packet->payload_length > 0); packet_list->push_back(packet); // Store packet in list. if (first_packet) { first_packet = false; if (nack_enabled_) { RTC_DCHECK(nack_); // TODO(henrik.lundin): Should we update this for all decoded packets? nack_->UpdateLastDecodedPacket(packet->header.sequenceNumber, packet->header.timestamp); } prev_sequence_number = packet->header.sequenceNumber; prev_timestamp = packet->header.timestamp; prev_payload_type = packet->header.payloadType; } // Store number of extracted samples. int packet_duration = 0; AudioDecoder* decoder = decoder_database_->GetDecoder( packet->header.payloadType); if (decoder) { if (packet->sync_packet) { packet_duration = rtc::checked_cast(decoder_frame_length_); } else { if (packet->primary) { packet_duration = decoder->PacketDuration(packet->payload, packet->payload_length); } else { packet_duration = decoder-> PacketDurationRedundant(packet->payload, packet->payload_length); stats_.SecondaryDecodedSamples(packet_duration); } } } else { LOG(LS_WARNING) << "Unknown payload type " << static_cast(packet->header.payloadType); assert(false); } if (packet_duration <= 0) { // Decoder did not return a packet duration. Assume that the packet // contains the same number of samples as the previous one. packet_duration = rtc::checked_cast(decoder_frame_length_); } extracted_samples = packet->header.timestamp - first_timestamp + packet_duration; // Check what packet is available next. header = packet_buffer_->NextRtpHeader(); next_packet_available = false; if (header && prev_payload_type == header->payloadType) { int16_t seq_no_diff = header->sequenceNumber - prev_sequence_number; size_t ts_diff = header->timestamp - prev_timestamp; if (seq_no_diff == 1 || (seq_no_diff == 0 && ts_diff == decoder_frame_length_)) { // The next sequence number is available, or the next part of a packet // that was split into pieces upon insertion. next_packet_available = true; } prev_sequence_number = header->sequenceNumber; } } while (extracted_samples < rtc::checked_cast(required_samples) && next_packet_available); if (extracted_samples > 0) { // Delete old packets only when we are going to decode something. Otherwise, // we could end up in the situation where we never decode anything, since // all incoming packets are considered too old but the buffer will also // never be flooded and flushed. packet_buffer_->DiscardAllOldPackets(timestamp_); } return extracted_samples; } void NetEqImpl::UpdatePlcComponents(int fs_hz, size_t channels) { // Delete objects and create new ones. expand_.reset(expand_factory_->Create(background_noise_.get(), sync_buffer_.get(), &random_vector_, &stats_, fs_hz, channels)); merge_.reset(new Merge(fs_hz, channels, expand_.get(), sync_buffer_.get())); } void NetEqImpl::SetSampleRateAndChannels(int fs_hz, size_t channels) { LOG(LS_VERBOSE) << "SetSampleRateAndChannels " << fs_hz << " " << channels; // TODO(hlundin): Change to an enumerator and skip assert. assert(fs_hz == 8000 || fs_hz == 16000 || fs_hz == 32000 || fs_hz == 48000); assert(channels > 0); fs_hz_ = fs_hz; fs_mult_ = fs_hz / 8000; output_size_samples_ = static_cast(kOutputSizeMs * 8 * fs_mult_); decoder_frame_length_ = 3 * output_size_samples_; // Initialize to 30ms. last_mode_ = kModeNormal; // Create a new array of mute factors and set all to 1. mute_factor_array_.reset(new int16_t[channels]); for (size_t i = 0; i < channels; ++i) { mute_factor_array_[i] = 16384; // 1.0 in Q14. } AudioDecoder* cng_decoder = decoder_database_->GetActiveCngDecoder(); if (cng_decoder) cng_decoder->Reset(); // Reinit post-decode VAD with new sample rate. assert(vad_.get()); // Cannot be NULL here. vad_->Init(); // Delete algorithm buffer and create a new one. algorithm_buffer_.reset(new AudioMultiVector(channels)); // Delete sync buffer and create a new one. sync_buffer_.reset(new SyncBuffer(channels, kSyncBufferSize * fs_mult_)); // Delete BackgroundNoise object and create a new one. background_noise_.reset(new BackgroundNoise(channels)); background_noise_->set_mode(background_noise_mode_); // Reset random vector. random_vector_.Reset(); UpdatePlcComponents(fs_hz, channels); // Move index so that we create a small set of future samples (all 0). sync_buffer_->set_next_index(sync_buffer_->next_index() - expand_->overlap_length()); normal_.reset(new Normal(fs_hz, decoder_database_.get(), *background_noise_, expand_.get())); accelerate_.reset( accelerate_factory_->Create(fs_hz, channels, *background_noise_)); preemptive_expand_.reset(preemptive_expand_factory_->Create( fs_hz, channels, *background_noise_, expand_->overlap_length())); // Delete ComfortNoise object and create a new one. comfort_noise_.reset(new ComfortNoise(fs_hz, decoder_database_.get(), sync_buffer_.get())); // Verify that |decoded_buffer_| is long enough. if (decoded_buffer_length_ < kMaxFrameSize * channels) { // Reallocate to larger size. decoded_buffer_length_ = kMaxFrameSize * channels; decoded_buffer_.reset(new int16_t[decoded_buffer_length_]); } // Create DecisionLogic if it is not created yet, then communicate new sample // rate and output size to DecisionLogic object. if (!decision_logic_.get()) { CreateDecisionLogic(); } decision_logic_->SetSampleRate(fs_hz_, output_size_samples_); } NetEqOutputType NetEqImpl::LastOutputType() { assert(vad_.get()); assert(expand_.get()); if (last_mode_ == kModeCodecInternalCng || last_mode_ == kModeRfc3389Cng) { return kOutputCNG; } else if (last_mode_ == kModeExpand && expand_->MuteFactor(0) == 0) { // Expand mode has faded down to background noise only (very long expand). return kOutputPLCtoCNG; } else if (last_mode_ == kModeExpand) { return kOutputPLC; } else if (vad_->running() && !vad_->active_speech()) { return kOutputVADPassive; } else { return kOutputNormal; } } void NetEqImpl::CreateDecisionLogic() { decision_logic_.reset(DecisionLogic::Create(fs_hz_, output_size_samples_, playout_mode_, decoder_database_.get(), *packet_buffer_.get(), delay_manager_.get(), buffer_level_filter_.get())); } } // namespace webrtc