/* * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include #include "webrtc/base/checks.h" #include "webrtc/modules/audio_coding/neteq/tools/neteq_quality_test.h" #include "webrtc/modules/audio_coding/neteq/tools/output_audio_file.h" #include "webrtc/modules/audio_coding/neteq/tools/output_wav_file.h" #include "webrtc/modules/audio_coding/neteq/tools/resample_input_audio_file.h" #include "webrtc/test/testsupport/fileutils.h" using std::string; namespace webrtc { namespace test { const uint8_t kPayloadType = 95; const int kOutputSizeMs = 10; const int kInitSeed = 0x12345678; const int kPacketLossTimeUnitMs = 10; // Common validator for file names. static bool ValidateFilename(const string& value, bool write) { FILE* fid = write ? fopen(value.c_str(), "wb") : fopen(value.c_str(), "rb"); if (fid == nullptr) return false; fclose(fid); return true; } // Define switch for input file name. static bool ValidateInFilename(const char* flagname, const string& value) { if (!ValidateFilename(value, false)) { printf("Invalid input filename."); return false; } return true; } DEFINE_string( in_filename, ResourcePath("audio_coding/speech_mono_16kHz", "pcm"), "Filename for input audio (specify sample rate with --input_sample_rate ," "and channels with --channels)."); static const bool in_filename_dummy = RegisterFlagValidator(&FLAGS_in_filename, &ValidateInFilename); // Define switch for sample rate. static bool ValidateSampleRate(const char* flagname, int32_t value) { if (value == 8000 || value == 16000 || value == 32000 || value == 48000) return true; printf("Invalid sample rate should be 8000, 16000, 32000 or 48000 Hz."); return false; } DEFINE_int32(input_sample_rate, 16000, "Sample rate of input file in Hz."); static const bool sample_rate_dummy = RegisterFlagValidator(&FLAGS_input_sample_rate, &ValidateSampleRate); // Define switch for channels. static bool ValidateChannels(const char* flagname, int32_t value) { if (value == 1) return true; printf("Invalid number of channels, current support only 1."); return false; } DEFINE_int32(channels, 1, "Number of channels in input audio."); static const bool channels_dummy = RegisterFlagValidator(&FLAGS_channels, &ValidateChannels); // Define switch for output file name. static bool ValidateOutFilename(const char* flagname, const string& value) { if (!ValidateFilename(value, true)) { printf("Invalid output filename."); return false; } return true; } DEFINE_string(out_filename, OutputPath() + "neteq_quality_test_out.pcm", "Name of output audio file."); static const bool out_filename_dummy = RegisterFlagValidator(&FLAGS_out_filename, &ValidateOutFilename); // Define switch for packet loss rate. static bool ValidatePacketLossRate(const char* /* flag_name */, int32_t value) { if (value >= 0 && value <= 100) return true; printf("Invalid packet loss percentile, should be between 0 and 100."); return false; } // Define switch for runtime. static bool ValidateRuntime(const char* flagname, int32_t value) { if (value > 0) return true; printf("Invalid runtime, should be greater than 0."); return false; } DEFINE_int32(runtime_ms, 10000, "Simulated runtime (milliseconds)."); static const bool runtime_dummy = RegisterFlagValidator(&FLAGS_runtime_ms, &ValidateRuntime); DEFINE_int32(packet_loss_rate, 10, "Percentile of packet loss."); static const bool packet_loss_rate_dummy = RegisterFlagValidator(&FLAGS_packet_loss_rate, &ValidatePacketLossRate); // Define switch for random loss mode. static bool ValidateRandomLossMode(const char* /* flag_name */, int32_t value) { if (value >= 0 && value <= 2) return true; printf("Invalid random packet loss mode, should be between 0 and 2."); return false; } DEFINE_int32(random_loss_mode, 1, "Random loss mode: 0--no loss, 1--uniform loss, 2--Gilbert Elliot loss."); static const bool random_loss_mode_dummy = RegisterFlagValidator(&FLAGS_random_loss_mode, &ValidateRandomLossMode); // Define switch for burst length. static bool ValidateBurstLength(const char* /* flag_name */, int32_t value) { if (value >= kPacketLossTimeUnitMs) return true; printf("Invalid burst length, should be greater than %d ms.", kPacketLossTimeUnitMs); return false; } DEFINE_int32(burst_length, 30, "Burst length in milliseconds, only valid for Gilbert Elliot loss."); static const bool burst_length_dummy = RegisterFlagValidator(&FLAGS_burst_length, &ValidateBurstLength); // Define switch for drift factor. static bool ValidateDriftFactor(const char* /* flag_name */, double value) { if (value > -0.1) return true; printf("Invalid drift factor, should be greater than -0.1."); return false; } DEFINE_double(drift_factor, 0.0, "Time drift factor."); static const bool drift_factor_dummy = RegisterFlagValidator(&FLAGS_drift_factor, &ValidateDriftFactor); // ProbTrans00Solver() is to calculate the transition probability from no-loss // state to itself in a modified Gilbert Elliot packet loss model. The result is // to achieve the target packet loss rate |loss_rate|, when a packet is not // lost only if all |units| drawings within the duration of the packet result in // no-loss. static double ProbTrans00Solver(int units, double loss_rate, double prob_trans_10) { if (units == 1) return prob_trans_10 / (1.0f - loss_rate) - prob_trans_10; // 0 == prob_trans_00 ^ (units - 1) + (1 - loss_rate) / prob_trans_10 * // prob_trans_00 - (1 - loss_rate) * (1 + 1 / prob_trans_10). // There is a unique solution between 0.0 and 1.0, due to the monotonicity and // an opposite sign at 0.0 and 1.0. // For simplicity, we reformulate the equation as // f(x) = x ^ (units - 1) + a x + b. // Its derivative is // f'(x) = (units - 1) x ^ (units - 2) + a. // The derivative is strictly greater than 0 when x is between 0 and 1. // We use Newton's method to solve the equation, iteration is // x(k+1) = x(k) - f(x) / f'(x); const double kPrecision = 0.001f; const int kIterations = 100; const double a = (1.0f - loss_rate) / prob_trans_10; const double b = (loss_rate - 1.0f) * (1.0f + 1.0f / prob_trans_10); double x = 0.0f; // Starting point; double f = b; double f_p; int iter = 0; while ((f >= kPrecision || f <= -kPrecision) && iter < kIterations) { f_p = (units - 1.0f) * pow(x, units - 2) + a; x -= f / f_p; if (x > 1.0f) { x = 1.0f; } else if (x < 0.0f) { x = 0.0f; } f = pow(x, units - 1) + a * x + b; iter ++; } return x; } NetEqQualityTest::NetEqQualityTest(int block_duration_ms, int in_sampling_khz, int out_sampling_khz, NetEqDecoder decoder_type) : decoder_type_(decoder_type), channels_(FLAGS_channels), decoded_time_ms_(0), decodable_time_ms_(0), drift_factor_(FLAGS_drift_factor), packet_loss_rate_(FLAGS_packet_loss_rate), block_duration_ms_(block_duration_ms), in_sampling_khz_(in_sampling_khz), out_sampling_khz_(out_sampling_khz), in_size_samples_( static_cast(in_sampling_khz_ * block_duration_ms_)), out_size_samples_(static_cast(out_sampling_khz_ * kOutputSizeMs)), payload_size_bytes_(0), max_payload_bytes_(0), in_file_(new ResampleInputAudioFile(FLAGS_in_filename, FLAGS_input_sample_rate, in_sampling_khz * 1000)), rtp_generator_( new RtpGenerator(in_sampling_khz_, 0, 0, decodable_time_ms_)), total_payload_size_bytes_(0) { const std::string out_filename = FLAGS_out_filename; const std::string log_filename = out_filename + ".log"; log_file_.open(log_filename.c_str(), std::ofstream::out); RTC_CHECK(log_file_.is_open()); if (out_filename.size() >= 4 && out_filename.substr(out_filename.size() - 4) == ".wav") { // Open a wav file. output_.reset( new webrtc::test::OutputWavFile(out_filename, 1000 * out_sampling_khz)); } else { // Open a pcm file. output_.reset(new webrtc::test::OutputAudioFile(out_filename)); } NetEq::Config config; config.sample_rate_hz = out_sampling_khz_ * 1000; neteq_.reset(NetEq::Create(config)); max_payload_bytes_ = in_size_samples_ * channels_ * sizeof(int16_t); in_data_.reset(new int16_t[in_size_samples_ * channels_]); payload_.reset(new uint8_t[max_payload_bytes_]); out_data_.reset(new int16_t[out_size_samples_ * channels_]); } NetEqQualityTest::~NetEqQualityTest() { log_file_.close(); } bool NoLoss::Lost() { return false; } UniformLoss::UniformLoss(double loss_rate) : loss_rate_(loss_rate) { } bool UniformLoss::Lost() { int drop_this = rand(); return (drop_this < loss_rate_ * RAND_MAX); } GilbertElliotLoss::GilbertElliotLoss(double prob_trans_11, double prob_trans_01) : prob_trans_11_(prob_trans_11), prob_trans_01_(prob_trans_01), lost_last_(false), uniform_loss_model_(new UniformLoss(0)) { } bool GilbertElliotLoss::Lost() { // Simulate bursty channel (Gilbert model). // (1st order) Markov chain model with memory of the previous/last // packet state (lost or received). if (lost_last_) { // Previous packet was not received. uniform_loss_model_->set_loss_rate(prob_trans_11_); return lost_last_ = uniform_loss_model_->Lost(); } else { uniform_loss_model_->set_loss_rate(prob_trans_01_); return lost_last_ = uniform_loss_model_->Lost(); } } void NetEqQualityTest::SetUp() { ASSERT_EQ(0, neteq_->RegisterPayloadType(decoder_type_, kPayloadType)); rtp_generator_->set_drift_factor(drift_factor_); int units = block_duration_ms_ / kPacketLossTimeUnitMs; switch (FLAGS_random_loss_mode) { case 1: { // |unit_loss_rate| is the packet loss rate for each unit time interval // (kPacketLossTimeUnitMs). Since a packet loss event is generated if any // of |block_duration_ms_ / kPacketLossTimeUnitMs| unit time intervals of // a full packet duration is drawn with a loss, |unit_loss_rate| fulfills // (1 - unit_loss_rate) ^ (block_duration_ms_ / kPacketLossTimeUnitMs) == // 1 - packet_loss_rate. double unit_loss_rate = (1.0f - pow(1.0f - 0.01f * packet_loss_rate_, 1.0f / units)); loss_model_.reset(new UniformLoss(unit_loss_rate)); break; } case 2: { // |FLAGS_burst_length| should be integer times of kPacketLossTimeUnitMs. ASSERT_EQ(0, FLAGS_burst_length % kPacketLossTimeUnitMs); // We do not allow 100 percent packet loss in Gilbert Elliot model, which // makes no sense. ASSERT_GT(100, packet_loss_rate_); // To guarantee the overall packet loss rate, transition probabilities // need to satisfy: // pi_0 * (1 - prob_trans_01_) ^ units + // pi_1 * prob_trans_10_ ^ (units - 1) == 1 - loss_rate // pi_0 = prob_trans_10 / (prob_trans_10 + prob_trans_01_) // is the stationary state probability of no-loss // pi_1 = prob_trans_01_ / (prob_trans_10 + prob_trans_01_) // is the stationary state probability of loss // After a derivation prob_trans_00 should satisfy: // prob_trans_00 ^ (units - 1) = (loss_rate - 1) / prob_trans_10 * // prob_trans_00 + (1 - loss_rate) * (1 + 1 / prob_trans_10). double loss_rate = 0.01f * packet_loss_rate_; double prob_trans_10 = 1.0f * kPacketLossTimeUnitMs / FLAGS_burst_length; double prob_trans_00 = ProbTrans00Solver(units, loss_rate, prob_trans_10); loss_model_.reset(new GilbertElliotLoss(1.0f - prob_trans_10, 1.0f - prob_trans_00)); break; } default: { loss_model_.reset(new NoLoss); break; } } // Make sure that the packet loss profile is same for all derived tests. srand(kInitSeed); } std::ofstream& NetEqQualityTest::Log() { return log_file_; } bool NetEqQualityTest::PacketLost() { int cycles = block_duration_ms_ / kPacketLossTimeUnitMs; // The loop is to make sure that codecs with different block lengths share the // same packet loss profile. bool lost = false; for (int idx = 0; idx < cycles; idx ++) { if (loss_model_->Lost()) { // The packet will be lost if any of the drawings indicates a loss, but // the loop has to go on to make sure that codecs with different block // lengths keep the same pace. lost = true; } } return lost; } int NetEqQualityTest::Transmit() { int packet_input_time_ms = rtp_generator_->GetRtpHeader(kPayloadType, in_size_samples_, &rtp_header_); Log() << "Packet of size " << payload_size_bytes_ << " bytes, for frame at " << packet_input_time_ms << " ms "; if (payload_size_bytes_ > 0) { if (!PacketLost()) { int ret = neteq_->InsertPacket(rtp_header_, &payload_[0], payload_size_bytes_, packet_input_time_ms * in_sampling_khz_); if (ret != NetEq::kOK) return -1; Log() << "was sent."; } else { Log() << "was lost."; } } Log() << std::endl; return packet_input_time_ms; } int NetEqQualityTest::DecodeBlock() { int channels; size_t samples; int ret = neteq_->GetAudio(out_size_samples_ * channels_, &out_data_[0], &samples, &channels, NULL); if (ret != NetEq::kOK) { return -1; } else { assert(channels == channels_); assert(samples == static_cast(kOutputSizeMs * out_sampling_khz_)); RTC_CHECK(output_->WriteArray(out_data_.get(), samples * channels)); return static_cast(samples); } } void NetEqQualityTest::Simulate() { int audio_size_samples; while (decoded_time_ms_ < FLAGS_runtime_ms) { // Assume 10 packets in packets buffer. while (decodable_time_ms_ - 10 * block_duration_ms_ < decoded_time_ms_) { ASSERT_TRUE(in_file_->Read(in_size_samples_ * channels_, &in_data_[0])); payload_size_bytes_ = EncodeBlock(&in_data_[0], in_size_samples_, &payload_[0], max_payload_bytes_); total_payload_size_bytes_ += payload_size_bytes_; decodable_time_ms_ = Transmit() + block_duration_ms_; } audio_size_samples = DecodeBlock(); if (audio_size_samples > 0) { decoded_time_ms_ += audio_size_samples / out_sampling_khz_; } } Log() << "Average bit rate was " << 8.0f * total_payload_size_bytes_ / FLAGS_runtime_ms << " kbps" << std::endl; } } // namespace test } // namespace webrtc