/* * Copyright (c) 2013 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ /* * The core AEC algorithm, which is presented with time-aligned signals. */ #include "webrtc/modules/audio_processing/aec/aec_core.h" #include #include "webrtc/common_audio/signal_processing/include/signal_processing_library.h" #include "webrtc/modules/audio_processing/aec/aec_core_internal.h" #include "webrtc/modules/audio_processing/aec/aec_rdft.h" extern const float WebRtcAec_weightCurve[65]; extern const float WebRtcAec_overDriveCurve[65]; void WebRtcAec_ComfortNoise_mips(AecCore* aec, float efw[2][PART_LEN1], float comfortNoiseHband[2][PART_LEN1], const float* noisePow, const float* lambda) { int i, num; float rand[PART_LEN]; float noise, noiseAvg, tmp, tmpAvg; int16_t randW16[PART_LEN]; complex_t u[PART_LEN1]; const float pi2 = 6.28318530717959f; const float pi2t = pi2 / 32768; // Generate a uniform random array on [0 1] WebRtcSpl_RandUArray(randW16, PART_LEN, &aec->seed); int16_t* randWptr = randW16; float randTemp, randTemp2, randTemp3, randTemp4; int32_t tmp1s, tmp2s, tmp3s, tmp4s; for (i = 0; i < PART_LEN; i+=4) { __asm __volatile ( ".set push \n\t" ".set noreorder \n\t" "lh %[tmp1s], 0(%[randWptr]) \n\t" "lh %[tmp2s], 2(%[randWptr]) \n\t" "lh %[tmp3s], 4(%[randWptr]) \n\t" "lh %[tmp4s], 6(%[randWptr]) \n\t" "mtc1 %[tmp1s], %[randTemp] \n\t" "mtc1 %[tmp2s], %[randTemp2] \n\t" "mtc1 %[tmp3s], %[randTemp3] \n\t" "mtc1 %[tmp4s], %[randTemp4] \n\t" "cvt.s.w %[randTemp], %[randTemp] \n\t" "cvt.s.w %[randTemp2], %[randTemp2] \n\t" "cvt.s.w %[randTemp3], %[randTemp3] \n\t" "cvt.s.w %[randTemp4], %[randTemp4] \n\t" "addiu %[randWptr], %[randWptr], 8 \n\t" "mul.s %[randTemp], %[randTemp], %[pi2t] \n\t" "mul.s %[randTemp2], %[randTemp2], %[pi2t] \n\t" "mul.s %[randTemp3], %[randTemp3], %[pi2t] \n\t" "mul.s %[randTemp4], %[randTemp4], %[pi2t] \n\t" ".set pop \n\t" : [randWptr] "+r" (randWptr), [randTemp] "=&f" (randTemp), [randTemp2] "=&f" (randTemp2), [randTemp3] "=&f" (randTemp3), [randTemp4] "=&f" (randTemp4), [tmp1s] "=&r" (tmp1s), [tmp2s] "=&r" (tmp2s), [tmp3s] "=&r" (tmp3s), [tmp4s] "=&r" (tmp4s) : [pi2t] "f" (pi2t) : "memory" ); u[i+1][0] = cosf(randTemp); u[i+1][1] = sinf(randTemp); u[i+2][0] = cosf(randTemp2); u[i+2][1] = sinf(randTemp2); u[i+3][0] = cosf(randTemp3); u[i+3][1] = sinf(randTemp3); u[i+4][0] = cosf(randTemp4); u[i+4][1] = sinf(randTemp4); } // Reject LF noise float* u_ptr = &u[1][0]; float noise2, noise3, noise4; float tmp1f, tmp2f, tmp3f, tmp4f, tmp5f, tmp6f, tmp7f, tmp8f; u[0][0] = 0; u[0][1] = 0; for (i = 1; i < PART_LEN1; i+=4) { __asm __volatile ( ".set push \n\t" ".set noreorder \n\t" "lwc1 %[noise], 4(%[noisePow]) \n\t" "lwc1 %[noise2], 8(%[noisePow]) \n\t" "lwc1 %[noise3], 12(%[noisePow]) \n\t" "lwc1 %[noise4], 16(%[noisePow]) \n\t" "sqrt.s %[noise], %[noise] \n\t" "sqrt.s %[noise2], %[noise2] \n\t" "sqrt.s %[noise3], %[noise3] \n\t" "sqrt.s %[noise4], %[noise4] \n\t" "lwc1 %[tmp1f], 0(%[u_ptr]) \n\t" "lwc1 %[tmp2f], 4(%[u_ptr]) \n\t" "lwc1 %[tmp3f], 8(%[u_ptr]) \n\t" "lwc1 %[tmp4f], 12(%[u_ptr]) \n\t" "lwc1 %[tmp5f], 16(%[u_ptr]) \n\t" "lwc1 %[tmp6f], 20(%[u_ptr]) \n\t" "lwc1 %[tmp7f], 24(%[u_ptr]) \n\t" "lwc1 %[tmp8f], 28(%[u_ptr]) \n\t" "addiu %[noisePow], %[noisePow], 16 \n\t" "mul.s %[tmp1f], %[tmp1f], %[noise] \n\t" "mul.s %[tmp2f], %[tmp2f], %[noise] \n\t" "mul.s %[tmp3f], %[tmp3f], %[noise2] \n\t" "mul.s %[tmp4f], %[tmp4f], %[noise2] \n\t" "mul.s %[tmp5f], %[tmp5f], %[noise3] \n\t" "mul.s %[tmp6f], %[tmp6f], %[noise3] \n\t" "swc1 %[tmp1f], 0(%[u_ptr]) \n\t" "swc1 %[tmp3f], 8(%[u_ptr]) \n\t" "mul.s %[tmp8f], %[tmp8f], %[noise4] \n\t" "mul.s %[tmp7f], %[tmp7f], %[noise4] \n\t" "neg.s %[tmp2f] \n\t" "neg.s %[tmp4f] \n\t" "neg.s %[tmp6f] \n\t" "neg.s %[tmp8f] \n\t" "swc1 %[tmp5f], 16(%[u_ptr]) \n\t" "swc1 %[tmp7f], 24(%[u_ptr]) \n\t" "swc1 %[tmp2f], 4(%[u_ptr]) \n\t" "swc1 %[tmp4f], 12(%[u_ptr]) \n\t" "swc1 %[tmp6f], 20(%[u_ptr]) \n\t" "swc1 %[tmp8f], 28(%[u_ptr]) \n\t" "addiu %[u_ptr], %[u_ptr], 32 \n\t" ".set pop \n\t" : [u_ptr] "+r" (u_ptr), [noisePow] "+r" (noisePow), [noise] "=&f" (noise), [noise2] "=&f" (noise2), [noise3] "=&f" (noise3), [noise4] "=&f" (noise4), [tmp1f] "=&f" (tmp1f), [tmp2f] "=&f" (tmp2f), [tmp3f] "=&f" (tmp3f), [tmp4f] "=&f" (tmp4f), [tmp5f] "=&f" (tmp5f), [tmp6f] "=&f" (tmp6f), [tmp7f] "=&f" (tmp7f), [tmp8f] "=&f" (tmp8f) : : "memory" ); } u[PART_LEN][1] = 0; noisePow -= PART_LEN; u_ptr = &u[0][0]; float* u_ptr_end = &u[PART_LEN][0]; float* efw_ptr_0 = &efw[0][0]; float* efw_ptr_1 = &efw[1][0]; float tmp9f, tmp10f; const float tmp1c = 1.0; __asm __volatile ( ".set push \n\t" ".set noreorder \n\t" "1: \n\t" "lwc1 %[tmp1f], 0(%[lambda]) \n\t" "lwc1 %[tmp6f], 4(%[lambda]) \n\t" "addiu %[lambda], %[lambda], 8 \n\t" "c.lt.s %[tmp1f], %[tmp1c] \n\t" "bc1f 4f \n\t" " nop \n\t" "c.lt.s %[tmp6f], %[tmp1c] \n\t" "bc1f 3f \n\t" " nop \n\t" "2: \n\t" "mul.s %[tmp1f], %[tmp1f], %[tmp1f] \n\t" "mul.s %[tmp6f], %[tmp6f], %[tmp6f] \n\t" "sub.s %[tmp1f], %[tmp1c], %[tmp1f] \n\t" "sub.s %[tmp6f], %[tmp1c], %[tmp6f] \n\t" "sqrt.s %[tmp1f], %[tmp1f] \n\t" "sqrt.s %[tmp6f], %[tmp6f] \n\t" "lwc1 %[tmp2f], 0(%[efw_ptr_0]) \n\t" "lwc1 %[tmp3f], 0(%[u_ptr]) \n\t" "lwc1 %[tmp7f], 4(%[efw_ptr_0]) \n\t" "lwc1 %[tmp8f], 8(%[u_ptr]) \n\t" "lwc1 %[tmp4f], 0(%[efw_ptr_1]) \n\t" "lwc1 %[tmp5f], 4(%[u_ptr]) \n\t" "lwc1 %[tmp9f], 4(%[efw_ptr_1]) \n\t" "lwc1 %[tmp10f], 12(%[u_ptr]) \n\t" #if !defined(MIPS32_R2_LE) "mul.s %[tmp3f], %[tmp1f], %[tmp3f] \n\t" "add.s %[tmp2f], %[tmp2f], %[tmp3f] \n\t" "mul.s %[tmp3f], %[tmp1f], %[tmp5f] \n\t" "add.s %[tmp4f], %[tmp4f], %[tmp3f] \n\t" "mul.s %[tmp3f], %[tmp6f], %[tmp8f] \n\t" "add.s %[tmp7f], %[tmp7f], %[tmp3f] \n\t" "mul.s %[tmp3f], %[tmp6f], %[tmp10f] \n\t" "add.s %[tmp9f], %[tmp9f], %[tmp3f] \n\t" #else // #if !defined(MIPS32_R2_LE) "madd.s %[tmp2f], %[tmp2f], %[tmp1f], %[tmp3f] \n\t" "madd.s %[tmp4f], %[tmp4f], %[tmp1f], %[tmp5f] \n\t" "madd.s %[tmp7f], %[tmp7f], %[tmp6f], %[tmp8f] \n\t" "madd.s %[tmp9f], %[tmp9f], %[tmp6f], %[tmp10f] \n\t" #endif // #if !defined(MIPS32_R2_LE) "swc1 %[tmp2f], 0(%[efw_ptr_0]) \n\t" "swc1 %[tmp4f], 0(%[efw_ptr_1]) \n\t" "swc1 %[tmp7f], 4(%[efw_ptr_0]) \n\t" "b 5f \n\t" " swc1 %[tmp9f], 4(%[efw_ptr_1]) \n\t" "3: \n\t" "mul.s %[tmp1f], %[tmp1f], %[tmp1f] \n\t" "sub.s %[tmp1f], %[tmp1c], %[tmp1f] \n\t" "sqrt.s %[tmp1f], %[tmp1f] \n\t" "lwc1 %[tmp2f], 0(%[efw_ptr_0]) \n\t" "lwc1 %[tmp3f], 0(%[u_ptr]) \n\t" "lwc1 %[tmp4f], 0(%[efw_ptr_1]) \n\t" "lwc1 %[tmp5f], 4(%[u_ptr]) \n\t" #if !defined(MIPS32_R2_LE) "mul.s %[tmp3f], %[tmp1f], %[tmp3f] \n\t" "add.s %[tmp2f], %[tmp2f], %[tmp3f] \n\t" "mul.s %[tmp3f], %[tmp1f], %[tmp5f] \n\t" "add.s %[tmp4f], %[tmp4f], %[tmp3f] \n\t" #else // #if !defined(MIPS32_R2_LE) "madd.s %[tmp2f], %[tmp2f], %[tmp1f], %[tmp3f] \n\t" "madd.s %[tmp4f], %[tmp4f], %[tmp1f], %[tmp5f] \n\t" #endif // #if !defined(MIPS32_R2_LE) "swc1 %[tmp2f], 0(%[efw_ptr_0]) \n\t" "b 5f \n\t" " swc1 %[tmp4f], 0(%[efw_ptr_1]) \n\t" "4: \n\t" "c.lt.s %[tmp6f], %[tmp1c] \n\t" "bc1f 5f \n\t" " nop \n\t" "mul.s %[tmp6f], %[tmp6f], %[tmp6f] \n\t" "sub.s %[tmp6f], %[tmp1c], %[tmp6f] \n\t" "sqrt.s %[tmp6f], %[tmp6f] \n\t" "lwc1 %[tmp7f], 4(%[efw_ptr_0]) \n\t" "lwc1 %[tmp8f], 8(%[u_ptr]) \n\t" "lwc1 %[tmp9f], 4(%[efw_ptr_1]) \n\t" "lwc1 %[tmp10f], 12(%[u_ptr]) \n\t" #if !defined(MIPS32_R2_LE) "mul.s %[tmp3f], %[tmp6f], %[tmp8f] \n\t" "add.s %[tmp7f], %[tmp7f], %[tmp3f] \n\t" "mul.s %[tmp3f], %[tmp6f], %[tmp10f] \n\t" "add.s %[tmp9f], %[tmp9f], %[tmp3f] \n\t" #else // #if !defined(MIPS32_R2_LE) "madd.s %[tmp7f], %[tmp7f], %[tmp6f], %[tmp8f] \n\t" "madd.s %[tmp9f], %[tmp9f], %[tmp6f], %[tmp10f] \n\t" #endif // #if !defined(MIPS32_R2_LE) "swc1 %[tmp7f], 4(%[efw_ptr_0]) \n\t" "swc1 %[tmp9f], 4(%[efw_ptr_1]) \n\t" "5: \n\t" "addiu %[u_ptr], %[u_ptr], 16 \n\t" "addiu %[efw_ptr_0], %[efw_ptr_0], 8 \n\t" "bne %[u_ptr], %[u_ptr_end], 1b \n\t" " addiu %[efw_ptr_1], %[efw_ptr_1], 8 \n\t" ".set pop \n\t" : [lambda] "+r" (lambda), [u_ptr] "+r" (u_ptr), [efw_ptr_0] "+r" (efw_ptr_0), [efw_ptr_1] "+r" (efw_ptr_1), [tmp1f] "=&f" (tmp1f), [tmp2f] "=&f" (tmp2f), [tmp3f] "=&f" (tmp3f), [tmp4f] "=&f" (tmp4f), [tmp5f] "=&f" (tmp5f), [tmp6f] "=&f" (tmp6f), [tmp7f] "=&f" (tmp7f), [tmp8f] "=&f" (tmp8f), [tmp9f] "=&f" (tmp9f), [tmp10f] "=&f" (tmp10f) : [tmp1c] "f" (tmp1c), [u_ptr_end] "r" (u_ptr_end) : "memory" ); lambda -= PART_LEN; tmp = sqrtf(WEBRTC_SPL_MAX(1 - lambda[PART_LEN] * lambda[PART_LEN], 0)); //tmp = 1 - lambda[i]; efw[0][PART_LEN] += tmp * u[PART_LEN][0]; efw[1][PART_LEN] += tmp * u[PART_LEN][1]; // For H band comfort noise // TODO: don't compute noise and "tmp" twice. Use the previous results. noiseAvg = 0.0; tmpAvg = 0.0; num = 0; if (aec->num_bands > 1) { for (i = 0; i < PART_LEN; i++) { rand[i] = ((float)randW16[i]) / 32768; } // average noise scale // average over second half of freq spectrum (i.e., 4->8khz) // TODO: we shouldn't need num. We know how many elements we're summing. for (i = PART_LEN1 >> 1; i < PART_LEN1; i++) { num++; noiseAvg += sqrtf(noisePow[i]); } noiseAvg /= (float)num; // average nlp scale // average over second half of freq spectrum (i.e., 4->8khz) // TODO: we shouldn't need num. We know how many elements we're summing. num = 0; for (i = PART_LEN1 >> 1; i < PART_LEN1; i++) { num++; tmpAvg += sqrtf(WEBRTC_SPL_MAX(1 - lambda[i] * lambda[i], 0)); } tmpAvg /= (float)num; // Use average noise for H band // TODO: we should probably have a new random vector here. // Reject LF noise u[0][0] = 0; u[0][1] = 0; for (i = 1; i < PART_LEN1; i++) { tmp = pi2 * rand[i - 1]; // Use average noise for H band u[i][0] = noiseAvg * (float)cos(tmp); u[i][1] = -noiseAvg * (float)sin(tmp); } u[PART_LEN][1] = 0; for (i = 0; i < PART_LEN1; i++) { // Use average NLP weight for H band comfortNoiseHband[0][i] = tmpAvg * u[i][0]; comfortNoiseHband[1][i] = tmpAvg * u[i][1]; } } else { memset(comfortNoiseHband, 0, 2 * PART_LEN1 * sizeof(comfortNoiseHband[0][0])); } } void WebRtcAec_FilterFar_mips( int num_partitions, int x_fft_buf_block_pos, float x_fft_buf[2][kExtendedNumPartitions * PART_LEN1], float h_fft_buf[2][kExtendedNumPartitions * PART_LEN1], float y_fft[2][PART_LEN1]) { int i; for (i = 0; i < num_partitions; i++) { int xPos = (i + x_fft_buf_block_pos) * PART_LEN1; int pos = i * PART_LEN1; // Check for wrap if (i + x_fft_buf_block_pos >= num_partitions) { xPos -= num_partitions * (PART_LEN1); } float* yf0 = y_fft[0]; float* yf1 = y_fft[1]; float* aRe = x_fft_buf[0] + xPos; float* aIm = x_fft_buf[1] + xPos; float* bRe = h_fft_buf[0] + pos; float* bIm = h_fft_buf[1] + pos; float f0, f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12, f13; int len = PART_LEN1 >> 1; __asm __volatile ( ".set push \n\t" ".set noreorder \n\t" "1: \n\t" "lwc1 %[f0], 0(%[aRe]) \n\t" "lwc1 %[f1], 0(%[bRe]) \n\t" "lwc1 %[f2], 0(%[bIm]) \n\t" "lwc1 %[f3], 0(%[aIm]) \n\t" "lwc1 %[f4], 4(%[aRe]) \n\t" "lwc1 %[f5], 4(%[bRe]) \n\t" "lwc1 %[f6], 4(%[bIm]) \n\t" "mul.s %[f8], %[f0], %[f1] \n\t" "mul.s %[f0], %[f0], %[f2] \n\t" "mul.s %[f9], %[f4], %[f5] \n\t" "mul.s %[f4], %[f4], %[f6] \n\t" "lwc1 %[f7], 4(%[aIm]) \n\t" #if !defined(MIPS32_R2_LE) "mul.s %[f12], %[f2], %[f3] \n\t" "mul.s %[f1], %[f3], %[f1] \n\t" "mul.s %[f11], %[f6], %[f7] \n\t" "addiu %[aRe], %[aRe], 8 \n\t" "addiu %[aIm], %[aIm], 8 \n\t" "addiu %[len], %[len], -1 \n\t" "sub.s %[f8], %[f8], %[f12] \n\t" "mul.s %[f12], %[f7], %[f5] \n\t" "lwc1 %[f2], 0(%[yf0]) \n\t" "add.s %[f1], %[f0], %[f1] \n\t" "lwc1 %[f3], 0(%[yf1]) \n\t" "sub.s %[f9], %[f9], %[f11] \n\t" "lwc1 %[f6], 4(%[yf0]) \n\t" "add.s %[f4], %[f4], %[f12] \n\t" #else // #if !defined(MIPS32_R2_LE) "addiu %[aRe], %[aRe], 8 \n\t" "addiu %[aIm], %[aIm], 8 \n\t" "addiu %[len], %[len], -1 \n\t" "nmsub.s %[f8], %[f8], %[f2], %[f3] \n\t" "lwc1 %[f2], 0(%[yf0]) \n\t" "madd.s %[f1], %[f0], %[f3], %[f1] \n\t" "lwc1 %[f3], 0(%[yf1]) \n\t" "nmsub.s %[f9], %[f9], %[f6], %[f7] \n\t" "lwc1 %[f6], 4(%[yf0]) \n\t" "madd.s %[f4], %[f4], %[f7], %[f5] \n\t" #endif // #if !defined(MIPS32_R2_LE) "lwc1 %[f5], 4(%[yf1]) \n\t" "add.s %[f2], %[f2], %[f8] \n\t" "addiu %[bRe], %[bRe], 8 \n\t" "addiu %[bIm], %[bIm], 8 \n\t" "add.s %[f3], %[f3], %[f1] \n\t" "add.s %[f6], %[f6], %[f9] \n\t" "add.s %[f5], %[f5], %[f4] \n\t" "swc1 %[f2], 0(%[yf0]) \n\t" "swc1 %[f3], 0(%[yf1]) \n\t" "swc1 %[f6], 4(%[yf0]) \n\t" "swc1 %[f5], 4(%[yf1]) \n\t" "addiu %[yf0], %[yf0], 8 \n\t" "bgtz %[len], 1b \n\t" " addiu %[yf1], %[yf1], 8 \n\t" "lwc1 %[f0], 0(%[aRe]) \n\t" "lwc1 %[f1], 0(%[bRe]) \n\t" "lwc1 %[f2], 0(%[bIm]) \n\t" "lwc1 %[f3], 0(%[aIm]) \n\t" "mul.s %[f8], %[f0], %[f1] \n\t" "mul.s %[f0], %[f0], %[f2] \n\t" #if !defined(MIPS32_R2_LE) "mul.s %[f12], %[f2], %[f3] \n\t" "mul.s %[f1], %[f3], %[f1] \n\t" "sub.s %[f8], %[f8], %[f12] \n\t" "lwc1 %[f2], 0(%[yf0]) \n\t" "add.s %[f1], %[f0], %[f1] \n\t" "lwc1 %[f3], 0(%[yf1]) \n\t" #else // #if !defined(MIPS32_R2_LE) "nmsub.s %[f8], %[f8], %[f2], %[f3] \n\t" "lwc1 %[f2], 0(%[yf0]) \n\t" "madd.s %[f1], %[f0], %[f3], %[f1] \n\t" "lwc1 %[f3], 0(%[yf1]) \n\t" #endif // #if !defined(MIPS32_R2_LE) "add.s %[f2], %[f2], %[f8] \n\t" "add.s %[f3], %[f3], %[f1] \n\t" "swc1 %[f2], 0(%[yf0]) \n\t" "swc1 %[f3], 0(%[yf1]) \n\t" ".set pop \n\t" : [f0] "=&f" (f0), [f1] "=&f" (f1), [f2] "=&f" (f2), [f3] "=&f" (f3), [f4] "=&f" (f4), [f5] "=&f" (f5), [f6] "=&f" (f6), [f7] "=&f" (f7), [f8] "=&f" (f8), [f9] "=&f" (f9), [f10] "=&f" (f10), [f11] "=&f" (f11), [f12] "=&f" (f12), [f13] "=&f" (f13), [aRe] "+r" (aRe), [aIm] "+r" (aIm), [bRe] "+r" (bRe), [bIm] "+r" (bIm), [yf0] "+r" (yf0), [yf1] "+r" (yf1), [len] "+r" (len) : : "memory" ); } } void WebRtcAec_FilterAdaptation_mips( int num_partitions, int x_fft_buf_block_pos, float x_fft_buf[2][kExtendedNumPartitions * PART_LEN1], float e_fft[2][PART_LEN1], float h_fft_buf[2][kExtendedNumPartitions * PART_LEN1]) { float fft[PART_LEN2]; int i; for (i = 0; i < num_partitions; i++) { int xPos = (i + x_fft_buf_block_pos)*(PART_LEN1); int pos; // Check for wrap if (i + x_fft_buf_block_pos >= num_partitions) { xPos -= num_partitions * PART_LEN1; } pos = i * PART_LEN1; float* aRe = x_fft_buf[0] + xPos; float* aIm = x_fft_buf[1] + xPos; float* bRe = e_fft[0]; float* bIm = e_fft[1]; float* fft_tmp; float f0, f1, f2, f3, f4, f5, f6 ,f7, f8, f9, f10, f11, f12; int len = PART_LEN >> 1; __asm __volatile ( ".set push \n\t" ".set noreorder \n\t" "addiu %[fft_tmp], %[fft], 0 \n\t" "1: \n\t" "lwc1 %[f0], 0(%[aRe]) \n\t" "lwc1 %[f1], 0(%[bRe]) \n\t" "lwc1 %[f2], 0(%[bIm]) \n\t" "lwc1 %[f4], 4(%[aRe]) \n\t" "lwc1 %[f5], 4(%[bRe]) \n\t" "lwc1 %[f6], 4(%[bIm]) \n\t" "addiu %[aRe], %[aRe], 8 \n\t" "addiu %[bRe], %[bRe], 8 \n\t" "mul.s %[f8], %[f0], %[f1] \n\t" "mul.s %[f0], %[f0], %[f2] \n\t" "lwc1 %[f3], 0(%[aIm]) \n\t" "mul.s %[f9], %[f4], %[f5] \n\t" "lwc1 %[f7], 4(%[aIm]) \n\t" "mul.s %[f4], %[f4], %[f6] \n\t" #if !defined(MIPS32_R2_LE) "mul.s %[f10], %[f3], %[f2] \n\t" "mul.s %[f1], %[f3], %[f1] \n\t" "mul.s %[f11], %[f7], %[f6] \n\t" "mul.s %[f5], %[f7], %[f5] \n\t" "addiu %[aIm], %[aIm], 8 \n\t" "addiu %[bIm], %[bIm], 8 \n\t" "addiu %[len], %[len], -1 \n\t" "add.s %[f8], %[f8], %[f10] \n\t" "sub.s %[f1], %[f0], %[f1] \n\t" "add.s %[f9], %[f9], %[f11] \n\t" "sub.s %[f5], %[f4], %[f5] \n\t" #else // #if !defined(MIPS32_R2_LE) "addiu %[aIm], %[aIm], 8 \n\t" "addiu %[bIm], %[bIm], 8 \n\t" "addiu %[len], %[len], -1 \n\t" "madd.s %[f8], %[f8], %[f3], %[f2] \n\t" "nmsub.s %[f1], %[f0], %[f3], %[f1] \n\t" "madd.s %[f9], %[f9], %[f7], %[f6] \n\t" "nmsub.s %[f5], %[f4], %[f7], %[f5] \n\t" #endif // #if !defined(MIPS32_R2_LE) "swc1 %[f8], 0(%[fft_tmp]) \n\t" "swc1 %[f1], 4(%[fft_tmp]) \n\t" "swc1 %[f9], 8(%[fft_tmp]) \n\t" "swc1 %[f5], 12(%[fft_tmp]) \n\t" "bgtz %[len], 1b \n\t" " addiu %[fft_tmp], %[fft_tmp], 16 \n\t" "lwc1 %[f0], 0(%[aRe]) \n\t" "lwc1 %[f1], 0(%[bRe]) \n\t" "lwc1 %[f2], 0(%[bIm]) \n\t" "lwc1 %[f3], 0(%[aIm]) \n\t" "mul.s %[f8], %[f0], %[f1] \n\t" #if !defined(MIPS32_R2_LE) "mul.s %[f10], %[f3], %[f2] \n\t" "add.s %[f8], %[f8], %[f10] \n\t" #else // #if !defined(MIPS32_R2_LE) "madd.s %[f8], %[f8], %[f3], %[f2] \n\t" #endif // #if !defined(MIPS32_R2_LE) "swc1 %[f8], 4(%[fft]) \n\t" ".set pop \n\t" : [f0] "=&f" (f0), [f1] "=&f" (f1), [f2] "=&f" (f2), [f3] "=&f" (f3), [f4] "=&f" (f4), [f5] "=&f" (f5), [f6] "=&f" (f6), [f7] "=&f" (f7), [f8] "=&f" (f8), [f9] "=&f" (f9), [f10] "=&f" (f10), [f11] "=&f" (f11), [f12] "=&f" (f12), [aRe] "+r" (aRe), [aIm] "+r" (aIm), [bRe] "+r" (bRe), [bIm] "+r" (bIm), [fft_tmp] "=&r" (fft_tmp), [len] "+r" (len) : [fft] "r" (fft) : "memory" ); aec_rdft_inverse_128(fft); memset(fft + PART_LEN, 0, sizeof(float) * PART_LEN); // fft scaling { float scale = 2.0f / PART_LEN2; __asm __volatile ( ".set push \n\t" ".set noreorder \n\t" "addiu %[fft_tmp], %[fft], 0 \n\t" "addiu %[len], $zero, 8 \n\t" "1: \n\t" "addiu %[len], %[len], -1 \n\t" "lwc1 %[f0], 0(%[fft_tmp]) \n\t" "lwc1 %[f1], 4(%[fft_tmp]) \n\t" "lwc1 %[f2], 8(%[fft_tmp]) \n\t" "lwc1 %[f3], 12(%[fft_tmp]) \n\t" "mul.s %[f0], %[f0], %[scale] \n\t" "mul.s %[f1], %[f1], %[scale] \n\t" "mul.s %[f2], %[f2], %[scale] \n\t" "mul.s %[f3], %[f3], %[scale] \n\t" "lwc1 %[f4], 16(%[fft_tmp]) \n\t" "lwc1 %[f5], 20(%[fft_tmp]) \n\t" "lwc1 %[f6], 24(%[fft_tmp]) \n\t" "lwc1 %[f7], 28(%[fft_tmp]) \n\t" "mul.s %[f4], %[f4], %[scale] \n\t" "mul.s %[f5], %[f5], %[scale] \n\t" "mul.s %[f6], %[f6], %[scale] \n\t" "mul.s %[f7], %[f7], %[scale] \n\t" "swc1 %[f0], 0(%[fft_tmp]) \n\t" "swc1 %[f1], 4(%[fft_tmp]) \n\t" "swc1 %[f2], 8(%[fft_tmp]) \n\t" "swc1 %[f3], 12(%[fft_tmp]) \n\t" "swc1 %[f4], 16(%[fft_tmp]) \n\t" "swc1 %[f5], 20(%[fft_tmp]) \n\t" "swc1 %[f6], 24(%[fft_tmp]) \n\t" "swc1 %[f7], 28(%[fft_tmp]) \n\t" "bgtz %[len], 1b \n\t" " addiu %[fft_tmp], %[fft_tmp], 32 \n\t" ".set pop \n\t" : [f0] "=&f" (f0), [f1] "=&f" (f1), [f2] "=&f" (f2), [f3] "=&f" (f3), [f4] "=&f" (f4), [f5] "=&f" (f5), [f6] "=&f" (f6), [f7] "=&f" (f7), [len] "=&r" (len), [fft_tmp] "=&r" (fft_tmp) : [scale] "f" (scale), [fft] "r" (fft) : "memory" ); } aec_rdft_forward_128(fft); aRe = h_fft_buf[0] + pos; aIm = h_fft_buf[1] + pos; __asm __volatile ( ".set push \n\t" ".set noreorder \n\t" "addiu %[fft_tmp], %[fft], 0 \n\t" "addiu %[len], $zero, 31 \n\t" "lwc1 %[f0], 0(%[aRe]) \n\t" "lwc1 %[f1], 0(%[fft_tmp]) \n\t" "lwc1 %[f2], 256(%[aRe]) \n\t" "lwc1 %[f3], 4(%[fft_tmp]) \n\t" "lwc1 %[f4], 4(%[aRe]) \n\t" "lwc1 %[f5], 8(%[fft_tmp]) \n\t" "lwc1 %[f6], 4(%[aIm]) \n\t" "lwc1 %[f7], 12(%[fft_tmp]) \n\t" "add.s %[f0], %[f0], %[f1] \n\t" "add.s %[f2], %[f2], %[f3] \n\t" "add.s %[f4], %[f4], %[f5] \n\t" "add.s %[f6], %[f6], %[f7] \n\t" "addiu %[fft_tmp], %[fft_tmp], 16 \n\t" "swc1 %[f0], 0(%[aRe]) \n\t" "swc1 %[f2], 256(%[aRe]) \n\t" "swc1 %[f4], 4(%[aRe]) \n\t" "addiu %[aRe], %[aRe], 8 \n\t" "swc1 %[f6], 4(%[aIm]) \n\t" "addiu %[aIm], %[aIm], 8 \n\t" "1: \n\t" "lwc1 %[f0], 0(%[aRe]) \n\t" "lwc1 %[f1], 0(%[fft_tmp]) \n\t" "lwc1 %[f2], 0(%[aIm]) \n\t" "lwc1 %[f3], 4(%[fft_tmp]) \n\t" "lwc1 %[f4], 4(%[aRe]) \n\t" "lwc1 %[f5], 8(%[fft_tmp]) \n\t" "lwc1 %[f6], 4(%[aIm]) \n\t" "lwc1 %[f7], 12(%[fft_tmp]) \n\t" "add.s %[f0], %[f0], %[f1] \n\t" "add.s %[f2], %[f2], %[f3] \n\t" "add.s %[f4], %[f4], %[f5] \n\t" "add.s %[f6], %[f6], %[f7] \n\t" "addiu %[len], %[len], -1 \n\t" "addiu %[fft_tmp], %[fft_tmp], 16 \n\t" "swc1 %[f0], 0(%[aRe]) \n\t" "swc1 %[f2], 0(%[aIm]) \n\t" "swc1 %[f4], 4(%[aRe]) \n\t" "addiu %[aRe], %[aRe], 8 \n\t" "swc1 %[f6], 4(%[aIm]) \n\t" "bgtz %[len], 1b \n\t" " addiu %[aIm], %[aIm], 8 \n\t" ".set pop \n\t" : [f0] "=&f" (f0), [f1] "=&f" (f1), [f2] "=&f" (f2), [f3] "=&f" (f3), [f4] "=&f" (f4), [f5] "=&f" (f5), [f6] "=&f" (f6), [f7] "=&f" (f7), [len] "=&r" (len), [fft_tmp] "=&r" (fft_tmp), [aRe] "+r" (aRe), [aIm] "+r" (aIm) : [fft] "r" (fft) : "memory" ); } } void WebRtcAec_OverdriveAndSuppress_mips(AecCore* aec, float hNl[PART_LEN1], const float hNlFb, float efw[2][PART_LEN1]) { int i; const float one = 1.0; float* p_hNl; float* p_efw0; float* p_efw1; float* p_WebRtcAec_wC; float temp1, temp2, temp3, temp4; p_hNl = &hNl[0]; p_efw0 = &efw[0][0]; p_efw1 = &efw[1][0]; p_WebRtcAec_wC = (float*)&WebRtcAec_weightCurve[0]; for (i = 0; i < PART_LEN1; i++) { // Weight subbands __asm __volatile ( ".set push \n\t" ".set noreorder \n\t" "lwc1 %[temp1], 0(%[p_hNl]) \n\t" "lwc1 %[temp2], 0(%[p_wC]) \n\t" "c.lt.s %[hNlFb], %[temp1] \n\t" "bc1f 1f \n\t" " mul.s %[temp3], %[temp2], %[hNlFb] \n\t" "sub.s %[temp4], %[one], %[temp2] \n\t" #if !defined(MIPS32_R2_LE) "mul.s %[temp1], %[temp1], %[temp4] \n\t" "add.s %[temp1], %[temp3], %[temp1] \n\t" #else // #if !defined(MIPS32_R2_LE) "madd.s %[temp1], %[temp3], %[temp1], %[temp4] \n\t" #endif // #if !defined(MIPS32_R2_LE) "swc1 %[temp1], 0(%[p_hNl]) \n\t" "1: \n\t" "addiu %[p_wC], %[p_wC], 4 \n\t" ".set pop \n\t" : [temp1] "=&f" (temp1), [temp2] "=&f" (temp2), [temp3] "=&f" (temp3), [temp4] "=&f" (temp4), [p_wC] "+r" (p_WebRtcAec_wC) : [hNlFb] "f" (hNlFb), [one] "f" (one), [p_hNl] "r" (p_hNl) : "memory" ); hNl[i] = powf(hNl[i], aec->overDriveSm * WebRtcAec_overDriveCurve[i]); __asm __volatile ( "lwc1 %[temp1], 0(%[p_hNl]) \n\t" "lwc1 %[temp3], 0(%[p_efw1]) \n\t" "lwc1 %[temp2], 0(%[p_efw0]) \n\t" "addiu %[p_hNl], %[p_hNl], 4 \n\t" "mul.s %[temp3], %[temp3], %[temp1] \n\t" "mul.s %[temp2], %[temp2], %[temp1] \n\t" "addiu %[p_efw0], %[p_efw0], 4 \n\t" "addiu %[p_efw1], %[p_efw1], 4 \n\t" "neg.s %[temp4], %[temp3] \n\t" "swc1 %[temp2], -4(%[p_efw0]) \n\t" "swc1 %[temp4], -4(%[p_efw1]) \n\t" : [temp1] "=&f" (temp1), [temp2] "=&f" (temp2), [temp3] "=&f" (temp3), [temp4] "=&f" (temp4), [p_efw0] "+r" (p_efw0), [p_efw1] "+r" (p_efw1), [p_hNl] "+r" (p_hNl) : : "memory" ); } } void WebRtcAec_ScaleErrorSignal_mips(int extended_filter_enabled, float normal_mu, float normal_error_threshold, float x_pow[PART_LEN1], float ef[2][PART_LEN1]) { const float mu = extended_filter_enabled ? kExtendedMu : normal_mu; const float error_threshold = extended_filter_enabled ? kExtendedErrorThreshold : normal_error_threshold; int len = (PART_LEN1); float* ef0 = ef[0]; float* ef1 = ef[1]; float fac1 = 1e-10f; float err_th2 = error_threshold * error_threshold; float f0, f1, f2; #if !defined(MIPS32_R2_LE) float f3; #endif __asm __volatile ( ".set push \n\t" ".set noreorder \n\t" "1: \n\t" "lwc1 %[f0], 0(%[x_pow]) \n\t" "lwc1 %[f1], 0(%[ef0]) \n\t" "lwc1 %[f2], 0(%[ef1]) \n\t" "add.s %[f0], %[f0], %[fac1] \n\t" "div.s %[f1], %[f1], %[f0] \n\t" "div.s %[f2], %[f2], %[f0] \n\t" "mul.s %[f0], %[f1], %[f1] \n\t" #if defined(MIPS32_R2_LE) "madd.s %[f0], %[f0], %[f2], %[f2] \n\t" #else "mul.s %[f3], %[f2], %[f2] \n\t" "add.s %[f0], %[f0], %[f3] \n\t" #endif "c.le.s %[f0], %[err_th2] \n\t" "nop \n\t" "bc1t 2f \n\t" " nop \n\t" "sqrt.s %[f0], %[f0] \n\t" "add.s %[f0], %[f0], %[fac1] \n\t" "div.s %[f0], %[err_th], %[f0] \n\t" "mul.s %[f1], %[f1], %[f0] \n\t" "mul.s %[f2], %[f2], %[f0] \n\t" "2: \n\t" "mul.s %[f1], %[f1], %[mu] \n\t" "mul.s %[f2], %[f2], %[mu] \n\t" "swc1 %[f1], 0(%[ef0]) \n\t" "swc1 %[f2], 0(%[ef1]) \n\t" "addiu %[len], %[len], -1 \n\t" "addiu %[x_pow], %[x_pow], 4 \n\t" "addiu %[ef0], %[ef0], 4 \n\t" "bgtz %[len], 1b \n\t" " addiu %[ef1], %[ef1], 4 \n\t" ".set pop \n\t" : [f0] "=&f" (f0), [f1] "=&f" (f1), [f2] "=&f" (f2), #if !defined(MIPS32_R2_LE) [f3] "=&f" (f3), #endif [x_pow] "+r" (x_pow), [ef0] "+r" (ef0), [ef1] "+r" (ef1), [len] "+r" (len) : [fac1] "f" (fac1), [err_th2] "f" (err_th2), [mu] "f" (mu), [err_th] "f" (error_threshold) : "memory" ); } void WebRtcAec_InitAec_mips(void) { WebRtcAec_FilterFar = WebRtcAec_FilterFar_mips; WebRtcAec_FilterAdaptation = WebRtcAec_FilterAdaptation_mips; WebRtcAec_ScaleErrorSignal = WebRtcAec_ScaleErrorSignal_mips; WebRtcAec_ComfortNoise = WebRtcAec_ComfortNoise_mips; WebRtcAec_OverdriveAndSuppress = WebRtcAec_OverdriveAndSuppress_mips; }