/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ // Unit tests for PayloadSplitter class. #include "webrtc/modules/audio_coding/neteq/payload_splitter.h" #include #include // pair #include "testing/gtest/include/gtest/gtest.h" #include "webrtc/base/scoped_ptr.h" #include "webrtc/modules/audio_coding/neteq/mock/mock_decoder_database.h" #include "webrtc/modules/audio_coding/neteq/packet.h" using ::testing::Return; using ::testing::ReturnNull; namespace webrtc { static const int kRedPayloadType = 100; static const size_t kPayloadLength = 10; static const size_t kRedHeaderLength = 4; // 4 bytes RED header. static const uint16_t kSequenceNumber = 0; static const uint32_t kBaseTimestamp = 0x12345678; // A possible Opus packet that contains FEC is the following. // The frame is 20 ms in duration. // // 0 1 2 3 // 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 // +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ // |0|0|0|0|1|0|0|0|x|1|x|x|x|x|x|x|x| | // +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | // | Compressed frame 1 (N-2 bytes)... : // : | // | | // +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ void CreateOpusFecPayload(uint8_t* payload, size_t payload_length, uint8_t payload_value) { if (payload_length < 2) { return; } payload[0] = 0x08; payload[1] = 0x40; memset(&payload[2], payload_value, payload_length - 2); } // RED headers (according to RFC 2198): // // 0 1 2 3 // 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 // +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ // |F| block PT | timestamp offset | block length | // +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ // // Last RED header: // 0 1 2 3 4 5 6 7 // +-+-+-+-+-+-+-+-+ // |0| Block PT | // +-+-+-+-+-+-+-+-+ // Creates a RED packet, with |num_payloads| payloads, with payload types given // by the values in array |payload_types| (which must be of length // |num_payloads|). Each redundant payload is |timestamp_offset| samples // "behind" the the previous payload. Packet* CreateRedPayload(size_t num_payloads, uint8_t* payload_types, int timestamp_offset, bool embed_opus_fec = false) { Packet* packet = new Packet; packet->header.payloadType = kRedPayloadType; packet->header.timestamp = kBaseTimestamp; packet->header.sequenceNumber = kSequenceNumber; packet->payload_length = (kPayloadLength + 1) + (num_payloads - 1) * (kPayloadLength + kRedHeaderLength); uint8_t* payload = new uint8_t[packet->payload_length]; uint8_t* payload_ptr = payload; for (size_t i = 0; i < num_payloads; ++i) { // Write the RED headers. if (i == num_payloads - 1) { // Special case for last payload. *payload_ptr = payload_types[i] & 0x7F; // F = 0; ++payload_ptr; break; } *payload_ptr = payload_types[i] & 0x7F; // Not the last block; set F = 1. *payload_ptr |= 0x80; ++payload_ptr; int this_offset = (num_payloads - i - 1) * timestamp_offset; *payload_ptr = this_offset >> 6; ++payload_ptr; assert(kPayloadLength <= 1023); // Max length described by 10 bits. *payload_ptr = ((this_offset & 0x3F) << 2) | (kPayloadLength >> 8); ++payload_ptr; *payload_ptr = kPayloadLength & 0xFF; ++payload_ptr; } for (size_t i = 0; i < num_payloads; ++i) { // Write |i| to all bytes in each payload. if (embed_opus_fec) { CreateOpusFecPayload(payload_ptr, kPayloadLength, static_cast(i)); } else { memset(payload_ptr, static_cast(i), kPayloadLength); } payload_ptr += kPayloadLength; } packet->payload = payload; return packet; } // Create a packet with all payload bytes set to |payload_value|. Packet* CreatePacket(uint8_t payload_type, size_t payload_length, uint8_t payload_value, bool opus_fec = false) { Packet* packet = new Packet; packet->header.payloadType = payload_type; packet->header.timestamp = kBaseTimestamp; packet->header.sequenceNumber = kSequenceNumber; packet->payload_length = payload_length; uint8_t* payload = new uint8_t[packet->payload_length]; packet->payload = payload; if (opus_fec) { CreateOpusFecPayload(packet->payload, packet->payload_length, payload_value); } else { memset(payload, payload_value, payload_length); } return packet; } // Checks that |packet| has the attributes given in the remaining parameters. void VerifyPacket(const Packet* packet, size_t payload_length, uint8_t payload_type, uint16_t sequence_number, uint32_t timestamp, uint8_t payload_value, bool primary = true) { EXPECT_EQ(payload_length, packet->payload_length); EXPECT_EQ(payload_type, packet->header.payloadType); EXPECT_EQ(sequence_number, packet->header.sequenceNumber); EXPECT_EQ(timestamp, packet->header.timestamp); EXPECT_EQ(primary, packet->primary); ASSERT_FALSE(packet->payload == NULL); for (size_t i = 0; i < packet->payload_length; ++i) { EXPECT_EQ(payload_value, packet->payload[i]); } } // Start of test definitions. TEST(PayloadSplitter, CreateAndDestroy) { PayloadSplitter* splitter = new PayloadSplitter; delete splitter; } // Packet A is split into A1 and A2. TEST(RedPayloadSplitter, OnePacketTwoPayloads) { uint8_t payload_types[] = {0, 0}; const int kTimestampOffset = 160; Packet* packet = CreateRedPayload(2, payload_types, kTimestampOffset); PacketList packet_list; packet_list.push_back(packet); PayloadSplitter splitter; EXPECT_EQ(PayloadSplitter::kOK, splitter.SplitRed(&packet_list)); ASSERT_EQ(2u, packet_list.size()); // Check first packet. The first in list should always be the primary payload. packet = packet_list.front(); VerifyPacket(packet, kPayloadLength, payload_types[1], kSequenceNumber, kBaseTimestamp, 1, true); delete [] packet->payload; delete packet; packet_list.pop_front(); // Check second packet. packet = packet_list.front(); VerifyPacket(packet, kPayloadLength, payload_types[0], kSequenceNumber, kBaseTimestamp - kTimestampOffset, 0, false); delete [] packet->payload; delete packet; } // Packets A and B are not split at all. Only the RED header in each packet is // removed. TEST(RedPayloadSplitter, TwoPacketsOnePayload) { uint8_t payload_types[] = {0}; const int kTimestampOffset = 160; // Create first packet, with a single RED payload. Packet* packet = CreateRedPayload(1, payload_types, kTimestampOffset); PacketList packet_list; packet_list.push_back(packet); // Create second packet, with a single RED payload. packet = CreateRedPayload(1, payload_types, kTimestampOffset); // Manually change timestamp and sequence number of second packet. packet->header.timestamp += kTimestampOffset; packet->header.sequenceNumber++; packet_list.push_back(packet); PayloadSplitter splitter; EXPECT_EQ(PayloadSplitter::kOK, splitter.SplitRed(&packet_list)); ASSERT_EQ(2u, packet_list.size()); // Check first packet. packet = packet_list.front(); VerifyPacket(packet, kPayloadLength, payload_types[0], kSequenceNumber, kBaseTimestamp, 0, true); delete [] packet->payload; delete packet; packet_list.pop_front(); // Check second packet. packet = packet_list.front(); VerifyPacket(packet, kPayloadLength, payload_types[0], kSequenceNumber + 1, kBaseTimestamp + kTimestampOffset, 0, true); delete [] packet->payload; delete packet; } // Packets A and B are split into packets A1, A2, A3, B1, B2, B3, with // attributes as follows: // // A1* A2 A3 B1* B2 B3 // Payload type 0 1 2 0 1 2 // Timestamp b b-o b-2o b+o b b-o // Sequence number 0 0 0 1 1 1 // // b = kBaseTimestamp, o = kTimestampOffset, * = primary. TEST(RedPayloadSplitter, TwoPacketsThreePayloads) { uint8_t payload_types[] = {2, 1, 0}; // Primary is the last one. const int kTimestampOffset = 160; // Create first packet, with 3 RED payloads. Packet* packet = CreateRedPayload(3, payload_types, kTimestampOffset); PacketList packet_list; packet_list.push_back(packet); // Create first packet, with 3 RED payloads. packet = CreateRedPayload(3, payload_types, kTimestampOffset); // Manually change timestamp and sequence number of second packet. packet->header.timestamp += kTimestampOffset; packet->header.sequenceNumber++; packet_list.push_back(packet); PayloadSplitter splitter; EXPECT_EQ(PayloadSplitter::kOK, splitter.SplitRed(&packet_list)); ASSERT_EQ(6u, packet_list.size()); // Check first packet, A1. packet = packet_list.front(); VerifyPacket(packet, kPayloadLength, payload_types[2], kSequenceNumber, kBaseTimestamp, 2, true); delete [] packet->payload; delete packet; packet_list.pop_front(); // Check second packet, A2. packet = packet_list.front(); VerifyPacket(packet, kPayloadLength, payload_types[1], kSequenceNumber, kBaseTimestamp - kTimestampOffset, 1, false); delete [] packet->payload; delete packet; packet_list.pop_front(); // Check third packet, A3. packet = packet_list.front(); VerifyPacket(packet, kPayloadLength, payload_types[0], kSequenceNumber, kBaseTimestamp - 2 * kTimestampOffset, 0, false); delete [] packet->payload; delete packet; packet_list.pop_front(); // Check fourth packet, B1. packet = packet_list.front(); VerifyPacket(packet, kPayloadLength, payload_types[2], kSequenceNumber + 1, kBaseTimestamp + kTimestampOffset, 2, true); delete [] packet->payload; delete packet; packet_list.pop_front(); // Check fifth packet, B2. packet = packet_list.front(); VerifyPacket(packet, kPayloadLength, payload_types[1], kSequenceNumber + 1, kBaseTimestamp, 1, false); delete [] packet->payload; delete packet; packet_list.pop_front(); // Check sixth packet, B3. packet = packet_list.front(); VerifyPacket(packet, kPayloadLength, payload_types[0], kSequenceNumber + 1, kBaseTimestamp - kTimestampOffset, 0, false); delete [] packet->payload; delete packet; } // Creates a list with 4 packets with these payload types: // 0 = CNGnb // 1 = PCMu // 2 = DTMF (AVT) // 3 = iLBC // We expect the method CheckRedPayloads to discard the iLBC packet, since it // is a non-CNG, non-DTMF payload of another type than the first speech payload // found in the list (which is PCMu). TEST(RedPayloadSplitter, CheckRedPayloads) { PacketList packet_list; for (uint8_t i = 0; i <= 3; ++i) { // Create packet with payload type |i|, payload length 10 bytes, all 0. Packet* packet = CreatePacket(i, 10, 0); packet_list.push_back(packet); } // Use a real DecoderDatabase object here instead of a mock, since it is // easier to just register the payload types and let the actual implementation // do its job. DecoderDatabase decoder_database; decoder_database.RegisterPayload(0, NetEqDecoder::kDecoderCNGnb); decoder_database.RegisterPayload(1, NetEqDecoder::kDecoderPCMu); decoder_database.RegisterPayload(2, NetEqDecoder::kDecoderAVT); decoder_database.RegisterPayload(3, NetEqDecoder::kDecoderILBC); PayloadSplitter splitter; splitter.CheckRedPayloads(&packet_list, decoder_database); ASSERT_EQ(3u, packet_list.size()); // Should have dropped the last packet. // Verify packets. The loop verifies that payload types 0, 1, and 2 are in the // list. for (int i = 0; i <= 2; ++i) { Packet* packet = packet_list.front(); VerifyPacket(packet, 10, i, kSequenceNumber, kBaseTimestamp, 0, true); delete [] packet->payload; delete packet; packet_list.pop_front(); } EXPECT_TRUE(packet_list.empty()); } // Packet A is split into A1, A2 and A3. But the length parameter is off, so // the last payloads should be discarded. TEST(RedPayloadSplitter, WrongPayloadLength) { uint8_t payload_types[] = {0, 0, 0}; const int kTimestampOffset = 160; Packet* packet = CreateRedPayload(3, payload_types, kTimestampOffset); // Manually tamper with the payload length of the packet. // This is one byte too short for the second payload (out of three). // We expect only the first payload to be returned. packet->payload_length -= kPayloadLength + 1; PacketList packet_list; packet_list.push_back(packet); PayloadSplitter splitter; EXPECT_EQ(PayloadSplitter::kRedLengthMismatch, splitter.SplitRed(&packet_list)); ASSERT_EQ(1u, packet_list.size()); // Check first packet. packet = packet_list.front(); VerifyPacket(packet, kPayloadLength, payload_types[0], kSequenceNumber, kBaseTimestamp - 2 * kTimestampOffset, 0, false); delete [] packet->payload; delete packet; packet_list.pop_front(); } // Test that iSAC, iSAC-swb, RED, DTMF, CNG, and "Arbitrary" payloads do not // get split. TEST(AudioPayloadSplitter, NonSplittable) { // Set up packets with different RTP payload types. The actual values do not // matter, since we are mocking the decoder database anyway. PacketList packet_list; for (uint8_t i = 0; i < 6; ++i) { // Let the payload type be |i|, and the payload value 10 * |i|. packet_list.push_back(CreatePacket(i, kPayloadLength, 10 * i)); } MockDecoderDatabase decoder_database; // Tell the mock decoder database to return DecoderInfo structs with different // codec types. // Use scoped pointers to avoid having to delete them later. rtc::scoped_ptr info0( new DecoderDatabase::DecoderInfo(NetEqDecoder::kDecoderISAC, 16000, NULL, false)); EXPECT_CALL(decoder_database, GetDecoderInfo(0)) .WillRepeatedly(Return(info0.get())); rtc::scoped_ptr info1( new DecoderDatabase::DecoderInfo(NetEqDecoder::kDecoderISACswb, 32000, NULL, false)); EXPECT_CALL(decoder_database, GetDecoderInfo(1)) .WillRepeatedly(Return(info1.get())); rtc::scoped_ptr info2( new DecoderDatabase::DecoderInfo(NetEqDecoder::kDecoderRED, 8000, NULL, false)); EXPECT_CALL(decoder_database, GetDecoderInfo(2)) .WillRepeatedly(Return(info2.get())); rtc::scoped_ptr info3( new DecoderDatabase::DecoderInfo(NetEqDecoder::kDecoderAVT, 8000, NULL, false)); EXPECT_CALL(decoder_database, GetDecoderInfo(3)) .WillRepeatedly(Return(info3.get())); rtc::scoped_ptr info4( new DecoderDatabase::DecoderInfo(NetEqDecoder::kDecoderCNGnb, 8000, NULL, false)); EXPECT_CALL(decoder_database, GetDecoderInfo(4)) .WillRepeatedly(Return(info4.get())); rtc::scoped_ptr info5( new DecoderDatabase::DecoderInfo(NetEqDecoder::kDecoderArbitrary, 8000, NULL, false)); EXPECT_CALL(decoder_database, GetDecoderInfo(5)) .WillRepeatedly(Return(info5.get())); PayloadSplitter splitter; EXPECT_EQ(0, splitter.SplitAudio(&packet_list, decoder_database)); EXPECT_EQ(6u, packet_list.size()); // Check that all payloads are intact. uint8_t payload_type = 0; PacketList::iterator it = packet_list.begin(); while (it != packet_list.end()) { VerifyPacket((*it), kPayloadLength, payload_type, kSequenceNumber, kBaseTimestamp, 10 * payload_type); ++payload_type; delete [] (*it)->payload; delete (*it); it = packet_list.erase(it); } // The destructor is called when decoder_database goes out of scope. EXPECT_CALL(decoder_database, Die()); } // Test unknown payload type. TEST(AudioPayloadSplitter, UnknownPayloadType) { PacketList packet_list; static const uint8_t kPayloadType = 17; // Just a random number. size_t kPayloadLengthBytes = 4711; // Random number. packet_list.push_back(CreatePacket(kPayloadType, kPayloadLengthBytes, 0)); MockDecoderDatabase decoder_database; // Tell the mock decoder database to return NULL when asked for decoder info. // This signals that the decoder database does not recognize the payload type. EXPECT_CALL(decoder_database, GetDecoderInfo(kPayloadType)) .WillRepeatedly(ReturnNull()); PayloadSplitter splitter; EXPECT_EQ(PayloadSplitter::kUnknownPayloadType, splitter.SplitAudio(&packet_list, decoder_database)); EXPECT_EQ(1u, packet_list.size()); // Delete the packets and payloads to avoid having the test leak memory. PacketList::iterator it = packet_list.begin(); while (it != packet_list.end()) { delete [] (*it)->payload; delete (*it); it = packet_list.erase(it); } // The destructor is called when decoder_database goes out of scope. EXPECT_CALL(decoder_database, Die()); } class SplitBySamplesTest : public ::testing::TestWithParam { protected: virtual void SetUp() { decoder_type_ = GetParam(); switch (decoder_type_) { case NetEqDecoder::kDecoderPCMu: case NetEqDecoder::kDecoderPCMa: bytes_per_ms_ = 8; samples_per_ms_ = 8; break; case NetEqDecoder::kDecoderPCMu_2ch: case NetEqDecoder::kDecoderPCMa_2ch: bytes_per_ms_ = 2 * 8; samples_per_ms_ = 8; break; case NetEqDecoder::kDecoderG722: bytes_per_ms_ = 8; samples_per_ms_ = 16; break; case NetEqDecoder::kDecoderPCM16B: bytes_per_ms_ = 16; samples_per_ms_ = 8; break; case NetEqDecoder::kDecoderPCM16Bwb: bytes_per_ms_ = 32; samples_per_ms_ = 16; break; case NetEqDecoder::kDecoderPCM16Bswb32kHz: bytes_per_ms_ = 64; samples_per_ms_ = 32; break; case NetEqDecoder::kDecoderPCM16Bswb48kHz: bytes_per_ms_ = 96; samples_per_ms_ = 48; break; case NetEqDecoder::kDecoderPCM16B_2ch: bytes_per_ms_ = 2 * 16; samples_per_ms_ = 8; break; case NetEqDecoder::kDecoderPCM16Bwb_2ch: bytes_per_ms_ = 2 * 32; samples_per_ms_ = 16; break; case NetEqDecoder::kDecoderPCM16Bswb32kHz_2ch: bytes_per_ms_ = 2 * 64; samples_per_ms_ = 32; break; case NetEqDecoder::kDecoderPCM16Bswb48kHz_2ch: bytes_per_ms_ = 2 * 96; samples_per_ms_ = 48; break; case NetEqDecoder::kDecoderPCM16B_5ch: bytes_per_ms_ = 5 * 16; samples_per_ms_ = 8; break; default: assert(false); break; } } size_t bytes_per_ms_; int samples_per_ms_; NetEqDecoder decoder_type_; }; // Test splitting sample-based payloads. TEST_P(SplitBySamplesTest, PayloadSizes) { PacketList packet_list; static const uint8_t kPayloadType = 17; // Just a random number. for (int payload_size_ms = 10; payload_size_ms <= 60; payload_size_ms += 10) { // The payload values are set to be the same as the payload_size, so that // one can distinguish from which packet the split payloads come from. size_t payload_size_bytes = payload_size_ms * bytes_per_ms_; packet_list.push_back(CreatePacket(kPayloadType, payload_size_bytes, payload_size_ms)); } MockDecoderDatabase decoder_database; // Tell the mock decoder database to return DecoderInfo structs with different // codec types. // Use scoped pointers to avoid having to delete them later. // (Sample rate is set to 8000 Hz, but does not matter.) rtc::scoped_ptr info( new DecoderDatabase::DecoderInfo(decoder_type_, 8000, NULL, false)); EXPECT_CALL(decoder_database, GetDecoderInfo(kPayloadType)) .WillRepeatedly(Return(info.get())); PayloadSplitter splitter; EXPECT_EQ(0, splitter.SplitAudio(&packet_list, decoder_database)); // The payloads are expected to be split as follows: // 10 ms -> 10 ms // 20 ms -> 20 ms // 30 ms -> 30 ms // 40 ms -> 20 + 20 ms // 50 ms -> 25 + 25 ms // 60 ms -> 30 + 30 ms int expected_size_ms[] = {10, 20, 30, 20, 20, 25, 25, 30, 30}; int expected_payload_value[] = {10, 20, 30, 40, 40, 50, 50, 60, 60}; int expected_timestamp_offset_ms[] = {0, 0, 0, 0, 20, 0, 25, 0, 30}; size_t expected_num_packets = sizeof(expected_size_ms) / sizeof(expected_size_ms[0]); EXPECT_EQ(expected_num_packets, packet_list.size()); PacketList::iterator it = packet_list.begin(); int i = 0; while (it != packet_list.end()) { size_t length_bytes = expected_size_ms[i] * bytes_per_ms_; uint32_t expected_timestamp = kBaseTimestamp + expected_timestamp_offset_ms[i] * samples_per_ms_; VerifyPacket((*it), length_bytes, kPayloadType, kSequenceNumber, expected_timestamp, expected_payload_value[i]); delete [] (*it)->payload; delete (*it); it = packet_list.erase(it); ++i; } // The destructor is called when decoder_database goes out of scope. EXPECT_CALL(decoder_database, Die()); } INSTANTIATE_TEST_CASE_P( PayloadSplitter, SplitBySamplesTest, ::testing::Values(NetEqDecoder::kDecoderPCMu, NetEqDecoder::kDecoderPCMa, NetEqDecoder::kDecoderPCMu_2ch, NetEqDecoder::kDecoderPCMa_2ch, NetEqDecoder::kDecoderG722, NetEqDecoder::kDecoderPCM16B, NetEqDecoder::kDecoderPCM16Bwb, NetEqDecoder::kDecoderPCM16Bswb32kHz, NetEqDecoder::kDecoderPCM16Bswb48kHz, NetEqDecoder::kDecoderPCM16B_2ch, NetEqDecoder::kDecoderPCM16Bwb_2ch, NetEqDecoder::kDecoderPCM16Bswb32kHz_2ch, NetEqDecoder::kDecoderPCM16Bswb48kHz_2ch, NetEqDecoder::kDecoderPCM16B_5ch)); class SplitIlbcTest : public ::testing::TestWithParam > { protected: virtual void SetUp() { const std::pair parameters = GetParam(); num_frames_ = parameters.first; frame_length_ms_ = parameters.second; frame_length_bytes_ = (frame_length_ms_ == 20) ? 38 : 50; } size_t num_frames_; int frame_length_ms_; size_t frame_length_bytes_; }; // Test splitting sample-based payloads. TEST_P(SplitIlbcTest, NumFrames) { PacketList packet_list; static const uint8_t kPayloadType = 17; // Just a random number. const int frame_length_samples = frame_length_ms_ * 8; size_t payload_length_bytes = frame_length_bytes_ * num_frames_; Packet* packet = CreatePacket(kPayloadType, payload_length_bytes, 0); // Fill payload with increasing integers {0, 1, 2, ...}. for (size_t i = 0; i < packet->payload_length; ++i) { packet->payload[i] = static_cast(i); } packet_list.push_back(packet); MockDecoderDatabase decoder_database; // Tell the mock decoder database to return DecoderInfo structs with different // codec types. // Use scoped pointers to avoid having to delete them later. rtc::scoped_ptr info( new DecoderDatabase::DecoderInfo(NetEqDecoder::kDecoderILBC, 8000, NULL, false)); EXPECT_CALL(decoder_database, GetDecoderInfo(kPayloadType)) .WillRepeatedly(Return(info.get())); PayloadSplitter splitter; EXPECT_EQ(0, splitter.SplitAudio(&packet_list, decoder_database)); EXPECT_EQ(num_frames_, packet_list.size()); PacketList::iterator it = packet_list.begin(); int frame_num = 0; uint8_t payload_value = 0; while (it != packet_list.end()) { Packet* packet = (*it); EXPECT_EQ(kBaseTimestamp + frame_length_samples * frame_num, packet->header.timestamp); EXPECT_EQ(frame_length_bytes_, packet->payload_length); EXPECT_EQ(kPayloadType, packet->header.payloadType); EXPECT_EQ(kSequenceNumber, packet->header.sequenceNumber); EXPECT_EQ(true, packet->primary); ASSERT_FALSE(packet->payload == NULL); for (size_t i = 0; i < packet->payload_length; ++i) { EXPECT_EQ(payload_value, packet->payload[i]); ++payload_value; } delete [] (*it)->payload; delete (*it); it = packet_list.erase(it); ++frame_num; } // The destructor is called when decoder_database goes out of scope. EXPECT_CALL(decoder_database, Die()); } // Test 1 through 5 frames of 20 and 30 ms size. // Also test the maximum number of frames in one packet for 20 and 30 ms. // The maximum is defined by the largest payload length that can be uniquely // resolved to a frame size of either 38 bytes (20 ms) or 50 bytes (30 ms). INSTANTIATE_TEST_CASE_P( PayloadSplitter, SplitIlbcTest, ::testing::Values(std::pair(1, 20), // 1 frame, 20 ms. std::pair(2, 20), // 2 frames, 20 ms. std::pair(3, 20), // And so on. std::pair(4, 20), std::pair(5, 20), std::pair(24, 20), std::pair(1, 30), std::pair(2, 30), std::pair(3, 30), std::pair(4, 30), std::pair(5, 30), std::pair(18, 30))); // Test too large payload size. TEST(IlbcPayloadSplitter, TooLargePayload) { PacketList packet_list; static const uint8_t kPayloadType = 17; // Just a random number. size_t kPayloadLengthBytes = 950; Packet* packet = CreatePacket(kPayloadType, kPayloadLengthBytes, 0); packet_list.push_back(packet); MockDecoderDatabase decoder_database; rtc::scoped_ptr info( new DecoderDatabase::DecoderInfo(NetEqDecoder::kDecoderILBC, 8000, NULL, false)); EXPECT_CALL(decoder_database, GetDecoderInfo(kPayloadType)) .WillRepeatedly(Return(info.get())); PayloadSplitter splitter; EXPECT_EQ(PayloadSplitter::kTooLargePayload, splitter.SplitAudio(&packet_list, decoder_database)); EXPECT_EQ(1u, packet_list.size()); // Delete the packets and payloads to avoid having the test leak memory. PacketList::iterator it = packet_list.begin(); while (it != packet_list.end()) { delete [] (*it)->payload; delete (*it); it = packet_list.erase(it); } // The destructor is called when decoder_database goes out of scope. EXPECT_CALL(decoder_database, Die()); } // Payload not an integer number of frames. TEST(IlbcPayloadSplitter, UnevenPayload) { PacketList packet_list; static const uint8_t kPayloadType = 17; // Just a random number. size_t kPayloadLengthBytes = 39; // Not an even number of frames. Packet* packet = CreatePacket(kPayloadType, kPayloadLengthBytes, 0); packet_list.push_back(packet); MockDecoderDatabase decoder_database; rtc::scoped_ptr info( new DecoderDatabase::DecoderInfo(NetEqDecoder::kDecoderILBC, 8000, NULL, false)); EXPECT_CALL(decoder_database, GetDecoderInfo(kPayloadType)) .WillRepeatedly(Return(info.get())); PayloadSplitter splitter; EXPECT_EQ(PayloadSplitter::kFrameSplitError, splitter.SplitAudio(&packet_list, decoder_database)); EXPECT_EQ(1u, packet_list.size()); // Delete the packets and payloads to avoid having the test leak memory. PacketList::iterator it = packet_list.begin(); while (it != packet_list.end()) { delete [] (*it)->payload; delete (*it); it = packet_list.erase(it); } // The destructor is called when decoder_database goes out of scope. EXPECT_CALL(decoder_database, Die()); } TEST(FecPayloadSplitter, MixedPayload) { PacketList packet_list; DecoderDatabase decoder_database; decoder_database.RegisterPayload(0, NetEqDecoder::kDecoderOpus); decoder_database.RegisterPayload(1, NetEqDecoder::kDecoderPCMu); Packet* packet = CreatePacket(0, 10, 0xFF, true); packet_list.push_back(packet); packet = CreatePacket(0, 10, 0); // Non-FEC Opus payload. packet_list.push_back(packet); packet = CreatePacket(1, 10, 0); // Non-Opus payload. packet_list.push_back(packet); PayloadSplitter splitter; EXPECT_EQ(PayloadSplitter::kOK, splitter.SplitFec(&packet_list, &decoder_database)); EXPECT_EQ(4u, packet_list.size()); // Check first packet. packet = packet_list.front(); EXPECT_EQ(0, packet->header.payloadType); EXPECT_EQ(kBaseTimestamp - 20 * 48, packet->header.timestamp); EXPECT_EQ(10U, packet->payload_length); EXPECT_FALSE(packet->primary); delete [] packet->payload; delete packet; packet_list.pop_front(); // Check second packet. packet = packet_list.front(); EXPECT_EQ(0, packet->header.payloadType); EXPECT_EQ(kBaseTimestamp, packet->header.timestamp); EXPECT_EQ(10U, packet->payload_length); EXPECT_TRUE(packet->primary); delete [] packet->payload; delete packet; packet_list.pop_front(); // Check third packet. packet = packet_list.front(); VerifyPacket(packet, 10, 0, kSequenceNumber, kBaseTimestamp, 0, true); delete [] packet->payload; delete packet; packet_list.pop_front(); // Check fourth packet. packet = packet_list.front(); VerifyPacket(packet, 10, 1, kSequenceNumber, kBaseTimestamp, 0, true); delete [] packet->payload; delete packet; } TEST(FecPayloadSplitter, EmbedFecInRed) { PacketList packet_list; DecoderDatabase decoder_database; const int kTimestampOffset = 20 * 48; // 20 ms * 48 kHz. uint8_t payload_types[] = {0, 0}; decoder_database.RegisterPayload(0, NetEqDecoder::kDecoderOpus); Packet* packet = CreateRedPayload(2, payload_types, kTimestampOffset, true); packet_list.push_back(packet); PayloadSplitter splitter; EXPECT_EQ(PayloadSplitter::kOK, splitter.SplitRed(&packet_list)); EXPECT_EQ(PayloadSplitter::kOK, splitter.SplitFec(&packet_list, &decoder_database)); EXPECT_EQ(4u, packet_list.size()); // Check first packet. FEC packet copied from primary payload in RED. packet = packet_list.front(); EXPECT_EQ(0, packet->header.payloadType); EXPECT_EQ(kBaseTimestamp - kTimestampOffset, packet->header.timestamp); EXPECT_EQ(kPayloadLength, packet->payload_length); EXPECT_FALSE(packet->primary); EXPECT_EQ(packet->payload[3], 1); delete [] packet->payload; delete packet; packet_list.pop_front(); // Check second packet. Normal packet copied from primary payload in RED. packet = packet_list.front(); EXPECT_EQ(0, packet->header.payloadType); EXPECT_EQ(kBaseTimestamp, packet->header.timestamp); EXPECT_EQ(kPayloadLength, packet->payload_length); EXPECT_TRUE(packet->primary); EXPECT_EQ(packet->payload[3], 1); delete [] packet->payload; delete packet; packet_list.pop_front(); // Check third packet. FEC packet copied from secondary payload in RED. packet = packet_list.front(); EXPECT_EQ(0, packet->header.payloadType); EXPECT_EQ(kBaseTimestamp - 2 * kTimestampOffset, packet->header.timestamp); EXPECT_EQ(kPayloadLength, packet->payload_length); EXPECT_FALSE(packet->primary); EXPECT_EQ(packet->payload[3], 0); delete [] packet->payload; delete packet; packet_list.pop_front(); // Check fourth packet. Normal packet copied from primary payload in RED. packet = packet_list.front(); EXPECT_EQ(0, packet->header.payloadType); EXPECT_EQ(kBaseTimestamp - kTimestampOffset, packet->header.timestamp); EXPECT_EQ(kPayloadLength, packet->payload_length); EXPECT_TRUE(packet->primary); EXPECT_EQ(packet->payload[3], 0); delete [] packet->payload; delete packet; packet_list.pop_front(); } } // namespace webrtc