/* * Copyright (c) 2011 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ /* * This file includes unit tests for NetEQ. */ #include "webrtc/modules/audio_coding/neteq/interface/neteq.h" #include #include #include // memset #include #include #include #include #include "gflags/gflags.h" #include "testing/gtest/include/gtest/gtest.h" #include "webrtc/modules/audio_coding/neteq/test/NETEQTEST_RTPpacket.h" #include "webrtc/modules/audio_coding/neteq/tools/audio_loop.h" #include "webrtc/modules/audio_coding/codecs/pcm16b/include/pcm16b.h" #include "webrtc/test/testsupport/fileutils.h" #include "webrtc/test/testsupport/gtest_disable.h" #include "webrtc/typedefs.h" DEFINE_bool(gen_ref, false, "Generate reference files."); namespace webrtc { static bool IsAllZero(const int16_t* buf, int buf_length) { bool all_zero = true; for (int n = 0; n < buf_length && all_zero; ++n) all_zero = buf[n] == 0; return all_zero; } static bool IsAllNonZero(const int16_t* buf, int buf_length) { bool all_non_zero = true; for (int n = 0; n < buf_length && all_non_zero; ++n) all_non_zero = buf[n] != 0; return all_non_zero; } class RefFiles { public: RefFiles(const std::string& input_file, const std::string& output_file); ~RefFiles(); template void ProcessReference(const T& test_results); template void ProcessReference( const T (&test_results)[n], size_t length); template void WriteToFile( const T (&test_results)[n], size_t length); template void ReadFromFileAndCompare( const T (&test_results)[n], size_t length); void WriteToFile(const NetEqNetworkStatistics& stats); void ReadFromFileAndCompare(const NetEqNetworkStatistics& stats); void WriteToFile(const RtcpStatistics& stats); void ReadFromFileAndCompare(const RtcpStatistics& stats); FILE* input_fp_; FILE* output_fp_; }; RefFiles::RefFiles(const std::string &input_file, const std::string &output_file) : input_fp_(NULL), output_fp_(NULL) { if (!input_file.empty()) { input_fp_ = fopen(input_file.c_str(), "rb"); EXPECT_TRUE(input_fp_ != NULL); } if (!output_file.empty()) { output_fp_ = fopen(output_file.c_str(), "wb"); EXPECT_TRUE(output_fp_ != NULL); } } RefFiles::~RefFiles() { if (input_fp_) { EXPECT_EQ(EOF, fgetc(input_fp_)); // Make sure that we reached the end. fclose(input_fp_); } if (output_fp_) fclose(output_fp_); } template void RefFiles::ProcessReference(const T& test_results) { WriteToFile(test_results); ReadFromFileAndCompare(test_results); } template void RefFiles::ProcessReference(const T (&test_results)[n], size_t length) { WriteToFile(test_results, length); ReadFromFileAndCompare(test_results, length); } template void RefFiles::WriteToFile(const T (&test_results)[n], size_t length) { if (output_fp_) { ASSERT_EQ(length, fwrite(&test_results, sizeof(T), length, output_fp_)); } } template void RefFiles::ReadFromFileAndCompare(const T (&test_results)[n], size_t length) { if (input_fp_) { // Read from ref file. T* ref = new T[length]; ASSERT_EQ(length, fread(ref, sizeof(T), length, input_fp_)); // Compare ASSERT_EQ(0, memcmp(&test_results, ref, sizeof(T) * length)); delete [] ref; } } void RefFiles::WriteToFile(const NetEqNetworkStatistics& stats) { if (output_fp_) { ASSERT_EQ(1u, fwrite(&stats, sizeof(NetEqNetworkStatistics), 1, output_fp_)); } } void RefFiles::ReadFromFileAndCompare( const NetEqNetworkStatistics& stats) { if (input_fp_) { // Read from ref file. size_t stat_size = sizeof(NetEqNetworkStatistics); NetEqNetworkStatistics ref_stats; ASSERT_EQ(1u, fread(&ref_stats, stat_size, 1, input_fp_)); // Compare ASSERT_EQ(0, memcmp(&stats, &ref_stats, stat_size)); } } void RefFiles::WriteToFile(const RtcpStatistics& stats) { if (output_fp_) { ASSERT_EQ(1u, fwrite(&(stats.fraction_lost), sizeof(stats.fraction_lost), 1, output_fp_)); ASSERT_EQ(1u, fwrite(&(stats.cumulative_lost), sizeof(stats.cumulative_lost), 1, output_fp_)); ASSERT_EQ(1u, fwrite(&(stats.extended_max_sequence_number), sizeof(stats.extended_max_sequence_number), 1, output_fp_)); ASSERT_EQ(1u, fwrite(&(stats.jitter), sizeof(stats.jitter), 1, output_fp_)); } } void RefFiles::ReadFromFileAndCompare( const RtcpStatistics& stats) { if (input_fp_) { // Read from ref file. RtcpStatistics ref_stats; ASSERT_EQ(1u, fread(&(ref_stats.fraction_lost), sizeof(ref_stats.fraction_lost), 1, input_fp_)); ASSERT_EQ(1u, fread(&(ref_stats.cumulative_lost), sizeof(ref_stats.cumulative_lost), 1, input_fp_)); ASSERT_EQ(1u, fread(&(ref_stats.extended_max_sequence_number), sizeof(ref_stats.extended_max_sequence_number), 1, input_fp_)); ASSERT_EQ(1u, fread(&(ref_stats.jitter), sizeof(ref_stats.jitter), 1, input_fp_)); // Compare ASSERT_EQ(ref_stats.fraction_lost, stats.fraction_lost); ASSERT_EQ(ref_stats.cumulative_lost, stats.cumulative_lost); ASSERT_EQ(ref_stats.extended_max_sequence_number, stats.extended_max_sequence_number); ASSERT_EQ(ref_stats.jitter, stats.jitter); } } class NetEqDecodingTest : public ::testing::Test { protected: // NetEQ must be polled for data once every 10 ms. Thus, neither of the // constants below can be changed. static const int kTimeStepMs = 10; static const int kBlockSize8kHz = kTimeStepMs * 8; static const int kBlockSize16kHz = kTimeStepMs * 16; static const int kBlockSize32kHz = kTimeStepMs * 32; static const int kMaxBlockSize = kBlockSize32kHz; static const int kInitSampleRateHz = 8000; NetEqDecodingTest(); virtual void SetUp(); virtual void TearDown(); void SelectDecoders(NetEqDecoder* used_codec); void LoadDecoders(); void OpenInputFile(const std::string &rtp_file); void Process(NETEQTEST_RTPpacket* rtp_ptr, int* out_len); void DecodeAndCompare(const std::string& rtp_file, const std::string& ref_file, const std::string& stat_ref_file, const std::string& rtcp_ref_file); static void PopulateRtpInfo(int frame_index, int timestamp, WebRtcRTPHeader* rtp_info); static void PopulateCng(int frame_index, int timestamp, WebRtcRTPHeader* rtp_info, uint8_t* payload, int* payload_len); void WrapTest(uint16_t start_seq_no, uint32_t start_timestamp, const std::set& drop_seq_numbers, bool expect_seq_no_wrap, bool expect_timestamp_wrap); void LongCngWithClockDrift(double drift_factor, double network_freeze_ms, bool pull_audio_during_freeze, int delay_tolerance_ms, int max_time_to_speech_ms); void DuplicateCng(); uint32_t PlayoutTimestamp(); NetEq* neteq_; NetEq::Config config_; FILE* rtp_fp_; unsigned int sim_clock_; int16_t out_data_[kMaxBlockSize]; int output_sample_rate_; int algorithmic_delay_ms_; }; // Allocating the static const so that it can be passed by reference. const int NetEqDecodingTest::kTimeStepMs; const int NetEqDecodingTest::kBlockSize8kHz; const int NetEqDecodingTest::kBlockSize16kHz; const int NetEqDecodingTest::kBlockSize32kHz; const int NetEqDecodingTest::kMaxBlockSize; const int NetEqDecodingTest::kInitSampleRateHz; NetEqDecodingTest::NetEqDecodingTest() : neteq_(NULL), config_(), rtp_fp_(NULL), sim_clock_(0), output_sample_rate_(kInitSampleRateHz), algorithmic_delay_ms_(0) { config_.sample_rate_hz = kInitSampleRateHz; memset(out_data_, 0, sizeof(out_data_)); } void NetEqDecodingTest::SetUp() { neteq_ = NetEq::Create(config_); NetEqNetworkStatistics stat; ASSERT_EQ(0, neteq_->NetworkStatistics(&stat)); algorithmic_delay_ms_ = stat.current_buffer_size_ms; ASSERT_TRUE(neteq_); LoadDecoders(); } void NetEqDecodingTest::TearDown() { delete neteq_; if (rtp_fp_) fclose(rtp_fp_); } void NetEqDecodingTest::LoadDecoders() { // Load PCMu. ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderPCMu, 0)); // Load PCMa. ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderPCMa, 8)); #ifndef WEBRTC_ANDROID // Load iLBC. ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderILBC, 102)); #endif // WEBRTC_ANDROID // Load iSAC. ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderISAC, 103)); #ifndef WEBRTC_ANDROID // Load iSAC SWB. ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderISACswb, 104)); // Load iSAC FB. ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderISACfb, 105)); #endif // WEBRTC_ANDROID // Load PCM16B nb. ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderPCM16B, 93)); // Load PCM16B wb. ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderPCM16Bwb, 94)); // Load PCM16B swb32. ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderPCM16Bswb32kHz, 95)); // Load CNG 8 kHz. ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderCNGnb, 13)); // Load CNG 16 kHz. ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderCNGwb, 98)); } void NetEqDecodingTest::OpenInputFile(const std::string &rtp_file) { rtp_fp_ = fopen(rtp_file.c_str(), "rb"); ASSERT_TRUE(rtp_fp_ != NULL); ASSERT_EQ(0, NETEQTEST_RTPpacket::skipFileHeader(rtp_fp_)); } void NetEqDecodingTest::Process(NETEQTEST_RTPpacket* rtp, int* out_len) { // Check if time to receive. while ((sim_clock_ >= rtp->time()) && (rtp->dataLen() >= 0)) { if (rtp->dataLen() > 0) { WebRtcRTPHeader rtpInfo; rtp->parseHeader(&rtpInfo); ASSERT_EQ(0, neteq_->InsertPacket( rtpInfo, rtp->payload(), rtp->payloadLen(), rtp->time() * (output_sample_rate_ / 1000))); } // Get next packet. ASSERT_NE(-1, rtp->readFromFile(rtp_fp_)); } // Get audio from NetEq. NetEqOutputType type; int num_channels; ASSERT_EQ(0, neteq_->GetAudio(kMaxBlockSize, out_data_, out_len, &num_channels, &type)); ASSERT_TRUE((*out_len == kBlockSize8kHz) || (*out_len == kBlockSize16kHz) || (*out_len == kBlockSize32kHz)); output_sample_rate_ = *out_len / 10 * 1000; // Increase time. sim_clock_ += kTimeStepMs; } void NetEqDecodingTest::DecodeAndCompare(const std::string& rtp_file, const std::string& ref_file, const std::string& stat_ref_file, const std::string& rtcp_ref_file) { OpenInputFile(rtp_file); std::string ref_out_file = ""; if (ref_file.empty()) { ref_out_file = webrtc::test::OutputPath() + "neteq_universal_ref.pcm"; } RefFiles ref_files(ref_file, ref_out_file); std::string stat_out_file = ""; if (stat_ref_file.empty()) { stat_out_file = webrtc::test::OutputPath() + "neteq_network_stats.dat"; } RefFiles network_stat_files(stat_ref_file, stat_out_file); std::string rtcp_out_file = ""; if (rtcp_ref_file.empty()) { rtcp_out_file = webrtc::test::OutputPath() + "neteq_rtcp_stats.dat"; } RefFiles rtcp_stat_files(rtcp_ref_file, rtcp_out_file); NETEQTEST_RTPpacket rtp; ASSERT_GT(rtp.readFromFile(rtp_fp_), 0); int i = 0; while (rtp.dataLen() >= 0) { std::ostringstream ss; ss << "Lap number " << i++ << " in DecodeAndCompare while loop"; SCOPED_TRACE(ss.str()); // Print out the parameter values on failure. int out_len = 0; ASSERT_NO_FATAL_FAILURE(Process(&rtp, &out_len)); ASSERT_NO_FATAL_FAILURE(ref_files.ProcessReference(out_data_, out_len)); // Query the network statistics API once per second if (sim_clock_ % 1000 == 0) { // Process NetworkStatistics. NetEqNetworkStatistics network_stats; ASSERT_EQ(0, neteq_->NetworkStatistics(&network_stats)); ASSERT_NO_FATAL_FAILURE( network_stat_files.ProcessReference(network_stats)); // Process RTCPstat. RtcpStatistics rtcp_stats; neteq_->GetRtcpStatistics(&rtcp_stats); ASSERT_NO_FATAL_FAILURE(rtcp_stat_files.ProcessReference(rtcp_stats)); } } } void NetEqDecodingTest::PopulateRtpInfo(int frame_index, int timestamp, WebRtcRTPHeader* rtp_info) { rtp_info->header.sequenceNumber = frame_index; rtp_info->header.timestamp = timestamp; rtp_info->header.ssrc = 0x1234; // Just an arbitrary SSRC. rtp_info->header.payloadType = 94; // PCM16b WB codec. rtp_info->header.markerBit = 0; } void NetEqDecodingTest::PopulateCng(int frame_index, int timestamp, WebRtcRTPHeader* rtp_info, uint8_t* payload, int* payload_len) { rtp_info->header.sequenceNumber = frame_index; rtp_info->header.timestamp = timestamp; rtp_info->header.ssrc = 0x1234; // Just an arbitrary SSRC. rtp_info->header.payloadType = 98; // WB CNG. rtp_info->header.markerBit = 0; payload[0] = 64; // Noise level -64 dBov, quite arbitrarily chosen. *payload_len = 1; // Only noise level, no spectral parameters. } TEST_F(NetEqDecodingTest, DISABLED_ON_ANDROID(TestBitExactness)) { const std::string input_rtp_file = webrtc::test::ProjectRootPath() + "resources/audio_coding/neteq_universal_new.rtp"; // Note that neteq4_universal_ref.pcm and neteq4_universal_ref_win_32.pcm // are identical. The latter could have been removed, but if clients still // have a copy of the file, the test will fail. const std::string input_ref_file = webrtc::test::ResourcePath("audio_coding/neteq4_universal_ref", "pcm"); #if defined(_MSC_VER) && (_MSC_VER >= 1700) // For Visual Studio 2012 and later, we will have to use the generic reference // file, rather than the windows-specific one. const std::string network_stat_ref_file = webrtc::test::ProjectRootPath() + "resources/audio_coding/neteq4_network_stats.dat"; #else const std::string network_stat_ref_file = webrtc::test::ResourcePath("audio_coding/neteq4_network_stats", "dat"); #endif const std::string rtcp_stat_ref_file = webrtc::test::ResourcePath("audio_coding/neteq4_rtcp_stats", "dat"); if (FLAGS_gen_ref) { DecodeAndCompare(input_rtp_file, "", "", ""); } else { DecodeAndCompare(input_rtp_file, input_ref_file, network_stat_ref_file, rtcp_stat_ref_file); } } // Use fax mode to avoid time-scaling. This is to simplify the testing of // packet waiting times in the packet buffer. class NetEqDecodingTestFaxMode : public NetEqDecodingTest { protected: NetEqDecodingTestFaxMode() : NetEqDecodingTest() { config_.playout_mode = kPlayoutFax; } }; TEST_F(NetEqDecodingTestFaxMode, TestFrameWaitingTimeStatistics) { // Insert 30 dummy packets at once. Each packet contains 10 ms 16 kHz audio. size_t num_frames = 30; const int kSamples = 10 * 16; const int kPayloadBytes = kSamples * 2; for (size_t i = 0; i < num_frames; ++i) { uint16_t payload[kSamples] = {0}; WebRtcRTPHeader rtp_info; rtp_info.header.sequenceNumber = i; rtp_info.header.timestamp = i * kSamples; rtp_info.header.ssrc = 0x1234; // Just an arbitrary SSRC. rtp_info.header.payloadType = 94; // PCM16b WB codec. rtp_info.header.markerBit = 0; ASSERT_EQ(0, neteq_->InsertPacket( rtp_info, reinterpret_cast(payload), kPayloadBytes, 0)); } // Pull out all data. for (size_t i = 0; i < num_frames; ++i) { int out_len; int num_channels; NetEqOutputType type; ASSERT_EQ(0, neteq_->GetAudio(kMaxBlockSize, out_data_, &out_len, &num_channels, &type)); ASSERT_EQ(kBlockSize16kHz, out_len); } std::vector waiting_times; neteq_->WaitingTimes(&waiting_times); EXPECT_EQ(num_frames, waiting_times.size()); // Since all frames are dumped into NetEQ at once, but pulled out with 10 ms // spacing (per definition), we expect the delay to increase with 10 ms for // each packet. for (size_t i = 0; i < waiting_times.size(); ++i) { EXPECT_EQ(static_cast(i + 1) * 10, waiting_times[i]); } // Check statistics again and make sure it's been reset. neteq_->WaitingTimes(&waiting_times); int len = waiting_times.size(); EXPECT_EQ(0, len); // Process > 100 frames, and make sure that that we get statistics // only for 100 frames. Note the new SSRC, causing NetEQ to reset. num_frames = 110; for (size_t i = 0; i < num_frames; ++i) { uint16_t payload[kSamples] = {0}; WebRtcRTPHeader rtp_info; rtp_info.header.sequenceNumber = i; rtp_info.header.timestamp = i * kSamples; rtp_info.header.ssrc = 0x1235; // Just an arbitrary SSRC. rtp_info.header.payloadType = 94; // PCM16b WB codec. rtp_info.header.markerBit = 0; ASSERT_EQ(0, neteq_->InsertPacket( rtp_info, reinterpret_cast(payload), kPayloadBytes, 0)); int out_len; int num_channels; NetEqOutputType type; ASSERT_EQ(0, neteq_->GetAudio(kMaxBlockSize, out_data_, &out_len, &num_channels, &type)); ASSERT_EQ(kBlockSize16kHz, out_len); } neteq_->WaitingTimes(&waiting_times); EXPECT_EQ(100u, waiting_times.size()); } TEST_F(NetEqDecodingTest, TestAverageInterArrivalTimeNegative) { const int kNumFrames = 3000; // Needed for convergence. int frame_index = 0; const int kSamples = 10 * 16; const int kPayloadBytes = kSamples * 2; while (frame_index < kNumFrames) { // Insert one packet each time, except every 10th time where we insert two // packets at once. This will create a negative clock-drift of approx. 10%. int num_packets = (frame_index % 10 == 0 ? 2 : 1); for (int n = 0; n < num_packets; ++n) { uint8_t payload[kPayloadBytes] = {0}; WebRtcRTPHeader rtp_info; PopulateRtpInfo(frame_index, frame_index * kSamples, &rtp_info); ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, kPayloadBytes, 0)); ++frame_index; } // Pull out data once. int out_len; int num_channels; NetEqOutputType type; ASSERT_EQ(0, neteq_->GetAudio(kMaxBlockSize, out_data_, &out_len, &num_channels, &type)); ASSERT_EQ(kBlockSize16kHz, out_len); } NetEqNetworkStatistics network_stats; ASSERT_EQ(0, neteq_->NetworkStatistics(&network_stats)); EXPECT_EQ(-103196, network_stats.clockdrift_ppm); } TEST_F(NetEqDecodingTest, TestAverageInterArrivalTimePositive) { const int kNumFrames = 5000; // Needed for convergence. int frame_index = 0; const int kSamples = 10 * 16; const int kPayloadBytes = kSamples * 2; for (int i = 0; i < kNumFrames; ++i) { // Insert one packet each time, except every 10th time where we don't insert // any packet. This will create a positive clock-drift of approx. 11%. int num_packets = (i % 10 == 9 ? 0 : 1); for (int n = 0; n < num_packets; ++n) { uint8_t payload[kPayloadBytes] = {0}; WebRtcRTPHeader rtp_info; PopulateRtpInfo(frame_index, frame_index * kSamples, &rtp_info); ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, kPayloadBytes, 0)); ++frame_index; } // Pull out data once. int out_len; int num_channels; NetEqOutputType type; ASSERT_EQ(0, neteq_->GetAudio(kMaxBlockSize, out_data_, &out_len, &num_channels, &type)); ASSERT_EQ(kBlockSize16kHz, out_len); } NetEqNetworkStatistics network_stats; ASSERT_EQ(0, neteq_->NetworkStatistics(&network_stats)); EXPECT_EQ(110946, network_stats.clockdrift_ppm); } void NetEqDecodingTest::LongCngWithClockDrift(double drift_factor, double network_freeze_ms, bool pull_audio_during_freeze, int delay_tolerance_ms, int max_time_to_speech_ms) { uint16_t seq_no = 0; uint32_t timestamp = 0; const int kFrameSizeMs = 30; const int kSamples = kFrameSizeMs * 16; const int kPayloadBytes = kSamples * 2; double next_input_time_ms = 0.0; double t_ms; int out_len; int num_channels; NetEqOutputType type; // Insert speech for 5 seconds. const int kSpeechDurationMs = 5000; for (t_ms = 0; t_ms < kSpeechDurationMs; t_ms += 10) { // Each turn in this for loop is 10 ms. while (next_input_time_ms <= t_ms) { // Insert one 30 ms speech frame. uint8_t payload[kPayloadBytes] = {0}; WebRtcRTPHeader rtp_info; PopulateRtpInfo(seq_no, timestamp, &rtp_info); ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, kPayloadBytes, 0)); ++seq_no; timestamp += kSamples; next_input_time_ms += static_cast(kFrameSizeMs) * drift_factor; } // Pull out data once. ASSERT_EQ(0, neteq_->GetAudio(kMaxBlockSize, out_data_, &out_len, &num_channels, &type)); ASSERT_EQ(kBlockSize16kHz, out_len); } EXPECT_EQ(kOutputNormal, type); int32_t delay_before = timestamp - PlayoutTimestamp(); // Insert CNG for 1 minute (= 60000 ms). const int kCngPeriodMs = 100; const int kCngPeriodSamples = kCngPeriodMs * 16; // Period in 16 kHz samples. const int kCngDurationMs = 60000; for (; t_ms < kSpeechDurationMs + kCngDurationMs; t_ms += 10) { // Each turn in this for loop is 10 ms. while (next_input_time_ms <= t_ms) { // Insert one CNG frame each 100 ms. uint8_t payload[kPayloadBytes]; int payload_len; WebRtcRTPHeader rtp_info; PopulateCng(seq_no, timestamp, &rtp_info, payload, &payload_len); ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, payload_len, 0)); ++seq_no; timestamp += kCngPeriodSamples; next_input_time_ms += static_cast(kCngPeriodMs) * drift_factor; } // Pull out data once. ASSERT_EQ(0, neteq_->GetAudio(kMaxBlockSize, out_data_, &out_len, &num_channels, &type)); ASSERT_EQ(kBlockSize16kHz, out_len); } EXPECT_EQ(kOutputCNG, type); if (network_freeze_ms > 0) { // First keep pulling audio for |network_freeze_ms| without inserting // any data, then insert CNG data corresponding to |network_freeze_ms| // without pulling any output audio. const double loop_end_time = t_ms + network_freeze_ms; for (; t_ms < loop_end_time; t_ms += 10) { // Pull out data once. ASSERT_EQ(0, neteq_->GetAudio( kMaxBlockSize, out_data_, &out_len, &num_channels, &type)); ASSERT_EQ(kBlockSize16kHz, out_len); EXPECT_EQ(kOutputCNG, type); } bool pull_once = pull_audio_during_freeze; // If |pull_once| is true, GetAudio will be called once half-way through // the network recovery period. double pull_time_ms = (t_ms + next_input_time_ms) / 2; while (next_input_time_ms <= t_ms) { if (pull_once && next_input_time_ms >= pull_time_ms) { pull_once = false; // Pull out data once. ASSERT_EQ( 0, neteq_->GetAudio( kMaxBlockSize, out_data_, &out_len, &num_channels, &type)); ASSERT_EQ(kBlockSize16kHz, out_len); EXPECT_EQ(kOutputCNG, type); t_ms += 10; } // Insert one CNG frame each 100 ms. uint8_t payload[kPayloadBytes]; int payload_len; WebRtcRTPHeader rtp_info; PopulateCng(seq_no, timestamp, &rtp_info, payload, &payload_len); ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, payload_len, 0)); ++seq_no; timestamp += kCngPeriodSamples; next_input_time_ms += kCngPeriodMs * drift_factor; } } // Insert speech again until output type is speech. double speech_restart_time_ms = t_ms; while (type != kOutputNormal) { // Each turn in this for loop is 10 ms. while (next_input_time_ms <= t_ms) { // Insert one 30 ms speech frame. uint8_t payload[kPayloadBytes] = {0}; WebRtcRTPHeader rtp_info; PopulateRtpInfo(seq_no, timestamp, &rtp_info); ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, kPayloadBytes, 0)); ++seq_no; timestamp += kSamples; next_input_time_ms += kFrameSizeMs * drift_factor; } // Pull out data once. ASSERT_EQ(0, neteq_->GetAudio(kMaxBlockSize, out_data_, &out_len, &num_channels, &type)); ASSERT_EQ(kBlockSize16kHz, out_len); // Increase clock. t_ms += 10; } // Check that the speech starts again within reasonable time. double time_until_speech_returns_ms = t_ms - speech_restart_time_ms; EXPECT_LT(time_until_speech_returns_ms, max_time_to_speech_ms); int32_t delay_after = timestamp - PlayoutTimestamp(); // Compare delay before and after, and make sure it differs less than 20 ms. EXPECT_LE(delay_after, delay_before + delay_tolerance_ms * 16); EXPECT_GE(delay_after, delay_before - delay_tolerance_ms * 16); } TEST_F(NetEqDecodingTest, LongCngWithNegativeClockDrift) { // Apply a clock drift of -25 ms / s (sender faster than receiver). const double kDriftFactor = 1000.0 / (1000.0 + 25.0); const double kNetworkFreezeTimeMs = 0.0; const bool kGetAudioDuringFreezeRecovery = false; const int kDelayToleranceMs = 20; const int kMaxTimeToSpeechMs = 100; LongCngWithClockDrift(kDriftFactor, kNetworkFreezeTimeMs, kGetAudioDuringFreezeRecovery, kDelayToleranceMs, kMaxTimeToSpeechMs); } TEST_F(NetEqDecodingTest, LongCngWithPositiveClockDrift) { // Apply a clock drift of +25 ms / s (sender slower than receiver). const double kDriftFactor = 1000.0 / (1000.0 - 25.0); const double kNetworkFreezeTimeMs = 0.0; const bool kGetAudioDuringFreezeRecovery = false; const int kDelayToleranceMs = 20; const int kMaxTimeToSpeechMs = 100; LongCngWithClockDrift(kDriftFactor, kNetworkFreezeTimeMs, kGetAudioDuringFreezeRecovery, kDelayToleranceMs, kMaxTimeToSpeechMs); } TEST_F(NetEqDecodingTest, LongCngWithNegativeClockDriftNetworkFreeze) { // Apply a clock drift of -25 ms / s (sender faster than receiver). const double kDriftFactor = 1000.0 / (1000.0 + 25.0); const double kNetworkFreezeTimeMs = 5000.0; const bool kGetAudioDuringFreezeRecovery = false; const int kDelayToleranceMs = 50; const int kMaxTimeToSpeechMs = 200; LongCngWithClockDrift(kDriftFactor, kNetworkFreezeTimeMs, kGetAudioDuringFreezeRecovery, kDelayToleranceMs, kMaxTimeToSpeechMs); } TEST_F(NetEqDecodingTest, LongCngWithPositiveClockDriftNetworkFreeze) { // Apply a clock drift of +25 ms / s (sender slower than receiver). const double kDriftFactor = 1000.0 / (1000.0 - 25.0); const double kNetworkFreezeTimeMs = 5000.0; const bool kGetAudioDuringFreezeRecovery = false; const int kDelayToleranceMs = 20; const int kMaxTimeToSpeechMs = 100; LongCngWithClockDrift(kDriftFactor, kNetworkFreezeTimeMs, kGetAudioDuringFreezeRecovery, kDelayToleranceMs, kMaxTimeToSpeechMs); } TEST_F(NetEqDecodingTest, LongCngWithPositiveClockDriftNetworkFreezeExtraPull) { // Apply a clock drift of +25 ms / s (sender slower than receiver). const double kDriftFactor = 1000.0 / (1000.0 - 25.0); const double kNetworkFreezeTimeMs = 5000.0; const bool kGetAudioDuringFreezeRecovery = true; const int kDelayToleranceMs = 20; const int kMaxTimeToSpeechMs = 100; LongCngWithClockDrift(kDriftFactor, kNetworkFreezeTimeMs, kGetAudioDuringFreezeRecovery, kDelayToleranceMs, kMaxTimeToSpeechMs); } TEST_F(NetEqDecodingTest, LongCngWithoutClockDrift) { const double kDriftFactor = 1.0; // No drift. const double kNetworkFreezeTimeMs = 0.0; const bool kGetAudioDuringFreezeRecovery = false; const int kDelayToleranceMs = 10; const int kMaxTimeToSpeechMs = 50; LongCngWithClockDrift(kDriftFactor, kNetworkFreezeTimeMs, kGetAudioDuringFreezeRecovery, kDelayToleranceMs, kMaxTimeToSpeechMs); } TEST_F(NetEqDecodingTest, UnknownPayloadType) { const int kPayloadBytes = 100; uint8_t payload[kPayloadBytes] = {0}; WebRtcRTPHeader rtp_info; PopulateRtpInfo(0, 0, &rtp_info); rtp_info.header.payloadType = 1; // Not registered as a decoder. EXPECT_EQ(NetEq::kFail, neteq_->InsertPacket(rtp_info, payload, kPayloadBytes, 0)); EXPECT_EQ(NetEq::kUnknownRtpPayloadType, neteq_->LastError()); } TEST_F(NetEqDecodingTest, DISABLED_ON_ANDROID(DecoderError)) { const int kPayloadBytes = 100; uint8_t payload[kPayloadBytes] = {0}; WebRtcRTPHeader rtp_info; PopulateRtpInfo(0, 0, &rtp_info); rtp_info.header.payloadType = 103; // iSAC, but the payload is invalid. EXPECT_EQ(0, neteq_->InsertPacket(rtp_info, payload, kPayloadBytes, 0)); NetEqOutputType type; // Set all of |out_data_| to 1, and verify that it was set to 0 by the call // to GetAudio. for (int i = 0; i < kMaxBlockSize; ++i) { out_data_[i] = 1; } int num_channels; int samples_per_channel; EXPECT_EQ(NetEq::kFail, neteq_->GetAudio(kMaxBlockSize, out_data_, &samples_per_channel, &num_channels, &type)); // Verify that there is a decoder error to check. EXPECT_EQ(NetEq::kDecoderErrorCode, neteq_->LastError()); // Code 6730 is an iSAC error code. EXPECT_EQ(6730, neteq_->LastDecoderError()); // Verify that the first 160 samples are set to 0, and that the remaining // samples are left unmodified. static const int kExpectedOutputLength = 160; // 10 ms at 16 kHz sample rate. for (int i = 0; i < kExpectedOutputLength; ++i) { std::ostringstream ss; ss << "i = " << i; SCOPED_TRACE(ss.str()); // Print out the parameter values on failure. EXPECT_EQ(0, out_data_[i]); } for (int i = kExpectedOutputLength; i < kMaxBlockSize; ++i) { std::ostringstream ss; ss << "i = " << i; SCOPED_TRACE(ss.str()); // Print out the parameter values on failure. EXPECT_EQ(1, out_data_[i]); } } TEST_F(NetEqDecodingTest, GetAudioBeforeInsertPacket) { NetEqOutputType type; // Set all of |out_data_| to 1, and verify that it was set to 0 by the call // to GetAudio. for (int i = 0; i < kMaxBlockSize; ++i) { out_data_[i] = 1; } int num_channels; int samples_per_channel; EXPECT_EQ(0, neteq_->GetAudio(kMaxBlockSize, out_data_, &samples_per_channel, &num_channels, &type)); // Verify that the first block of samples is set to 0. static const int kExpectedOutputLength = kInitSampleRateHz / 100; // 10 ms at initial sample rate. for (int i = 0; i < kExpectedOutputLength; ++i) { std::ostringstream ss; ss << "i = " << i; SCOPED_TRACE(ss.str()); // Print out the parameter values on failure. EXPECT_EQ(0, out_data_[i]); } } class NetEqBgnTest : public NetEqDecodingTest { protected: virtual void TestCondition(double sum_squared_noise, bool should_be_faded) = 0; void CheckBgn(int sampling_rate_hz) { int expected_samples_per_channel = 0; uint8_t payload_type = 0xFF; // Invalid. if (sampling_rate_hz == 8000) { expected_samples_per_channel = kBlockSize8kHz; payload_type = 93; // PCM 16, 8 kHz. } else if (sampling_rate_hz == 16000) { expected_samples_per_channel = kBlockSize16kHz; payload_type = 94; // PCM 16, 16 kHZ. } else if (sampling_rate_hz == 32000) { expected_samples_per_channel = kBlockSize32kHz; payload_type = 95; // PCM 16, 32 kHz. } else { ASSERT_TRUE(false); // Unsupported test case. } NetEqOutputType type; int16_t output[kBlockSize32kHz]; // Maximum size is chosen. test::AudioLoop input; // We are using the same 32 kHz input file for all tests, regardless of // |sampling_rate_hz|. The output may sound weird, but the test is still // valid. ASSERT_TRUE(input.Init( webrtc::test::ResourcePath("audio_coding/testfile32kHz", "pcm"), 10 * sampling_rate_hz, // Max 10 seconds loop length. expected_samples_per_channel)); // Payload of 10 ms of PCM16 32 kHz. uint8_t payload[kBlockSize32kHz * sizeof(int16_t)]; WebRtcRTPHeader rtp_info; PopulateRtpInfo(0, 0, &rtp_info); rtp_info.header.payloadType = payload_type; int number_channels = 0; int samples_per_channel = 0; uint32_t receive_timestamp = 0; for (int n = 0; n < 10; ++n) { // Insert few packets and get audio. int enc_len_bytes = WebRtcPcm16b_EncodeW16(input.GetNextBlock(), expected_samples_per_channel, reinterpret_cast(payload)); ASSERT_EQ(enc_len_bytes, expected_samples_per_channel * 2); number_channels = 0; samples_per_channel = 0; ASSERT_EQ(0, neteq_->InsertPacket( rtp_info, payload, enc_len_bytes, receive_timestamp)); ASSERT_EQ(0, neteq_->GetAudio(kBlockSize32kHz, output, &samples_per_channel, &number_channels, &type)); ASSERT_EQ(1, number_channels); ASSERT_EQ(expected_samples_per_channel, samples_per_channel); ASSERT_EQ(kOutputNormal, type); // Next packet. rtp_info.header.timestamp += expected_samples_per_channel; rtp_info.header.sequenceNumber++; receive_timestamp += expected_samples_per_channel; } number_channels = 0; samples_per_channel = 0; // Get audio without inserting packets, expecting PLC and PLC-to-CNG. Pull // one frame without checking speech-type. This is the first frame pulled // without inserting any packet, and might not be labeled as PLC. ASSERT_EQ(0, neteq_->GetAudio(kBlockSize32kHz, output, &samples_per_channel, &number_channels, &type)); ASSERT_EQ(1, number_channels); ASSERT_EQ(expected_samples_per_channel, samples_per_channel); // To be able to test the fading of background noise we need at lease to // pull 611 frames. const int kFadingThreshold = 611; // Test several CNG-to-PLC packet for the expected behavior. The number 20 // is arbitrary, but sufficiently large to test enough number of frames. const int kNumPlcToCngTestFrames = 20; bool plc_to_cng = false; for (int n = 0; n < kFadingThreshold + kNumPlcToCngTestFrames; ++n) { number_channels = 0; samples_per_channel = 0; memset(output, 1, sizeof(output)); // Set to non-zero. ASSERT_EQ(0, neteq_->GetAudio(kBlockSize32kHz, output, &samples_per_channel, &number_channels, &type)); ASSERT_EQ(1, number_channels); ASSERT_EQ(expected_samples_per_channel, samples_per_channel); if (type == kOutputPLCtoCNG) { plc_to_cng = true; double sum_squared = 0; for (int k = 0; k < number_channels * samples_per_channel; ++k) sum_squared += output[k] * output[k]; TestCondition(sum_squared, n > kFadingThreshold); } else { EXPECT_EQ(kOutputPLC, type); } } EXPECT_TRUE(plc_to_cng); // Just to be sure that PLC-to-CNG has occurred. } }; class NetEqBgnTestOn : public NetEqBgnTest { protected: NetEqBgnTestOn() : NetEqBgnTest() { config_.background_noise_mode = NetEq::kBgnOn; } void TestCondition(double sum_squared_noise, bool /*should_be_faded*/) { EXPECT_NE(0, sum_squared_noise); } }; class NetEqBgnTestOff : public NetEqBgnTest { protected: NetEqBgnTestOff() : NetEqBgnTest() { config_.background_noise_mode = NetEq::kBgnOff; } void TestCondition(double sum_squared_noise, bool /*should_be_faded*/) { EXPECT_EQ(0, sum_squared_noise); } }; class NetEqBgnTestFade : public NetEqBgnTest { protected: NetEqBgnTestFade() : NetEqBgnTest() { config_.background_noise_mode = NetEq::kBgnFade; } void TestCondition(double sum_squared_noise, bool should_be_faded) { if (should_be_faded) EXPECT_EQ(0, sum_squared_noise); } }; TEST_F(NetEqBgnTestOn, RunTest) { CheckBgn(8000); CheckBgn(16000); CheckBgn(32000); } TEST_F(NetEqBgnTestOff, RunTest) { CheckBgn(8000); CheckBgn(16000); CheckBgn(32000); } TEST_F(NetEqBgnTestFade, RunTest) { CheckBgn(8000); CheckBgn(16000); CheckBgn(32000); } TEST_F(NetEqDecodingTest, SyncPacketInsert) { WebRtcRTPHeader rtp_info; uint32_t receive_timestamp = 0; // For the readability use the following payloads instead of the defaults of // this test. uint8_t kPcm16WbPayloadType = 1; uint8_t kCngNbPayloadType = 2; uint8_t kCngWbPayloadType = 3; uint8_t kCngSwb32PayloadType = 4; uint8_t kCngSwb48PayloadType = 5; uint8_t kAvtPayloadType = 6; uint8_t kRedPayloadType = 7; uint8_t kIsacPayloadType = 9; // Payload type 8 is already registered. // Register decoders. ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderPCM16Bwb, kPcm16WbPayloadType)); ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderCNGnb, kCngNbPayloadType)); ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderCNGwb, kCngWbPayloadType)); ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderCNGswb32kHz, kCngSwb32PayloadType)); ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderCNGswb48kHz, kCngSwb48PayloadType)); ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderAVT, kAvtPayloadType)); ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderRED, kRedPayloadType)); ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderISAC, kIsacPayloadType)); PopulateRtpInfo(0, 0, &rtp_info); rtp_info.header.payloadType = kPcm16WbPayloadType; // The first packet injected cannot be sync-packet. EXPECT_EQ(-1, neteq_->InsertSyncPacket(rtp_info, receive_timestamp)); // Payload length of 10 ms PCM16 16 kHz. const int kPayloadBytes = kBlockSize16kHz * sizeof(int16_t); uint8_t payload[kPayloadBytes] = {0}; ASSERT_EQ(0, neteq_->InsertPacket( rtp_info, payload, kPayloadBytes, receive_timestamp)); // Next packet. Last packet contained 10 ms audio. rtp_info.header.sequenceNumber++; rtp_info.header.timestamp += kBlockSize16kHz; receive_timestamp += kBlockSize16kHz; // Unacceptable payload types CNG, AVT (DTMF), RED. rtp_info.header.payloadType = kCngNbPayloadType; EXPECT_EQ(-1, neteq_->InsertSyncPacket(rtp_info, receive_timestamp)); rtp_info.header.payloadType = kCngWbPayloadType; EXPECT_EQ(-1, neteq_->InsertSyncPacket(rtp_info, receive_timestamp)); rtp_info.header.payloadType = kCngSwb32PayloadType; EXPECT_EQ(-1, neteq_->InsertSyncPacket(rtp_info, receive_timestamp)); rtp_info.header.payloadType = kCngSwb48PayloadType; EXPECT_EQ(-1, neteq_->InsertSyncPacket(rtp_info, receive_timestamp)); rtp_info.header.payloadType = kAvtPayloadType; EXPECT_EQ(-1, neteq_->InsertSyncPacket(rtp_info, receive_timestamp)); rtp_info.header.payloadType = kRedPayloadType; EXPECT_EQ(-1, neteq_->InsertSyncPacket(rtp_info, receive_timestamp)); // Change of codec cannot be initiated with a sync packet. rtp_info.header.payloadType = kIsacPayloadType; EXPECT_EQ(-1, neteq_->InsertSyncPacket(rtp_info, receive_timestamp)); // Change of SSRC is not allowed with a sync packet. rtp_info.header.payloadType = kPcm16WbPayloadType; ++rtp_info.header.ssrc; EXPECT_EQ(-1, neteq_->InsertSyncPacket(rtp_info, receive_timestamp)); --rtp_info.header.ssrc; EXPECT_EQ(0, neteq_->InsertSyncPacket(rtp_info, receive_timestamp)); } // First insert several noise like packets, then sync-packets. Decoding all // packets should not produce error, statistics should not show any packet loss // and sync-packets should decode to zero. // TODO(turajs) we will have a better test if we have a referece NetEq, and // when Sync packets are inserted in "test" NetEq we insert all-zero payload // in reference NetEq and compare the output of those two. TEST_F(NetEqDecodingTest, SyncPacketDecode) { WebRtcRTPHeader rtp_info; PopulateRtpInfo(0, 0, &rtp_info); const int kPayloadBytes = kBlockSize16kHz * sizeof(int16_t); uint8_t payload[kPayloadBytes]; int16_t decoded[kBlockSize16kHz]; int algorithmic_frame_delay = algorithmic_delay_ms_ / 10 + 1; for (int n = 0; n < kPayloadBytes; ++n) { payload[n] = (rand() & 0xF0) + 1; // Non-zero random sequence. } // Insert some packets which decode to noise. We are not interested in // actual decoded values. NetEqOutputType output_type; int num_channels; int samples_per_channel; uint32_t receive_timestamp = 0; for (int n = 0; n < 100; ++n) { ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, kPayloadBytes, receive_timestamp)); ASSERT_EQ(0, neteq_->GetAudio(kBlockSize16kHz, decoded, &samples_per_channel, &num_channels, &output_type)); ASSERT_EQ(kBlockSize16kHz, samples_per_channel); ASSERT_EQ(1, num_channels); rtp_info.header.sequenceNumber++; rtp_info.header.timestamp += kBlockSize16kHz; receive_timestamp += kBlockSize16kHz; } const int kNumSyncPackets = 10; // Make sure sufficient number of sync packets are inserted that we can // conduct a test. ASSERT_GT(kNumSyncPackets, algorithmic_frame_delay); // Insert sync-packets, the decoded sequence should be all-zero. for (int n = 0; n < kNumSyncPackets; ++n) { ASSERT_EQ(0, neteq_->InsertSyncPacket(rtp_info, receive_timestamp)); ASSERT_EQ(0, neteq_->GetAudio(kBlockSize16kHz, decoded, &samples_per_channel, &num_channels, &output_type)); ASSERT_EQ(kBlockSize16kHz, samples_per_channel); ASSERT_EQ(1, num_channels); if (n > algorithmic_frame_delay) { EXPECT_TRUE(IsAllZero(decoded, samples_per_channel * num_channels)); } rtp_info.header.sequenceNumber++; rtp_info.header.timestamp += kBlockSize16kHz; receive_timestamp += kBlockSize16kHz; } // We insert regular packets, if sync packet are not correctly buffered then // network statistics would show some packet loss. for (int n = 0; n <= algorithmic_frame_delay + 10; ++n) { ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, kPayloadBytes, receive_timestamp)); ASSERT_EQ(0, neteq_->GetAudio(kBlockSize16kHz, decoded, &samples_per_channel, &num_channels, &output_type)); if (n >= algorithmic_frame_delay + 1) { // Expect that this frame contain samples from regular RTP. EXPECT_TRUE(IsAllNonZero(decoded, samples_per_channel * num_channels)); } rtp_info.header.sequenceNumber++; rtp_info.header.timestamp += kBlockSize16kHz; receive_timestamp += kBlockSize16kHz; } NetEqNetworkStatistics network_stats; ASSERT_EQ(0, neteq_->NetworkStatistics(&network_stats)); // Expecting a "clean" network. EXPECT_EQ(0, network_stats.packet_loss_rate); EXPECT_EQ(0, network_stats.expand_rate); EXPECT_EQ(0, network_stats.accelerate_rate); EXPECT_LE(network_stats.preemptive_rate, 150); } // Test if the size of the packet buffer reported correctly when containing // sync packets. Also, test if network packets override sync packets. That is to // prefer decoding a network packet to a sync packet, if both have same sequence // number and timestamp. TEST_F(NetEqDecodingTest, SyncPacketBufferSizeAndOverridenByNetworkPackets) { WebRtcRTPHeader rtp_info; PopulateRtpInfo(0, 0, &rtp_info); const int kPayloadBytes = kBlockSize16kHz * sizeof(int16_t); uint8_t payload[kPayloadBytes]; int16_t decoded[kBlockSize16kHz]; for (int n = 0; n < kPayloadBytes; ++n) { payload[n] = (rand() & 0xF0) + 1; // Non-zero random sequence. } // Insert some packets which decode to noise. We are not interested in // actual decoded values. NetEqOutputType output_type; int num_channels; int samples_per_channel; uint32_t receive_timestamp = 0; int algorithmic_frame_delay = algorithmic_delay_ms_ / 10 + 1; for (int n = 0; n < algorithmic_frame_delay; ++n) { ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, kPayloadBytes, receive_timestamp)); ASSERT_EQ(0, neteq_->GetAudio(kBlockSize16kHz, decoded, &samples_per_channel, &num_channels, &output_type)); ASSERT_EQ(kBlockSize16kHz, samples_per_channel); ASSERT_EQ(1, num_channels); rtp_info.header.sequenceNumber++; rtp_info.header.timestamp += kBlockSize16kHz; receive_timestamp += kBlockSize16kHz; } const int kNumSyncPackets = 10; WebRtcRTPHeader first_sync_packet_rtp_info; memcpy(&first_sync_packet_rtp_info, &rtp_info, sizeof(rtp_info)); // Insert sync-packets, but no decoding. for (int n = 0; n < kNumSyncPackets; ++n) { ASSERT_EQ(0, neteq_->InsertSyncPacket(rtp_info, receive_timestamp)); rtp_info.header.sequenceNumber++; rtp_info.header.timestamp += kBlockSize16kHz; receive_timestamp += kBlockSize16kHz; } NetEqNetworkStatistics network_stats; ASSERT_EQ(0, neteq_->NetworkStatistics(&network_stats)); EXPECT_EQ(kNumSyncPackets * 10 + algorithmic_delay_ms_, network_stats.current_buffer_size_ms); // Rewind |rtp_info| to that of the first sync packet. memcpy(&rtp_info, &first_sync_packet_rtp_info, sizeof(rtp_info)); // Insert. for (int n = 0; n < kNumSyncPackets; ++n) { ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, kPayloadBytes, receive_timestamp)); rtp_info.header.sequenceNumber++; rtp_info.header.timestamp += kBlockSize16kHz; receive_timestamp += kBlockSize16kHz; } // Decode. for (int n = 0; n < kNumSyncPackets; ++n) { ASSERT_EQ(0, neteq_->GetAudio(kBlockSize16kHz, decoded, &samples_per_channel, &num_channels, &output_type)); ASSERT_EQ(kBlockSize16kHz, samples_per_channel); ASSERT_EQ(1, num_channels); EXPECT_TRUE(IsAllNonZero(decoded, samples_per_channel * num_channels)); } } void NetEqDecodingTest::WrapTest(uint16_t start_seq_no, uint32_t start_timestamp, const std::set& drop_seq_numbers, bool expect_seq_no_wrap, bool expect_timestamp_wrap) { uint16_t seq_no = start_seq_no; uint32_t timestamp = start_timestamp; const int kBlocksPerFrame = 3; // Number of 10 ms blocks per frame. const int kFrameSizeMs = kBlocksPerFrame * kTimeStepMs; const int kSamples = kBlockSize16kHz * kBlocksPerFrame; const int kPayloadBytes = kSamples * sizeof(int16_t); double next_input_time_ms = 0.0; int16_t decoded[kBlockSize16kHz]; int num_channels; int samples_per_channel; NetEqOutputType output_type; uint32_t receive_timestamp = 0; // Insert speech for 2 seconds. const int kSpeechDurationMs = 2000; int packets_inserted = 0; uint16_t last_seq_no; uint32_t last_timestamp; bool timestamp_wrapped = false; bool seq_no_wrapped = false; for (double t_ms = 0; t_ms < kSpeechDurationMs; t_ms += 10) { // Each turn in this for loop is 10 ms. while (next_input_time_ms <= t_ms) { // Insert one 30 ms speech frame. uint8_t payload[kPayloadBytes] = {0}; WebRtcRTPHeader rtp_info; PopulateRtpInfo(seq_no, timestamp, &rtp_info); if (drop_seq_numbers.find(seq_no) == drop_seq_numbers.end()) { // This sequence number was not in the set to drop. Insert it. ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, kPayloadBytes, receive_timestamp)); ++packets_inserted; } NetEqNetworkStatistics network_stats; ASSERT_EQ(0, neteq_->NetworkStatistics(&network_stats)); // Due to internal NetEq logic, preferred buffer-size is about 4 times the // packet size for first few packets. Therefore we refrain from checking // the criteria. if (packets_inserted > 4) { // Expect preferred and actual buffer size to be no more than 2 frames. EXPECT_LE(network_stats.preferred_buffer_size_ms, kFrameSizeMs * 2); EXPECT_LE(network_stats.current_buffer_size_ms, kFrameSizeMs * 2 + algorithmic_delay_ms_); } last_seq_no = seq_no; last_timestamp = timestamp; ++seq_no; timestamp += kSamples; receive_timestamp += kSamples; next_input_time_ms += static_cast(kFrameSizeMs); seq_no_wrapped |= seq_no < last_seq_no; timestamp_wrapped |= timestamp < last_timestamp; } // Pull out data once. ASSERT_EQ(0, neteq_->GetAudio(kBlockSize16kHz, decoded, &samples_per_channel, &num_channels, &output_type)); ASSERT_EQ(kBlockSize16kHz, samples_per_channel); ASSERT_EQ(1, num_channels); // Expect delay (in samples) to be less than 2 packets. EXPECT_LE(timestamp - PlayoutTimestamp(), static_cast(kSamples * 2)); } // Make sure we have actually tested wrap-around. ASSERT_EQ(expect_seq_no_wrap, seq_no_wrapped); ASSERT_EQ(expect_timestamp_wrap, timestamp_wrapped); } TEST_F(NetEqDecodingTest, SequenceNumberWrap) { // Start with a sequence number that will soon wrap. std::set drop_seq_numbers; // Don't drop any packets. WrapTest(0xFFFF - 10, 0, drop_seq_numbers, true, false); } TEST_F(NetEqDecodingTest, SequenceNumberWrapAndDrop) { // Start with a sequence number that will soon wrap. std::set drop_seq_numbers; drop_seq_numbers.insert(0xFFFF); drop_seq_numbers.insert(0x0); WrapTest(0xFFFF - 10, 0, drop_seq_numbers, true, false); } TEST_F(NetEqDecodingTest, TimestampWrap) { // Start with a timestamp that will soon wrap. std::set drop_seq_numbers; WrapTest(0, 0xFFFFFFFF - 3000, drop_seq_numbers, false, true); } TEST_F(NetEqDecodingTest, TimestampAndSequenceNumberWrap) { // Start with a timestamp and a sequence number that will wrap at the same // time. std::set drop_seq_numbers; WrapTest(0xFFFF - 10, 0xFFFFFFFF - 5000, drop_seq_numbers, true, true); } void NetEqDecodingTest::DuplicateCng() { uint16_t seq_no = 0; uint32_t timestamp = 0; const int kFrameSizeMs = 10; const int kSampleRateKhz = 16; const int kSamples = kFrameSizeMs * kSampleRateKhz; const int kPayloadBytes = kSamples * 2; const int algorithmic_delay_samples = std::max( algorithmic_delay_ms_ * kSampleRateKhz, 5 * kSampleRateKhz / 8); // Insert three speech packet. Three are needed to get the frame length // correct. int out_len; int num_channels; NetEqOutputType type; uint8_t payload[kPayloadBytes] = {0}; WebRtcRTPHeader rtp_info; for (int i = 0; i < 3; ++i) { PopulateRtpInfo(seq_no, timestamp, &rtp_info); ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, kPayloadBytes, 0)); ++seq_no; timestamp += kSamples; // Pull audio once. ASSERT_EQ(0, neteq_->GetAudio( kMaxBlockSize, out_data_, &out_len, &num_channels, &type)); ASSERT_EQ(kBlockSize16kHz, out_len); } // Verify speech output. EXPECT_EQ(kOutputNormal, type); // Insert same CNG packet twice. const int kCngPeriodMs = 100; const int kCngPeriodSamples = kCngPeriodMs * kSampleRateKhz; int payload_len; PopulateCng(seq_no, timestamp, &rtp_info, payload, &payload_len); // This is the first time this CNG packet is inserted. ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, payload_len, 0)); // Pull audio once and make sure CNG is played. ASSERT_EQ(0, neteq_->GetAudio( kMaxBlockSize, out_data_, &out_len, &num_channels, &type)); ASSERT_EQ(kBlockSize16kHz, out_len); EXPECT_EQ(kOutputCNG, type); EXPECT_EQ(timestamp - algorithmic_delay_samples, PlayoutTimestamp()); // Insert the same CNG packet again. Note that at this point it is old, since // we have already decoded the first copy of it. ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, payload_len, 0)); // Pull audio until we have played |kCngPeriodMs| of CNG. Start at 10 ms since // we have already pulled out CNG once. for (int cng_time_ms = 10; cng_time_ms < kCngPeriodMs; cng_time_ms += 10) { ASSERT_EQ(0, neteq_->GetAudio( kMaxBlockSize, out_data_, &out_len, &num_channels, &type)); ASSERT_EQ(kBlockSize16kHz, out_len); EXPECT_EQ(kOutputCNG, type); EXPECT_EQ(timestamp - algorithmic_delay_samples, PlayoutTimestamp()); } // Insert speech again. ++seq_no; timestamp += kCngPeriodSamples; PopulateRtpInfo(seq_no, timestamp, &rtp_info); ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, kPayloadBytes, 0)); // Pull audio once and verify that the output is speech again. ASSERT_EQ(0, neteq_->GetAudio( kMaxBlockSize, out_data_, &out_len, &num_channels, &type)); ASSERT_EQ(kBlockSize16kHz, out_len); EXPECT_EQ(kOutputNormal, type); EXPECT_EQ(timestamp + kSamples - algorithmic_delay_samples, PlayoutTimestamp()); } uint32_t NetEqDecodingTest::PlayoutTimestamp() { uint32_t playout_timestamp = 0; EXPECT_TRUE(neteq_->GetPlayoutTimestamp(&playout_timestamp)); return playout_timestamp; } TEST_F(NetEqDecodingTest, DiscardDuplicateCng) { DuplicateCng(); } } // namespace webrtc