/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ /* Resamples a signal to an arbitrary rate. Used by the AEC to compensate for * clock skew by resampling the farend signal. */ #include "webrtc/modules/audio_processing/aec/aec_resampler.h" #include #include #include #include #include "webrtc/modules/audio_processing/aec/aec_core.h" enum { kEstimateLengthFrames = 400 }; typedef struct { float buffer[kResamplerBufferSize]; float position; int deviceSampleRateHz; int skewData[kEstimateLengthFrames]; int skewDataIndex; float skewEstimate; } AecResampler; static int EstimateSkew(const int* rawSkew, int size, int absLimit, float* skewEst); void* WebRtcAec_CreateResampler() { return malloc(sizeof(AecResampler)); } int WebRtcAec_InitResampler(void* resampInst, int deviceSampleRateHz) { AecResampler* obj = (AecResampler*)resampInst; memset(obj->buffer, 0, sizeof(obj->buffer)); obj->position = 0.0; obj->deviceSampleRateHz = deviceSampleRateHz; memset(obj->skewData, 0, sizeof(obj->skewData)); obj->skewDataIndex = 0; obj->skewEstimate = 0.0; return 0; } void WebRtcAec_FreeResampler(void* resampInst) { AecResampler* obj = (AecResampler*)resampInst; free(obj); } void WebRtcAec_ResampleLinear(void* resampInst, const float* inspeech, size_t size, float skew, float* outspeech, size_t* size_out) { AecResampler* obj = (AecResampler*)resampInst; float* y; float be, tnew; size_t tn, mm; assert(size <= 2 * FRAME_LEN); assert(resampInst != NULL); assert(inspeech != NULL); assert(outspeech != NULL); assert(size_out != NULL); // Add new frame data in lookahead memcpy(&obj->buffer[FRAME_LEN + kResamplingDelay], inspeech, size * sizeof(inspeech[0])); // Sample rate ratio be = 1 + skew; // Loop over input frame mm = 0; y = &obj->buffer[FRAME_LEN]; // Point at current frame tnew = be * mm + obj->position; tn = (size_t)tnew; while (tn < size) { // Interpolation outspeech[mm] = y[tn] + (tnew - tn) * (y[tn + 1] - y[tn]); mm++; tnew = be * mm + obj->position; tn = (int)tnew; } *size_out = mm; obj->position += (*size_out) * be - size; // Shift buffer memmove(obj->buffer, &obj->buffer[size], (kResamplerBufferSize - size) * sizeof(obj->buffer[0])); } int WebRtcAec_GetSkew(void* resampInst, int rawSkew, float* skewEst) { AecResampler* obj = (AecResampler*)resampInst; int err = 0; if (obj->skewDataIndex < kEstimateLengthFrames) { obj->skewData[obj->skewDataIndex] = rawSkew; obj->skewDataIndex++; } else if (obj->skewDataIndex == kEstimateLengthFrames) { err = EstimateSkew( obj->skewData, kEstimateLengthFrames, obj->deviceSampleRateHz, skewEst); obj->skewEstimate = *skewEst; obj->skewDataIndex++; } else { *skewEst = obj->skewEstimate; } return err; } int EstimateSkew(const int* rawSkew, int size, int deviceSampleRateHz, float* skewEst) { const int absLimitOuter = (int)(0.04f * deviceSampleRateHz); const int absLimitInner = (int)(0.0025f * deviceSampleRateHz); int i = 0; int n = 0; float rawAvg = 0; float err = 0; float rawAbsDev = 0; int upperLimit = 0; int lowerLimit = 0; float cumSum = 0; float x = 0; float x2 = 0; float y = 0; float xy = 0; float xAvg = 0; float denom = 0; float skew = 0; *skewEst = 0; // Set in case of error below. for (i = 0; i < size; i++) { if ((rawSkew[i] < absLimitOuter && rawSkew[i] > -absLimitOuter)) { n++; rawAvg += rawSkew[i]; } } if (n == 0) { return -1; } assert(n > 0); rawAvg /= n; for (i = 0; i < size; i++) { if ((rawSkew[i] < absLimitOuter && rawSkew[i] > -absLimitOuter)) { err = rawSkew[i] - rawAvg; rawAbsDev += err >= 0 ? err : -err; } } assert(n > 0); rawAbsDev /= n; upperLimit = (int)(rawAvg + 5 * rawAbsDev + 1); // +1 for ceiling. lowerLimit = (int)(rawAvg - 5 * rawAbsDev - 1); // -1 for floor. n = 0; for (i = 0; i < size; i++) { if ((rawSkew[i] < absLimitInner && rawSkew[i] > -absLimitInner) || (rawSkew[i] < upperLimit && rawSkew[i] > lowerLimit)) { n++; cumSum += rawSkew[i]; x += n; x2 += n * n; y += cumSum; xy += n * cumSum; } } if (n == 0) { return -1; } assert(n > 0); xAvg = x / n; denom = x2 - xAvg * x; if (denom != 0) { skew = (xy - xAvg * y) / denom; } *skewEst = skew; return 0; }