/* * Copyright (c) 2013 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "webrtc/modules/audio_processing/aecm/aecm_core.h" #include #include "webrtc/modules/audio_processing/aecm/echo_control_mobile.h" #include "webrtc/modules/audio_processing/utility/delay_estimator_wrapper.h" static const ALIGN8_BEG int16_t WebRtcAecm_kSqrtHanning[] ALIGN8_END = { 0, 399, 798, 1196, 1594, 1990, 2386, 2780, 3172, 3562, 3951, 4337, 4720, 5101, 5478, 5853, 6224, 6591, 6954, 7313, 7668, 8019, 8364, 8705, 9040, 9370, 9695, 10013, 10326, 10633, 10933, 11227, 11514, 11795, 12068, 12335, 12594, 12845, 13089, 13325, 13553, 13773, 13985, 14189, 14384, 14571, 14749, 14918, 15079, 15231, 15373, 15506, 15631, 15746, 15851, 15947, 16034, 16111, 16179, 16237, 16286, 16325, 16354, 16373, 16384 }; static const int16_t kNoiseEstQDomain = 15; static const int16_t kNoiseEstIncCount = 5; static int16_t coefTable[] = { 0, 4, 256, 260, 128, 132, 384, 388, 64, 68, 320, 324, 192, 196, 448, 452, 32, 36, 288, 292, 160, 164, 416, 420, 96, 100, 352, 356, 224, 228, 480, 484, 16, 20, 272, 276, 144, 148, 400, 404, 80, 84, 336, 340, 208, 212, 464, 468, 48, 52, 304, 308, 176, 180, 432, 436, 112, 116, 368, 372, 240, 244, 496, 500, 8, 12, 264, 268, 136, 140, 392, 396, 72, 76, 328, 332, 200, 204, 456, 460, 40, 44, 296, 300, 168, 172, 424, 428, 104, 108, 360, 364, 232, 236, 488, 492, 24, 28, 280, 284, 152, 156, 408, 412, 88, 92, 344, 348, 216, 220, 472, 476, 56, 60, 312, 316, 184, 188, 440, 444, 120, 124, 376, 380, 248, 252, 504, 508 }; static int16_t coefTable_ifft[] = { 0, 512, 256, 508, 128, 252, 384, 380, 64, 124, 320, 444, 192, 188, 448, 316, 32, 60, 288, 476, 160, 220, 416, 348, 96, 92, 352, 412, 224, 156, 480, 284, 16, 28, 272, 492, 144, 236, 400, 364, 80, 108, 336, 428, 208, 172, 464, 300, 48, 44, 304, 460, 176, 204, 432, 332, 112, 76, 368, 396, 240, 140, 496, 268, 8, 12, 264, 500, 136, 244, 392, 372, 72, 116, 328, 436, 200, 180, 456, 308, 40, 52, 296, 468, 168, 212, 424, 340, 104, 84, 360, 404, 232, 148, 488, 276, 24, 20, 280, 484, 152, 228, 408, 356, 88, 100, 344, 420, 216, 164, 472, 292, 56, 36, 312, 452, 184, 196, 440, 324, 120, 68, 376, 388, 248, 132, 504, 260 }; static void ComfortNoise(AecmCore* aecm, const uint16_t* dfa, ComplexInt16* out, const int16_t* lambda); static void WindowAndFFT(AecmCore* aecm, int16_t* fft, const int16_t* time_signal, ComplexInt16* freq_signal, int time_signal_scaling) { int i, j; int32_t tmp1, tmp2, tmp3, tmp4; int16_t* pfrfi; ComplexInt16* pfreq_signal; int16_t f_coef, s_coef; int32_t load_ptr, store_ptr1, store_ptr2, shift, shift1; int32_t hann, hann1, coefs; memset(fft, 0, sizeof(int16_t) * PART_LEN4); // FFT of signal __asm __volatile ( ".set push \n\t" ".set noreorder \n\t" "addiu %[shift], %[time_signal_scaling], -14 \n\t" "addiu %[i], $zero, 64 \n\t" "addiu %[load_ptr], %[time_signal], 0 \n\t" "addiu %[hann], %[hanning], 0 \n\t" "addiu %[hann1], %[hanning], 128 \n\t" "addiu %[coefs], %[coefTable], 0 \n\t" "bltz %[shift], 2f \n\t" " negu %[shift1], %[shift] \n\t" "1: \n\t" "lh %[tmp1], 0(%[load_ptr]) \n\t" "lh %[tmp2], 0(%[hann]) \n\t" "lh %[tmp3], 128(%[load_ptr]) \n\t" "lh %[tmp4], 0(%[hann1]) \n\t" "addiu %[i], %[i], -1 \n\t" "mul %[tmp1], %[tmp1], %[tmp2] \n\t" "mul %[tmp3], %[tmp3], %[tmp4] \n\t" "lh %[f_coef], 0(%[coefs]) \n\t" "lh %[s_coef], 2(%[coefs]) \n\t" "addiu %[load_ptr], %[load_ptr], 2 \n\t" "addiu %[hann], %[hann], 2 \n\t" "addiu %[hann1], %[hann1], -2 \n\t" "addu %[store_ptr1], %[fft], %[f_coef] \n\t" "addu %[store_ptr2], %[fft], %[s_coef] \n\t" "sllv %[tmp1], %[tmp1], %[shift] \n\t" "sllv %[tmp3], %[tmp3], %[shift] \n\t" "sh %[tmp1], 0(%[store_ptr1]) \n\t" "sh %[tmp3], 0(%[store_ptr2]) \n\t" "bgtz %[i], 1b \n\t" " addiu %[coefs], %[coefs], 4 \n\t" "b 3f \n\t" " nop \n\t" "2: \n\t" "lh %[tmp1], 0(%[load_ptr]) \n\t" "lh %[tmp2], 0(%[hann]) \n\t" "lh %[tmp3], 128(%[load_ptr]) \n\t" "lh %[tmp4], 0(%[hann1]) \n\t" "addiu %[i], %[i], -1 \n\t" "mul %[tmp1], %[tmp1], %[tmp2] \n\t" "mul %[tmp3], %[tmp3], %[tmp4] \n\t" "lh %[f_coef], 0(%[coefs]) \n\t" "lh %[s_coef], 2(%[coefs]) \n\t" "addiu %[load_ptr], %[load_ptr], 2 \n\t" "addiu %[hann], %[hann], 2 \n\t" "addiu %[hann1], %[hann1], -2 \n\t" "addu %[store_ptr1], %[fft], %[f_coef] \n\t" "addu %[store_ptr2], %[fft], %[s_coef] \n\t" "srav %[tmp1], %[tmp1], %[shift1] \n\t" "srav %[tmp3], %[tmp3], %[shift1] \n\t" "sh %[tmp1], 0(%[store_ptr1]) \n\t" "sh %[tmp3], 0(%[store_ptr2]) \n\t" "bgtz %[i], 2b \n\t" " addiu %[coefs], %[coefs], 4 \n\t" "3: \n\t" ".set pop \n\t" : [load_ptr] "=&r" (load_ptr), [shift] "=&r" (shift), [hann] "=&r" (hann), [hann1] "=&r" (hann1), [shift1] "=&r" (shift1), [coefs] "=&r" (coefs), [tmp1] "=&r" (tmp1), [tmp2] "=&r" (tmp2), [tmp3] "=&r" (tmp3), [tmp4] "=&r" (tmp4), [i] "=&r" (i), [f_coef] "=&r" (f_coef), [s_coef] "=&r" (s_coef), [store_ptr1] "=&r" (store_ptr1), [store_ptr2] "=&r" (store_ptr2) : [time_signal] "r" (time_signal), [coefTable] "r" (coefTable), [time_signal_scaling] "r" (time_signal_scaling), [hanning] "r" (WebRtcAecm_kSqrtHanning), [fft] "r" (fft) : "memory", "hi", "lo" ); WebRtcSpl_ComplexFFT(fft, PART_LEN_SHIFT, 1); pfrfi = fft; pfreq_signal = freq_signal; __asm __volatile ( ".set push \n\t" ".set noreorder \n\t" "addiu %[j], $zero, 128 \n\t" "1: \n\t" "lh %[tmp1], 0(%[pfrfi]) \n\t" "lh %[tmp2], 2(%[pfrfi]) \n\t" "lh %[tmp3], 4(%[pfrfi]) \n\t" "lh %[tmp4], 6(%[pfrfi]) \n\t" "subu %[tmp2], $zero, %[tmp2] \n\t" "sh %[tmp1], 0(%[pfreq_signal]) \n\t" "sh %[tmp2], 2(%[pfreq_signal]) \n\t" "subu %[tmp4], $zero, %[tmp4] \n\t" "sh %[tmp3], 4(%[pfreq_signal]) \n\t" "sh %[tmp4], 6(%[pfreq_signal]) \n\t" "lh %[tmp1], 8(%[pfrfi]) \n\t" "lh %[tmp2], 10(%[pfrfi]) \n\t" "lh %[tmp3], 12(%[pfrfi]) \n\t" "lh %[tmp4], 14(%[pfrfi]) \n\t" "addiu %[j], %[j], -8 \n\t" "subu %[tmp2], $zero, %[tmp2] \n\t" "sh %[tmp1], 8(%[pfreq_signal]) \n\t" "sh %[tmp2], 10(%[pfreq_signal]) \n\t" "subu %[tmp4], $zero, %[tmp4] \n\t" "sh %[tmp3], 12(%[pfreq_signal]) \n\t" "sh %[tmp4], 14(%[pfreq_signal]) \n\t" "addiu %[pfreq_signal], %[pfreq_signal], 16 \n\t" "bgtz %[j], 1b \n\t" " addiu %[pfrfi], %[pfrfi], 16 \n\t" ".set pop \n\t" : [tmp1] "=&r" (tmp1), [tmp2] "=&r" (tmp2), [tmp3] "=&r" (tmp3), [j] "=&r" (j), [pfrfi] "+r" (pfrfi), [pfreq_signal] "+r" (pfreq_signal), [tmp4] "=&r" (tmp4) : : "memory" ); } static void InverseFFTAndWindow(AecmCore* aecm, int16_t* fft, ComplexInt16* efw, int16_t* output, const int16_t* nearendClean) { int i, outCFFT; int32_t tmp1, tmp2, tmp3, tmp4, tmp_re, tmp_im; int16_t* pcoefTable_ifft = coefTable_ifft; int16_t* pfft = fft; int16_t* ppfft = fft; ComplexInt16* pefw = efw; int32_t out_aecm; int16_t* paecm_buf = aecm->outBuf; const int16_t* p_kSqrtHanning = WebRtcAecm_kSqrtHanning; const int16_t* pp_kSqrtHanning = &WebRtcAecm_kSqrtHanning[PART_LEN]; int16_t* output1 = output; __asm __volatile ( ".set push \n\t" ".set noreorder \n\t" "addiu %[i], $zero, 64 \n\t" "1: \n\t" "lh %[tmp1], 0(%[pcoefTable_ifft]) \n\t" "lh %[tmp2], 2(%[pcoefTable_ifft]) \n\t" "lh %[tmp_re], 0(%[pefw]) \n\t" "lh %[tmp_im], 2(%[pefw]) \n\t" "addu %[pfft], %[fft], %[tmp2] \n\t" "sh %[tmp_re], 0(%[pfft]) \n\t" "sh %[tmp_im], 2(%[pfft]) \n\t" "addu %[pfft], %[fft], %[tmp1] \n\t" "sh %[tmp_re], 0(%[pfft]) \n\t" "subu %[tmp_im], $zero, %[tmp_im] \n\t" "sh %[tmp_im], 2(%[pfft]) \n\t" "lh %[tmp1], 4(%[pcoefTable_ifft]) \n\t" "lh %[tmp2], 6(%[pcoefTable_ifft]) \n\t" "lh %[tmp_re], 4(%[pefw]) \n\t" "lh %[tmp_im], 6(%[pefw]) \n\t" "addu %[pfft], %[fft], %[tmp2] \n\t" "sh %[tmp_re], 0(%[pfft]) \n\t" "sh %[tmp_im], 2(%[pfft]) \n\t" "addu %[pfft], %[fft], %[tmp1] \n\t" "sh %[tmp_re], 0(%[pfft]) \n\t" "subu %[tmp_im], $zero, %[tmp_im] \n\t" "sh %[tmp_im], 2(%[pfft]) \n\t" "lh %[tmp1], 8(%[pcoefTable_ifft]) \n\t" "lh %[tmp2], 10(%[pcoefTable_ifft]) \n\t" "lh %[tmp_re], 8(%[pefw]) \n\t" "lh %[tmp_im], 10(%[pefw]) \n\t" "addu %[pfft], %[fft], %[tmp2] \n\t" "sh %[tmp_re], 0(%[pfft]) \n\t" "sh %[tmp_im], 2(%[pfft]) \n\t" "addu %[pfft], %[fft], %[tmp1] \n\t" "sh %[tmp_re], 0(%[pfft]) \n\t" "subu %[tmp_im], $zero, %[tmp_im] \n\t" "sh %[tmp_im], 2(%[pfft]) \n\t" "lh %[tmp1], 12(%[pcoefTable_ifft]) \n\t" "lh %[tmp2], 14(%[pcoefTable_ifft]) \n\t" "lh %[tmp_re], 12(%[pefw]) \n\t" "lh %[tmp_im], 14(%[pefw]) \n\t" "addu %[pfft], %[fft], %[tmp2] \n\t" "sh %[tmp_re], 0(%[pfft]) \n\t" "sh %[tmp_im], 2(%[pfft]) \n\t" "addu %[pfft], %[fft], %[tmp1] \n\t" "sh %[tmp_re], 0(%[pfft]) \n\t" "subu %[tmp_im], $zero, %[tmp_im] \n\t" "sh %[tmp_im], 2(%[pfft]) \n\t" "addiu %[pcoefTable_ifft], %[pcoefTable_ifft], 16 \n\t" "addiu %[i], %[i], -4 \n\t" "bgtz %[i], 1b \n\t" " addiu %[pefw], %[pefw], 16 \n\t" ".set pop \n\t" : [tmp1] "=&r" (tmp1), [tmp2] "=&r" (tmp2), [pfft] "+r" (pfft), [i] "=&r" (i), [tmp_re] "=&r" (tmp_re), [tmp_im] "=&r" (tmp_im), [pefw] "+r" (pefw), [pcoefTable_ifft] "+r" (pcoefTable_ifft), [fft] "+r" (fft) : : "memory" ); fft[2] = efw[PART_LEN].real; fft[3] = -efw[PART_LEN].imag; outCFFT = WebRtcSpl_ComplexIFFT(fft, PART_LEN_SHIFT, 1); pfft = fft; __asm __volatile ( ".set push \n\t" ".set noreorder \n\t" "addiu %[i], $zero, 128 \n\t" "1: \n\t" "lh %[tmp1], 0(%[ppfft]) \n\t" "lh %[tmp2], 4(%[ppfft]) \n\t" "lh %[tmp3], 8(%[ppfft]) \n\t" "lh %[tmp4], 12(%[ppfft]) \n\t" "addiu %[i], %[i], -4 \n\t" "sh %[tmp1], 0(%[pfft]) \n\t" "sh %[tmp2], 2(%[pfft]) \n\t" "sh %[tmp3], 4(%[pfft]) \n\t" "sh %[tmp4], 6(%[pfft]) \n\t" "addiu %[ppfft], %[ppfft], 16 \n\t" "bgtz %[i], 1b \n\t" " addiu %[pfft], %[pfft], 8 \n\t" ".set pop \n\t" : [tmp1] "=&r" (tmp1), [tmp2] "=&r" (tmp2), [pfft] "+r" (pfft), [i] "=&r" (i), [tmp3] "=&r" (tmp3), [tmp4] "=&r" (tmp4), [ppfft] "+r" (ppfft) : : "memory" ); pfft = fft; out_aecm = (int32_t)(outCFFT - aecm->dfaCleanQDomain); __asm __volatile ( ".set push \n\t" ".set noreorder \n\t" "addiu %[i], $zero, 64 \n\t" "11: \n\t" "lh %[tmp1], 0(%[pfft]) \n\t" "lh %[tmp2], 0(%[p_kSqrtHanning]) \n\t" "addiu %[i], %[i], -2 \n\t" "mul %[tmp1], %[tmp1], %[tmp2] \n\t" "lh %[tmp3], 2(%[pfft]) \n\t" "lh %[tmp4], 2(%[p_kSqrtHanning]) \n\t" "mul %[tmp3], %[tmp3], %[tmp4] \n\t" "addiu %[tmp1], %[tmp1], 8192 \n\t" "sra %[tmp1], %[tmp1], 14 \n\t" "addiu %[tmp3], %[tmp3], 8192 \n\t" "sra %[tmp3], %[tmp3], 14 \n\t" "bgez %[out_aecm], 1f \n\t" " negu %[tmp2], %[out_aecm] \n\t" "srav %[tmp1], %[tmp1], %[tmp2] \n\t" "b 2f \n\t" " srav %[tmp3], %[tmp3], %[tmp2] \n\t" "1: \n\t" "sllv %[tmp1], %[tmp1], %[out_aecm] \n\t" "sllv %[tmp3], %[tmp3], %[out_aecm] \n\t" "2: \n\t" "lh %[tmp4], 0(%[paecm_buf]) \n\t" "lh %[tmp2], 2(%[paecm_buf]) \n\t" "addu %[tmp3], %[tmp3], %[tmp2] \n\t" "addu %[tmp1], %[tmp1], %[tmp4] \n\t" #if defined(MIPS_DSP_R1_LE) "shll_s.w %[tmp1], %[tmp1], 16 \n\t" "sra %[tmp1], %[tmp1], 16 \n\t" "shll_s.w %[tmp3], %[tmp3], 16 \n\t" "sra %[tmp3], %[tmp3], 16 \n\t" #else // #if defined(MIPS_DSP_R1_LE) "sra %[tmp4], %[tmp1], 31 \n\t" "sra %[tmp2], %[tmp1], 15 \n\t" "beq %[tmp4], %[tmp2], 3f \n\t" " ori %[tmp2], $zero, 0x7fff \n\t" "xor %[tmp1], %[tmp2], %[tmp4] \n\t" "3: \n\t" "sra %[tmp2], %[tmp3], 31 \n\t" "sra %[tmp4], %[tmp3], 15 \n\t" "beq %[tmp2], %[tmp4], 4f \n\t" " ori %[tmp4], $zero, 0x7fff \n\t" "xor %[tmp3], %[tmp4], %[tmp2] \n\t" "4: \n\t" #endif // #if defined(MIPS_DSP_R1_LE) "sh %[tmp1], 0(%[pfft]) \n\t" "sh %[tmp1], 0(%[output1]) \n\t" "sh %[tmp3], 2(%[pfft]) \n\t" "sh %[tmp3], 2(%[output1]) \n\t" "lh %[tmp1], 128(%[pfft]) \n\t" "lh %[tmp2], 0(%[pp_kSqrtHanning]) \n\t" "mul %[tmp1], %[tmp1], %[tmp2] \n\t" "lh %[tmp3], 130(%[pfft]) \n\t" "lh %[tmp4], -2(%[pp_kSqrtHanning]) \n\t" "mul %[tmp3], %[tmp3], %[tmp4] \n\t" "sra %[tmp1], %[tmp1], 14 \n\t" "sra %[tmp3], %[tmp3], 14 \n\t" "bgez %[out_aecm], 5f \n\t" " negu %[tmp2], %[out_aecm] \n\t" "srav %[tmp3], %[tmp3], %[tmp2] \n\t" "b 6f \n\t" " srav %[tmp1], %[tmp1], %[tmp2] \n\t" "5: \n\t" "sllv %[tmp1], %[tmp1], %[out_aecm] \n\t" "sllv %[tmp3], %[tmp3], %[out_aecm] \n\t" "6: \n\t" #if defined(MIPS_DSP_R1_LE) "shll_s.w %[tmp1], %[tmp1], 16 \n\t" "sra %[tmp1], %[tmp1], 16 \n\t" "shll_s.w %[tmp3], %[tmp3], 16 \n\t" "sra %[tmp3], %[tmp3], 16 \n\t" #else // #if defined(MIPS_DSP_R1_LE) "sra %[tmp4], %[tmp1], 31 \n\t" "sra %[tmp2], %[tmp1], 15 \n\t" "beq %[tmp4], %[tmp2], 7f \n\t" " ori %[tmp2], $zero, 0x7fff \n\t" "xor %[tmp1], %[tmp2], %[tmp4] \n\t" "7: \n\t" "sra %[tmp2], %[tmp3], 31 \n\t" "sra %[tmp4], %[tmp3], 15 \n\t" "beq %[tmp2], %[tmp4], 8f \n\t" " ori %[tmp4], $zero, 0x7fff \n\t" "xor %[tmp3], %[tmp4], %[tmp2] \n\t" "8: \n\t" #endif // #if defined(MIPS_DSP_R1_LE) "sh %[tmp1], 0(%[paecm_buf]) \n\t" "sh %[tmp3], 2(%[paecm_buf]) \n\t" "addiu %[output1], %[output1], 4 \n\t" "addiu %[paecm_buf], %[paecm_buf], 4 \n\t" "addiu %[pfft], %[pfft], 4 \n\t" "addiu %[p_kSqrtHanning], %[p_kSqrtHanning], 4 \n\t" "bgtz %[i], 11b \n\t" " addiu %[pp_kSqrtHanning], %[pp_kSqrtHanning], -4 \n\t" ".set pop \n\t" : [tmp1] "=&r" (tmp1), [tmp2] "=&r" (tmp2), [pfft] "+r" (pfft), [output1] "+r" (output1), [tmp3] "=&r" (tmp3), [tmp4] "=&r" (tmp4), [paecm_buf] "+r" (paecm_buf), [i] "=&r" (i), [pp_kSqrtHanning] "+r" (pp_kSqrtHanning), [p_kSqrtHanning] "+r" (p_kSqrtHanning) : [out_aecm] "r" (out_aecm), [WebRtcAecm_kSqrtHanning] "r" (WebRtcAecm_kSqrtHanning) : "hi", "lo","memory" ); // Copy the current block to the old position // (aecm->outBuf is shifted elsewhere) memcpy(aecm->xBuf, aecm->xBuf + PART_LEN, sizeof(int16_t) * PART_LEN); memcpy(aecm->dBufNoisy, aecm->dBufNoisy + PART_LEN, sizeof(int16_t) * PART_LEN); if (nearendClean != NULL) { memcpy(aecm->dBufClean, aecm->dBufClean + PART_LEN, sizeof(int16_t) * PART_LEN); } } void WebRtcAecm_CalcLinearEnergies_mips(AecmCore* aecm, const uint16_t* far_spectrum, int32_t* echo_est, uint32_t* far_energy, uint32_t* echo_energy_adapt, uint32_t* echo_energy_stored) { int i; uint32_t par1 = (*far_energy); uint32_t par2 = (*echo_energy_adapt); uint32_t par3 = (*echo_energy_stored); int16_t* ch_stored_p = &(aecm->channelStored[0]); int16_t* ch_adapt_p = &(aecm->channelAdapt16[0]); uint16_t* spectrum_p = (uint16_t*)(&(far_spectrum[0])); int32_t* echo_p = &(echo_est[0]); int32_t temp0, stored0, echo0, adept0, spectrum0; int32_t stored1, adept1, spectrum1, echo1, temp1; // Get energy for the delayed far end signal and estimated // echo using both stored and adapted channels. for (i = 0; i < PART_LEN; i+= 4) { __asm __volatile ( ".set push \n\t" ".set noreorder \n\t" "lh %[stored0], 0(%[ch_stored_p]) \n\t" "lhu %[adept0], 0(%[ch_adapt_p]) \n\t" "lhu %[spectrum0], 0(%[spectrum_p]) \n\t" "lh %[stored1], 2(%[ch_stored_p]) \n\t" "lhu %[adept1], 2(%[ch_adapt_p]) \n\t" "lhu %[spectrum1], 2(%[spectrum_p]) \n\t" "mul %[echo0], %[stored0], %[spectrum0] \n\t" "mul %[temp0], %[adept0], %[spectrum0] \n\t" "mul %[echo1], %[stored1], %[spectrum1] \n\t" "mul %[temp1], %[adept1], %[spectrum1] \n\t" "addu %[par1], %[par1], %[spectrum0] \n\t" "addu %[par1], %[par1], %[spectrum1] \n\t" "addiu %[echo_p], %[echo_p], 16 \n\t" "addu %[par3], %[par3], %[echo0] \n\t" "addu %[par2], %[par2], %[temp0] \n\t" "addu %[par3], %[par3], %[echo1] \n\t" "addu %[par2], %[par2], %[temp1] \n\t" "usw %[echo0], -16(%[echo_p]) \n\t" "usw %[echo1], -12(%[echo_p]) \n\t" "lh %[stored0], 4(%[ch_stored_p]) \n\t" "lhu %[adept0], 4(%[ch_adapt_p]) \n\t" "lhu %[spectrum0], 4(%[spectrum_p]) \n\t" "lh %[stored1], 6(%[ch_stored_p]) \n\t" "lhu %[adept1], 6(%[ch_adapt_p]) \n\t" "lhu %[spectrum1], 6(%[spectrum_p]) \n\t" "mul %[echo0], %[stored0], %[spectrum0] \n\t" "mul %[temp0], %[adept0], %[spectrum0] \n\t" "mul %[echo1], %[stored1], %[spectrum1] \n\t" "mul %[temp1], %[adept1], %[spectrum1] \n\t" "addu %[par1], %[par1], %[spectrum0] \n\t" "addu %[par1], %[par1], %[spectrum1] \n\t" "addiu %[ch_stored_p], %[ch_stored_p], 8 \n\t" "addiu %[ch_adapt_p], %[ch_adapt_p], 8 \n\t" "addiu %[spectrum_p], %[spectrum_p], 8 \n\t" "addu %[par3], %[par3], %[echo0] \n\t" "addu %[par2], %[par2], %[temp0] \n\t" "addu %[par3], %[par3], %[echo1] \n\t" "addu %[par2], %[par2], %[temp1] \n\t" "usw %[echo0], -8(%[echo_p]) \n\t" "usw %[echo1], -4(%[echo_p]) \n\t" ".set pop \n\t" : [temp0] "=&r" (temp0), [stored0] "=&r" (stored0), [adept0] "=&r" (adept0), [spectrum0] "=&r" (spectrum0), [echo0] "=&r" (echo0), [echo_p] "+r" (echo_p), [par3] "+r" (par3), [par1] "+r" (par1), [par2] "+r" (par2), [stored1] "=&r" (stored1), [adept1] "=&r" (adept1), [echo1] "=&r" (echo1), [spectrum1] "=&r" (spectrum1), [temp1] "=&r" (temp1), [ch_stored_p] "+r" (ch_stored_p), [ch_adapt_p] "+r" (ch_adapt_p), [spectrum_p] "+r" (spectrum_p) : : "hi", "lo", "memory" ); } echo_est[PART_LEN] = WEBRTC_SPL_MUL_16_U16(aecm->channelStored[PART_LEN], far_spectrum[PART_LEN]); par1 += (uint32_t)(far_spectrum[PART_LEN]); par2 += aecm->channelAdapt16[PART_LEN] * far_spectrum[PART_LEN]; par3 += (uint32_t)echo_est[PART_LEN]; (*far_energy) = par1; (*echo_energy_adapt) = par2; (*echo_energy_stored) = par3; } #if defined(MIPS_DSP_R1_LE) void WebRtcAecm_StoreAdaptiveChannel_mips(AecmCore* aecm, const uint16_t* far_spectrum, int32_t* echo_est) { int i; int16_t* temp1; uint16_t* temp8; int32_t temp0, temp2, temp3, temp4, temp5, temp6; int32_t* temp7 = &(echo_est[0]); temp1 = &(aecm->channelStored[0]); temp8 = (uint16_t*)(&far_spectrum[0]); // During startup we store the channel every block. memcpy(aecm->channelStored, aecm->channelAdapt16, sizeof(int16_t) * PART_LEN1); // Recalculate echo estimate for (i = 0; i < PART_LEN; i += 4) { __asm __volatile ( "ulw %[temp0], 0(%[temp8]) \n\t" "ulw %[temp2], 0(%[temp1]) \n\t" "ulw %[temp4], 4(%[temp8]) \n\t" "ulw %[temp5], 4(%[temp1]) \n\t" "muleq_s.w.phl %[temp3], %[temp2], %[temp0] \n\t" "muleq_s.w.phr %[temp0], %[temp2], %[temp0] \n\t" "muleq_s.w.phl %[temp6], %[temp5], %[temp4] \n\t" "muleq_s.w.phr %[temp4], %[temp5], %[temp4] \n\t" "addiu %[temp7], %[temp7], 16 \n\t" "addiu %[temp1], %[temp1], 8 \n\t" "addiu %[temp8], %[temp8], 8 \n\t" "sra %[temp3], %[temp3], 1 \n\t" "sra %[temp0], %[temp0], 1 \n\t" "sra %[temp6], %[temp6], 1 \n\t" "sra %[temp4], %[temp4], 1 \n\t" "usw %[temp3], -12(%[temp7]) \n\t" "usw %[temp0], -16(%[temp7]) \n\t" "usw %[temp6], -4(%[temp7]) \n\t" "usw %[temp4], -8(%[temp7]) \n\t" : [temp0] "=&r" (temp0), [temp2] "=&r" (temp2), [temp3] "=&r" (temp3), [temp4] "=&r" (temp4), [temp5] "=&r" (temp5), [temp6] "=&r" (temp6), [temp1] "+r" (temp1), [temp8] "+r" (temp8), [temp7] "+r" (temp7) : : "hi", "lo", "memory" ); } echo_est[i] = WEBRTC_SPL_MUL_16_U16(aecm->channelStored[i], far_spectrum[i]); } void WebRtcAecm_ResetAdaptiveChannel_mips(AecmCore* aecm) { int i; int32_t* temp3; int16_t* temp0; int32_t temp1, temp2, temp4, temp5; temp0 = &(aecm->channelStored[0]); temp3 = &(aecm->channelAdapt32[0]); // The stored channel has a significantly lower MSE than the adaptive one for // two consecutive calculations. Reset the adaptive channel. memcpy(aecm->channelAdapt16, aecm->channelStored, sizeof(int16_t) * PART_LEN1); // Restore the W32 channel for (i = 0; i < PART_LEN; i += 4) { __asm __volatile ( "ulw %[temp1], 0(%[temp0]) \n\t" "ulw %[temp4], 4(%[temp0]) \n\t" "preceq.w.phl %[temp2], %[temp1] \n\t" "preceq.w.phr %[temp1], %[temp1] \n\t" "preceq.w.phl %[temp5], %[temp4] \n\t" "preceq.w.phr %[temp4], %[temp4] \n\t" "addiu %[temp0], %[temp0], 8 \n\t" "usw %[temp2], 4(%[temp3]) \n\t" "usw %[temp1], 0(%[temp3]) \n\t" "usw %[temp5], 12(%[temp3]) \n\t" "usw %[temp4], 8(%[temp3]) \n\t" "addiu %[temp3], %[temp3], 16 \n\t" : [temp1] "=&r" (temp1), [temp2] "=&r" (temp2), [temp4] "=&r" (temp4), [temp5] "=&r" (temp5), [temp3] "+r" (temp3), [temp0] "+r" (temp0) : : "memory" ); } aecm->channelAdapt32[i] = (int32_t)aecm->channelStored[i] << 16; } #endif // #if defined(MIPS_DSP_R1_LE) // Transforms a time domain signal into the frequency domain, outputting the // complex valued signal, absolute value and sum of absolute values. // // time_signal [in] Pointer to time domain signal // freq_signal_real [out] Pointer to real part of frequency domain array // freq_signal_imag [out] Pointer to imaginary part of frequency domain // array // freq_signal_abs [out] Pointer to absolute value of frequency domain // array // freq_signal_sum_abs [out] Pointer to the sum of all absolute values in // the frequency domain array // return value The Q-domain of current frequency values // static int TimeToFrequencyDomain(AecmCore* aecm, const int16_t* time_signal, ComplexInt16* freq_signal, uint16_t* freq_signal_abs, uint32_t* freq_signal_sum_abs) { int i = 0; int time_signal_scaling = 0; // In fft_buf, +16 for 32-byte alignment. int16_t fft_buf[PART_LEN4 + 16]; int16_t *fft = (int16_t *) (((uintptr_t) fft_buf + 31) & ~31); int16_t tmp16no1; #if !defined(MIPS_DSP_R2_LE) int32_t tmp32no1; int32_t tmp32no2; int16_t tmp16no2; #else int32_t tmp32no10, tmp32no11, tmp32no12, tmp32no13; int32_t tmp32no20, tmp32no21, tmp32no22, tmp32no23; int16_t* freqp; uint16_t* freqabsp; uint32_t freqt0, freqt1, freqt2, freqt3; uint32_t freqs; #endif #ifdef AECM_DYNAMIC_Q tmp16no1 = WebRtcSpl_MaxAbsValueW16(time_signal, PART_LEN2); time_signal_scaling = WebRtcSpl_NormW16(tmp16no1); #endif WindowAndFFT(aecm, fft, time_signal, freq_signal, time_signal_scaling); // Extract imaginary and real part, // calculate the magnitude for all frequency bins freq_signal[0].imag = 0; freq_signal[PART_LEN].imag = 0; freq_signal[PART_LEN].real = fft[PART_LEN2]; freq_signal_abs[0] = (uint16_t)WEBRTC_SPL_ABS_W16(freq_signal[0].real); freq_signal_abs[PART_LEN] = (uint16_t)WEBRTC_SPL_ABS_W16( freq_signal[PART_LEN].real); (*freq_signal_sum_abs) = (uint32_t)(freq_signal_abs[0]) + (uint32_t)(freq_signal_abs[PART_LEN]); #if !defined(MIPS_DSP_R2_LE) for (i = 1; i < PART_LEN; i++) { if (freq_signal[i].real == 0) { freq_signal_abs[i] = (uint16_t)WEBRTC_SPL_ABS_W16( freq_signal[i].imag); } else if (freq_signal[i].imag == 0) { freq_signal_abs[i] = (uint16_t)WEBRTC_SPL_ABS_W16( freq_signal[i].real); } else { // Approximation for magnitude of complex fft output // magn = sqrt(real^2 + imag^2) // magn ~= alpha * max(|imag|,|real|) + beta * min(|imag|,|real|) // // The parameters alpha and beta are stored in Q15 tmp16no1 = WEBRTC_SPL_ABS_W16(freq_signal[i].real); tmp16no2 = WEBRTC_SPL_ABS_W16(freq_signal[i].imag); tmp32no1 = tmp16no1 * tmp16no1; tmp32no2 = tmp16no2 * tmp16no2; tmp32no2 = WebRtcSpl_AddSatW32(tmp32no1, tmp32no2); tmp32no1 = WebRtcSpl_SqrtFloor(tmp32no2); freq_signal_abs[i] = (uint16_t)tmp32no1; } (*freq_signal_sum_abs) += (uint32_t)freq_signal_abs[i]; } #else // #if !defined(MIPS_DSP_R2_LE) freqs = (uint32_t)(freq_signal_abs[0]) + (uint32_t)(freq_signal_abs[PART_LEN]); freqp = &(freq_signal[1].real); __asm __volatile ( "lw %[freqt0], 0(%[freqp]) \n\t" "lw %[freqt1], 4(%[freqp]) \n\t" "lw %[freqt2], 8(%[freqp]) \n\t" "mult $ac0, $zero, $zero \n\t" "mult $ac1, $zero, $zero \n\t" "mult $ac2, $zero, $zero \n\t" "dpaq_s.w.ph $ac0, %[freqt0], %[freqt0] \n\t" "dpaq_s.w.ph $ac1, %[freqt1], %[freqt1] \n\t" "dpaq_s.w.ph $ac2, %[freqt2], %[freqt2] \n\t" "addiu %[freqp], %[freqp], 12 \n\t" "extr.w %[tmp32no20], $ac0, 1 \n\t" "extr.w %[tmp32no21], $ac1, 1 \n\t" "extr.w %[tmp32no22], $ac2, 1 \n\t" : [freqt0] "=&r" (freqt0), [freqt1] "=&r" (freqt1), [freqt2] "=&r" (freqt2), [freqp] "+r" (freqp), [tmp32no20] "=r" (tmp32no20), [tmp32no21] "=r" (tmp32no21), [tmp32no22] "=r" (tmp32no22) : : "memory", "hi", "lo", "$ac1hi", "$ac1lo", "$ac2hi", "$ac2lo" ); tmp32no10 = WebRtcSpl_SqrtFloor(tmp32no20); tmp32no11 = WebRtcSpl_SqrtFloor(tmp32no21); tmp32no12 = WebRtcSpl_SqrtFloor(tmp32no22); freq_signal_abs[1] = (uint16_t)tmp32no10; freq_signal_abs[2] = (uint16_t)tmp32no11; freq_signal_abs[3] = (uint16_t)tmp32no12; freqs += (uint32_t)tmp32no10; freqs += (uint32_t)tmp32no11; freqs += (uint32_t)tmp32no12; freqabsp = &(freq_signal_abs[4]); for (i = 4; i < PART_LEN; i+=4) { __asm __volatile ( "ulw %[freqt0], 0(%[freqp]) \n\t" "ulw %[freqt1], 4(%[freqp]) \n\t" "ulw %[freqt2], 8(%[freqp]) \n\t" "ulw %[freqt3], 12(%[freqp]) \n\t" "mult $ac0, $zero, $zero \n\t" "mult $ac1, $zero, $zero \n\t" "mult $ac2, $zero, $zero \n\t" "mult $ac3, $zero, $zero \n\t" "dpaq_s.w.ph $ac0, %[freqt0], %[freqt0] \n\t" "dpaq_s.w.ph $ac1, %[freqt1], %[freqt1] \n\t" "dpaq_s.w.ph $ac2, %[freqt2], %[freqt2] \n\t" "dpaq_s.w.ph $ac3, %[freqt3], %[freqt3] \n\t" "addiu %[freqp], %[freqp], 16 \n\t" "addiu %[freqabsp], %[freqabsp], 8 \n\t" "extr.w %[tmp32no20], $ac0, 1 \n\t" "extr.w %[tmp32no21], $ac1, 1 \n\t" "extr.w %[tmp32no22], $ac2, 1 \n\t" "extr.w %[tmp32no23], $ac3, 1 \n\t" : [freqt0] "=&r" (freqt0), [freqt1] "=&r" (freqt1), [freqt2] "=&r" (freqt2), [freqt3] "=&r" (freqt3), [tmp32no20] "=r" (tmp32no20), [tmp32no21] "=r" (tmp32no21), [tmp32no22] "=r" (tmp32no22), [tmp32no23] "=r" (tmp32no23), [freqabsp] "+r" (freqabsp), [freqp] "+r" (freqp) : : "memory", "hi", "lo", "$ac1hi", "$ac1lo", "$ac2hi", "$ac2lo", "$ac3hi", "$ac3lo" ); tmp32no10 = WebRtcSpl_SqrtFloor(tmp32no20); tmp32no11 = WebRtcSpl_SqrtFloor(tmp32no21); tmp32no12 = WebRtcSpl_SqrtFloor(tmp32no22); tmp32no13 = WebRtcSpl_SqrtFloor(tmp32no23); __asm __volatile ( "sh %[tmp32no10], -8(%[freqabsp]) \n\t" "sh %[tmp32no11], -6(%[freqabsp]) \n\t" "sh %[tmp32no12], -4(%[freqabsp]) \n\t" "sh %[tmp32no13], -2(%[freqabsp]) \n\t" "addu %[freqs], %[freqs], %[tmp32no10] \n\t" "addu %[freqs], %[freqs], %[tmp32no11] \n\t" "addu %[freqs], %[freqs], %[tmp32no12] \n\t" "addu %[freqs], %[freqs], %[tmp32no13] \n\t" : [freqs] "+r" (freqs) : [tmp32no10] "r" (tmp32no10), [tmp32no11] "r" (tmp32no11), [tmp32no12] "r" (tmp32no12), [tmp32no13] "r" (tmp32no13), [freqabsp] "r" (freqabsp) : "memory" ); } (*freq_signal_sum_abs) = freqs; #endif return time_signal_scaling; } int WebRtcAecm_ProcessBlock(AecmCore* aecm, const int16_t* farend, const int16_t* nearendNoisy, const int16_t* nearendClean, int16_t* output) { int i; uint32_t xfaSum; uint32_t dfaNoisySum; uint32_t dfaCleanSum; uint32_t echoEst32Gained; uint32_t tmpU32; int32_t tmp32no1; uint16_t xfa[PART_LEN1]; uint16_t dfaNoisy[PART_LEN1]; uint16_t dfaClean[PART_LEN1]; uint16_t* ptrDfaClean = dfaClean; const uint16_t* far_spectrum_ptr = NULL; // 32 byte aligned buffers (with +8 or +16). int16_t fft_buf[PART_LEN4 + 2 + 16]; // +2 to make a loop safe. int32_t echoEst32_buf[PART_LEN1 + 8]; int32_t dfw_buf[PART_LEN2 + 8]; int32_t efw_buf[PART_LEN2 + 8]; int16_t* fft = (int16_t*)(((uint32_t)fft_buf + 31) & ~ 31); int32_t* echoEst32 = (int32_t*)(((uint32_t)echoEst32_buf + 31) & ~ 31); ComplexInt16* dfw = (ComplexInt16*)(((uint32_t)dfw_buf + 31) & ~31); ComplexInt16* efw = (ComplexInt16*)(((uint32_t)efw_buf + 31) & ~31); int16_t hnl[PART_LEN1]; int16_t numPosCoef = 0; int delay; int16_t tmp16no1; int16_t tmp16no2; int16_t mu; int16_t supGain; int16_t zeros32, zeros16; int16_t zerosDBufNoisy, zerosDBufClean, zerosXBuf; int far_q; int16_t resolutionDiff, qDomainDiff, dfa_clean_q_domain_diff; const int kMinPrefBand = 4; const int kMaxPrefBand = 24; int32_t avgHnl32 = 0; int32_t temp1, temp2, temp3, temp4, temp5, temp6, temp7, temp8; int16_t* ptr; int16_t* ptr1; int16_t* er_ptr; int16_t* dr_ptr; ptr = &hnl[0]; ptr1 = &hnl[0]; er_ptr = &efw[0].real; dr_ptr = &dfw[0].real; // Determine startup state. There are three states: // (0) the first CONV_LEN blocks // (1) another CONV_LEN blocks // (2) the rest if (aecm->startupState < 2) { aecm->startupState = (aecm->totCount >= CONV_LEN) + (aecm->totCount >= CONV_LEN2); } // END: Determine startup state // Buffer near and far end signals memcpy(aecm->xBuf + PART_LEN, farend, sizeof(int16_t) * PART_LEN); memcpy(aecm->dBufNoisy + PART_LEN, nearendNoisy, sizeof(int16_t) * PART_LEN); if (nearendClean != NULL) { memcpy(aecm->dBufClean + PART_LEN, nearendClean, sizeof(int16_t) * PART_LEN); } // Transform far end signal from time domain to frequency domain. far_q = TimeToFrequencyDomain(aecm, aecm->xBuf, dfw, xfa, &xfaSum); // Transform noisy near end signal from time domain to frequency domain. zerosDBufNoisy = TimeToFrequencyDomain(aecm, aecm->dBufNoisy, dfw, dfaNoisy, &dfaNoisySum); aecm->dfaNoisyQDomainOld = aecm->dfaNoisyQDomain; aecm->dfaNoisyQDomain = (int16_t)zerosDBufNoisy; if (nearendClean == NULL) { ptrDfaClean = dfaNoisy; aecm->dfaCleanQDomainOld = aecm->dfaNoisyQDomainOld; aecm->dfaCleanQDomain = aecm->dfaNoisyQDomain; dfaCleanSum = dfaNoisySum; } else { // Transform clean near end signal from time domain to frequency domain. zerosDBufClean = TimeToFrequencyDomain(aecm, aecm->dBufClean, dfw, dfaClean, &dfaCleanSum); aecm->dfaCleanQDomainOld = aecm->dfaCleanQDomain; aecm->dfaCleanQDomain = (int16_t)zerosDBufClean; } // Get the delay // Save far-end history and estimate delay WebRtcAecm_UpdateFarHistory(aecm, xfa, far_q); if (WebRtc_AddFarSpectrumFix(aecm->delay_estimator_farend, xfa, PART_LEN1, far_q) == -1) { return -1; } delay = WebRtc_DelayEstimatorProcessFix(aecm->delay_estimator, dfaNoisy, PART_LEN1, zerosDBufNoisy); if (delay == -1) { return -1; } else if (delay == -2) { // If the delay is unknown, we assume zero. // NOTE: this will have to be adjusted if we ever add lookahead. delay = 0; } if (aecm->fixedDelay >= 0) { // Use fixed delay delay = aecm->fixedDelay; } // Get aligned far end spectrum far_spectrum_ptr = WebRtcAecm_AlignedFarend(aecm, &far_q, delay); zerosXBuf = (int16_t) far_q; if (far_spectrum_ptr == NULL) { return -1; } // Calculate log(energy) and update energy threshold levels WebRtcAecm_CalcEnergies(aecm, far_spectrum_ptr, zerosXBuf, dfaNoisySum, echoEst32); // Calculate stepsize mu = WebRtcAecm_CalcStepSize(aecm); // Update counters aecm->totCount++; // This is the channel estimation algorithm. // It is base on NLMS but has a variable step length, // which was calculated above. WebRtcAecm_UpdateChannel(aecm, far_spectrum_ptr, zerosXBuf, dfaNoisy, mu, echoEst32); supGain = WebRtcAecm_CalcSuppressionGain(aecm); // Calculate Wiener filter hnl[] for (i = 0; i < PART_LEN1; i++) { // Far end signal through channel estimate in Q8 // How much can we shift right to preserve resolution tmp32no1 = echoEst32[i] - aecm->echoFilt[i]; aecm->echoFilt[i] += (tmp32no1 * 50) >> 8; zeros32 = WebRtcSpl_NormW32(aecm->echoFilt[i]) + 1; zeros16 = WebRtcSpl_NormW16(supGain) + 1; if (zeros32 + zeros16 > 16) { // Multiplication is safe // Result in // Q(RESOLUTION_CHANNEL+RESOLUTION_SUPGAIN+aecm->xfaQDomainBuf[diff]) echoEst32Gained = WEBRTC_SPL_UMUL_32_16((uint32_t)aecm->echoFilt[i], (uint16_t)supGain); resolutionDiff = 14 - RESOLUTION_CHANNEL16 - RESOLUTION_SUPGAIN; resolutionDiff += (aecm->dfaCleanQDomain - zerosXBuf); } else { tmp16no1 = 17 - zeros32 - zeros16; resolutionDiff = 14 + tmp16no1 - RESOLUTION_CHANNEL16 - RESOLUTION_SUPGAIN; resolutionDiff += (aecm->dfaCleanQDomain - zerosXBuf); if (zeros32 > tmp16no1) { echoEst32Gained = WEBRTC_SPL_UMUL_32_16( (uint32_t)aecm->echoFilt[i], supGain >> tmp16no1); } else { // Result in Q-(RESOLUTION_CHANNEL+RESOLUTION_SUPGAIN-16) echoEst32Gained = (aecm->echoFilt[i] >> tmp16no1) * supGain; } } zeros16 = WebRtcSpl_NormW16(aecm->nearFilt[i]); assert(zeros16 >= 0); // |zeros16| is a norm, hence non-negative. dfa_clean_q_domain_diff = aecm->dfaCleanQDomain - aecm->dfaCleanQDomainOld; if (zeros16 < dfa_clean_q_domain_diff && aecm->nearFilt[i]) { tmp16no1 = aecm->nearFilt[i] << zeros16; qDomainDiff = zeros16 - dfa_clean_q_domain_diff; tmp16no2 = ptrDfaClean[i] >> -qDomainDiff; } else { tmp16no1 = dfa_clean_q_domain_diff < 0 ? aecm->nearFilt[i] >> -dfa_clean_q_domain_diff : aecm->nearFilt[i] << dfa_clean_q_domain_diff; qDomainDiff = 0; tmp16no2 = ptrDfaClean[i]; } tmp32no1 = (int32_t)(tmp16no2 - tmp16no1); tmp16no2 = (int16_t)(tmp32no1 >> 4); tmp16no2 += tmp16no1; zeros16 = WebRtcSpl_NormW16(tmp16no2); if ((tmp16no2) & (-qDomainDiff > zeros16)) { aecm->nearFilt[i] = WEBRTC_SPL_WORD16_MAX; } else { aecm->nearFilt[i] = qDomainDiff < 0 ? tmp16no2 << -qDomainDiff : tmp16no2 >> qDomainDiff; } // Wiener filter coefficients, resulting hnl in Q14 if (echoEst32Gained == 0) { hnl[i] = ONE_Q14; numPosCoef++; } else if (aecm->nearFilt[i] == 0) { hnl[i] = 0; } else { // Multiply the suppression gain // Rounding echoEst32Gained += (uint32_t)(aecm->nearFilt[i] >> 1); tmpU32 = WebRtcSpl_DivU32U16(echoEst32Gained, (uint16_t)aecm->nearFilt[i]); // Current resolution is // Q-(RESOLUTION_CHANNEL + RESOLUTION_SUPGAIN // - max(0, 17 - zeros16 - zeros32)) // Make sure we are in Q14 tmp32no1 = (int32_t)WEBRTC_SPL_SHIFT_W32(tmpU32, resolutionDiff); if (tmp32no1 > ONE_Q14) { hnl[i] = 0; } else if (tmp32no1 < 0) { hnl[i] = ONE_Q14; numPosCoef++; } else { // 1-echoEst/dfa hnl[i] = ONE_Q14 - (int16_t)tmp32no1; if (hnl[i] <= 0) { hnl[i] = 0; } else { numPosCoef++; } } } } // Only in wideband. Prevent the gain in upper band from being larger than // in lower band. if (aecm->mult == 2) { // TODO(bjornv): Investigate if the scaling of hnl[i] below can cause // speech distortion in double-talk. for (i = 0; i < (PART_LEN1 >> 3); i++) { __asm __volatile ( "lh %[temp1], 0(%[ptr1]) \n\t" "lh %[temp2], 2(%[ptr1]) \n\t" "lh %[temp3], 4(%[ptr1]) \n\t" "lh %[temp4], 6(%[ptr1]) \n\t" "lh %[temp5], 8(%[ptr1]) \n\t" "lh %[temp6], 10(%[ptr1]) \n\t" "lh %[temp7], 12(%[ptr1]) \n\t" "lh %[temp8], 14(%[ptr1]) \n\t" "mul %[temp1], %[temp1], %[temp1] \n\t" "mul %[temp2], %[temp2], %[temp2] \n\t" "mul %[temp3], %[temp3], %[temp3] \n\t" "mul %[temp4], %[temp4], %[temp4] \n\t" "mul %[temp5], %[temp5], %[temp5] \n\t" "mul %[temp6], %[temp6], %[temp6] \n\t" "mul %[temp7], %[temp7], %[temp7] \n\t" "mul %[temp8], %[temp8], %[temp8] \n\t" "sra %[temp1], %[temp1], 14 \n\t" "sra %[temp2], %[temp2], 14 \n\t" "sra %[temp3], %[temp3], 14 \n\t" "sra %[temp4], %[temp4], 14 \n\t" "sra %[temp5], %[temp5], 14 \n\t" "sra %[temp6], %[temp6], 14 \n\t" "sra %[temp7], %[temp7], 14 \n\t" "sra %[temp8], %[temp8], 14 \n\t" "sh %[temp1], 0(%[ptr1]) \n\t" "sh %[temp2], 2(%[ptr1]) \n\t" "sh %[temp3], 4(%[ptr1]) \n\t" "sh %[temp4], 6(%[ptr1]) \n\t" "sh %[temp5], 8(%[ptr1]) \n\t" "sh %[temp6], 10(%[ptr1]) \n\t" "sh %[temp7], 12(%[ptr1]) \n\t" "sh %[temp8], 14(%[ptr1]) \n\t" "addiu %[ptr1], %[ptr1], 16 \n\t" : [temp1] "=&r" (temp1), [temp2] "=&r" (temp2), [temp3] "=&r" (temp3), [temp4] "=&r" (temp4), [temp5] "=&r" (temp5), [temp6] "=&r" (temp6), [temp7] "=&r" (temp7), [temp8] "=&r" (temp8), [ptr1] "+r" (ptr1) : : "memory", "hi", "lo" ); } for(i = 0; i < (PART_LEN1 & 7); i++) { __asm __volatile ( "lh %[temp1], 0(%[ptr1]) \n\t" "mul %[temp1], %[temp1], %[temp1] \n\t" "sra %[temp1], %[temp1], 14 \n\t" "sh %[temp1], 0(%[ptr1]) \n\t" "addiu %[ptr1], %[ptr1], 2 \n\t" : [temp1] "=&r" (temp1), [ptr1] "+r" (ptr1) : : "memory", "hi", "lo" ); } for (i = kMinPrefBand; i <= kMaxPrefBand; i++) { avgHnl32 += (int32_t)hnl[i]; } assert(kMaxPrefBand - kMinPrefBand + 1 > 0); avgHnl32 /= (kMaxPrefBand - kMinPrefBand + 1); for (i = kMaxPrefBand; i < PART_LEN1; i++) { if (hnl[i] > (int16_t)avgHnl32) { hnl[i] = (int16_t)avgHnl32; } } } // Calculate NLP gain, result is in Q14 if (aecm->nlpFlag) { if (numPosCoef < 3) { for (i = 0; i < PART_LEN1; i++) { efw[i].real = 0; efw[i].imag = 0; hnl[i] = 0; } } else { for (i = 0; i < PART_LEN1; i++) { #if defined(MIPS_DSP_R1_LE) __asm __volatile ( ".set push \n\t" ".set noreorder \n\t" "lh %[temp1], 0(%[ptr]) \n\t" "lh %[temp2], 0(%[dr_ptr]) \n\t" "slti %[temp4], %[temp1], 0x4001 \n\t" "beqz %[temp4], 3f \n\t" " lh %[temp3], 2(%[dr_ptr]) \n\t" "slti %[temp5], %[temp1], 3277 \n\t" "bnez %[temp5], 2f \n\t" " addiu %[dr_ptr], %[dr_ptr], 4 \n\t" "mul %[temp2], %[temp2], %[temp1] \n\t" "mul %[temp3], %[temp3], %[temp1] \n\t" "shra_r.w %[temp2], %[temp2], 14 \n\t" "shra_r.w %[temp3], %[temp3], 14 \n\t" "b 4f \n\t" " nop \n\t" "2: \n\t" "addu %[temp1], $zero, $zero \n\t" "addu %[temp2], $zero, $zero \n\t" "addu %[temp3], $zero, $zero \n\t" "b 1f \n\t" " nop \n\t" "3: \n\t" "addiu %[temp1], $0, 0x4000 \n\t" "1: \n\t" "sh %[temp1], 0(%[ptr]) \n\t" "4: \n\t" "sh %[temp2], 0(%[er_ptr]) \n\t" "sh %[temp3], 2(%[er_ptr]) \n\t" "addiu %[ptr], %[ptr], 2 \n\t" "addiu %[er_ptr], %[er_ptr], 4 \n\t" ".set pop \n\t" : [temp1] "=&r" (temp1), [temp2] "=&r" (temp2), [temp3] "=&r" (temp3), [temp4] "=&r" (temp4), [temp5] "=&r" (temp5), [ptr] "+r" (ptr), [er_ptr] "+r" (er_ptr), [dr_ptr] "+r" (dr_ptr) : : "memory", "hi", "lo" ); #else __asm __volatile ( ".set push \n\t" ".set noreorder \n\t" "lh %[temp1], 0(%[ptr]) \n\t" "lh %[temp2], 0(%[dr_ptr]) \n\t" "slti %[temp4], %[temp1], 0x4001 \n\t" "beqz %[temp4], 3f \n\t" " lh %[temp3], 2(%[dr_ptr]) \n\t" "slti %[temp5], %[temp1], 3277 \n\t" "bnez %[temp5], 2f \n\t" " addiu %[dr_ptr], %[dr_ptr], 4 \n\t" "mul %[temp2], %[temp2], %[temp1] \n\t" "mul %[temp3], %[temp3], %[temp1] \n\t" "addiu %[temp2], %[temp2], 0x2000 \n\t" "addiu %[temp3], %[temp3], 0x2000 \n\t" "sra %[temp2], %[temp2], 14 \n\t" "sra %[temp3], %[temp3], 14 \n\t" "b 4f \n\t" " nop \n\t" "2: \n\t" "addu %[temp1], $zero, $zero \n\t" "addu %[temp2], $zero, $zero \n\t" "addu %[temp3], $zero, $zero \n\t" "b 1f \n\t" " nop \n\t" "3: \n\t" "addiu %[temp1], $0, 0x4000 \n\t" "1: \n\t" "sh %[temp1], 0(%[ptr]) \n\t" "4: \n\t" "sh %[temp2], 0(%[er_ptr]) \n\t" "sh %[temp3], 2(%[er_ptr]) \n\t" "addiu %[ptr], %[ptr], 2 \n\t" "addiu %[er_ptr], %[er_ptr], 4 \n\t" ".set pop \n\t" : [temp1] "=&r" (temp1), [temp2] "=&r" (temp2), [temp3] "=&r" (temp3), [temp4] "=&r" (temp4), [temp5] "=&r" (temp5), [ptr] "+r" (ptr), [er_ptr] "+r" (er_ptr), [dr_ptr] "+r" (dr_ptr) : : "memory", "hi", "lo" ); #endif } } } else { // multiply with Wiener coefficients for (i = 0; i < PART_LEN1; i++) { efw[i].real = (int16_t) (WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].real, hnl[i], 14)); efw[i].imag = (int16_t) (WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].imag, hnl[i], 14)); } } if (aecm->cngMode == AecmTrue) { ComfortNoise(aecm, ptrDfaClean, efw, hnl); } InverseFFTAndWindow(aecm, fft, efw, output, nearendClean); return 0; } // Generate comfort noise and add to output signal. static void ComfortNoise(AecmCore* aecm, const uint16_t* dfa, ComplexInt16* out, const int16_t* lambda) { int16_t i; int16_t tmp16, tmp161, tmp162, tmp163, nrsh1, nrsh2; int32_t tmp32, tmp321, tnoise, tnoise1; int32_t tmp322, tmp323, *tmp1; int16_t* dfap; int16_t* lambdap; const int32_t c2049 = 2049; const int32_t c359 = 359; const int32_t c114 = ONE_Q14; int16_t randW16[PART_LEN]; int16_t uReal[PART_LEN1]; int16_t uImag[PART_LEN1]; int32_t outLShift32; int16_t shiftFromNearToNoise = kNoiseEstQDomain - aecm->dfaCleanQDomain; int16_t minTrackShift = 9; assert(shiftFromNearToNoise >= 0); assert(shiftFromNearToNoise < 16); if (aecm->noiseEstCtr < 100) { // Track the minimum more quickly initially. aecm->noiseEstCtr++; minTrackShift = 6; } // Generate a uniform random array on [0 2^15-1]. WebRtcSpl_RandUArray(randW16, PART_LEN, &aecm->seed); int16_t* randW16p = (int16_t*)randW16; #if defined (MIPS_DSP_R1_LE) int16_t* kCosTablep = (int16_t*)WebRtcAecm_kCosTable; int16_t* kSinTablep = (int16_t*)WebRtcAecm_kSinTable; #endif // #if defined(MIPS_DSP_R1_LE) tmp1 = (int32_t*)aecm->noiseEst + 1; dfap = (int16_t*)dfa + 1; lambdap = (int16_t*)lambda + 1; // Estimate noise power. for (i = 1; i < PART_LEN1; i+=2) { // Shift to the noise domain. __asm __volatile ( "lh %[tmp32], 0(%[dfap]) \n\t" "lw %[tnoise], 0(%[tmp1]) \n\t" "sllv %[outLShift32], %[tmp32], %[shiftFromNearToNoise] \n\t" : [tmp32] "=&r" (tmp32), [outLShift32] "=r" (outLShift32), [tnoise] "=&r" (tnoise) : [tmp1] "r" (tmp1), [dfap] "r" (dfap), [shiftFromNearToNoise] "r" (shiftFromNearToNoise) : "memory" ); if (outLShift32 < tnoise) { // Reset "too low" counter aecm->noiseEstTooLowCtr[i] = 0; // Track the minimum. if (tnoise < (1 << minTrackShift)) { // For small values, decrease noiseEst[i] every // |kNoiseEstIncCount| block. The regular approach below can not // go further down due to truncation. aecm->noiseEstTooHighCtr[i]++; if (aecm->noiseEstTooHighCtr[i] >= kNoiseEstIncCount) { tnoise--; aecm->noiseEstTooHighCtr[i] = 0; // Reset the counter } } else { __asm __volatile ( "subu %[tmp32], %[tnoise], %[outLShift32] \n\t" "srav %[tmp32], %[tmp32], %[minTrackShift] \n\t" "subu %[tnoise], %[tnoise], %[tmp32] \n\t" : [tmp32] "=&r" (tmp32), [tnoise] "+r" (tnoise) : [outLShift32] "r" (outLShift32), [minTrackShift] "r" (minTrackShift) ); } } else { // Reset "too high" counter aecm->noiseEstTooHighCtr[i] = 0; // Ramp slowly upwards until we hit the minimum again. if ((tnoise >> 19) <= 0) { if ((tnoise >> 11) > 0) { // Large enough for relative increase __asm __volatile ( "mul %[tnoise], %[tnoise], %[c2049] \n\t" "sra %[tnoise], %[tnoise], 11 \n\t" : [tnoise] "+r" (tnoise) : [c2049] "r" (c2049) : "hi", "lo" ); } else { // Make incremental increases based on size every // |kNoiseEstIncCount| block aecm->noiseEstTooLowCtr[i]++; if (aecm->noiseEstTooLowCtr[i] >= kNoiseEstIncCount) { __asm __volatile ( "sra %[tmp32], %[tnoise], 9 \n\t" "addi %[tnoise], %[tnoise], 1 \n\t" "addu %[tnoise], %[tnoise], %[tmp32] \n\t" : [tnoise] "+r" (tnoise), [tmp32] "=&r" (tmp32) : ); aecm->noiseEstTooLowCtr[i] = 0; // Reset counter } } } else { // Avoid overflow. // Multiplication with 2049 will cause wrap around. Scale // down first and then multiply __asm __volatile ( "sra %[tnoise], %[tnoise], 11 \n\t" "mul %[tnoise], %[tnoise], %[c2049] \n\t" : [tnoise] "+r" (tnoise) : [c2049] "r" (c2049) : "hi", "lo" ); } } // Shift to the noise domain. __asm __volatile ( "lh %[tmp32], 2(%[dfap]) \n\t" "lw %[tnoise1], 4(%[tmp1]) \n\t" "addiu %[dfap], %[dfap], 4 \n\t" "sllv %[outLShift32], %[tmp32], %[shiftFromNearToNoise] \n\t" : [tmp32] "=&r" (tmp32), [dfap] "+r" (dfap), [outLShift32] "=r" (outLShift32), [tnoise1] "=&r" (tnoise1) : [tmp1] "r" (tmp1), [shiftFromNearToNoise] "r" (shiftFromNearToNoise) : "memory" ); if (outLShift32 < tnoise1) { // Reset "too low" counter aecm->noiseEstTooLowCtr[i + 1] = 0; // Track the minimum. if (tnoise1 < (1 << minTrackShift)) { // For small values, decrease noiseEst[i] every // |kNoiseEstIncCount| block. The regular approach below can not // go further down due to truncation. aecm->noiseEstTooHighCtr[i + 1]++; if (aecm->noiseEstTooHighCtr[i + 1] >= kNoiseEstIncCount) { tnoise1--; aecm->noiseEstTooHighCtr[i + 1] = 0; // Reset the counter } } else { __asm __volatile ( "subu %[tmp32], %[tnoise1], %[outLShift32] \n\t" "srav %[tmp32], %[tmp32], %[minTrackShift] \n\t" "subu %[tnoise1], %[tnoise1], %[tmp32] \n\t" : [tmp32] "=&r" (tmp32), [tnoise1] "+r" (tnoise1) : [outLShift32] "r" (outLShift32), [minTrackShift] "r" (minTrackShift) ); } } else { // Reset "too high" counter aecm->noiseEstTooHighCtr[i + 1] = 0; // Ramp slowly upwards until we hit the minimum again. if ((tnoise1 >> 19) <= 0) { if ((tnoise1 >> 11) > 0) { // Large enough for relative increase __asm __volatile ( "mul %[tnoise1], %[tnoise1], %[c2049] \n\t" "sra %[tnoise1], %[tnoise1], 11 \n\t" : [tnoise1] "+r" (tnoise1) : [c2049] "r" (c2049) : "hi", "lo" ); } else { // Make incremental increases based on size every // |kNoiseEstIncCount| block aecm->noiseEstTooLowCtr[i + 1]++; if (aecm->noiseEstTooLowCtr[i + 1] >= kNoiseEstIncCount) { __asm __volatile ( "sra %[tmp32], %[tnoise1], 9 \n\t" "addi %[tnoise1], %[tnoise1], 1 \n\t" "addu %[tnoise1], %[tnoise1], %[tmp32] \n\t" : [tnoise1] "+r" (tnoise1), [tmp32] "=&r" (tmp32) : ); aecm->noiseEstTooLowCtr[i + 1] = 0; // Reset counter } } } else { // Avoid overflow. // Multiplication with 2049 will cause wrap around. Scale // down first and then multiply __asm __volatile ( "sra %[tnoise1], %[tnoise1], 11 \n\t" "mul %[tnoise1], %[tnoise1], %[c2049] \n\t" : [tnoise1] "+r" (tnoise1) : [c2049] "r" (c2049) : "hi", "lo" ); } } __asm __volatile ( "lh %[tmp16], 0(%[lambdap]) \n\t" "lh %[tmp161], 2(%[lambdap]) \n\t" "sw %[tnoise], 0(%[tmp1]) \n\t" "sw %[tnoise1], 4(%[tmp1]) \n\t" "subu %[tmp16], %[c114], %[tmp16] \n\t" "subu %[tmp161], %[c114], %[tmp161] \n\t" "srav %[tmp32], %[tnoise], %[shiftFromNearToNoise] \n\t" "srav %[tmp321], %[tnoise1], %[shiftFromNearToNoise] \n\t" "addiu %[lambdap], %[lambdap], 4 \n\t" "addiu %[tmp1], %[tmp1], 8 \n\t" : [tmp16] "=&r" (tmp16), [tmp161] "=&r" (tmp161), [tmp1] "+r" (tmp1), [tmp32] "=&r" (tmp32), [tmp321] "=&r" (tmp321), [lambdap] "+r" (lambdap) : [tnoise] "r" (tnoise), [tnoise1] "r" (tnoise1), [c114] "r" (c114), [shiftFromNearToNoise] "r" (shiftFromNearToNoise) : "memory" ); if (tmp32 > 32767) { tmp32 = 32767; aecm->noiseEst[i] = tmp32 << shiftFromNearToNoise; } if (tmp321 > 32767) { tmp321 = 32767; aecm->noiseEst[i+1] = tmp321 << shiftFromNearToNoise; } __asm __volatile ( "mul %[tmp32], %[tmp32], %[tmp16] \n\t" "mul %[tmp321], %[tmp321], %[tmp161] \n\t" "sra %[nrsh1], %[tmp32], 14 \n\t" "sra %[nrsh2], %[tmp321], 14 \n\t" : [nrsh1] "=&r" (nrsh1), [nrsh2] "=r" (nrsh2) : [tmp16] "r" (tmp16), [tmp161] "r" (tmp161), [tmp32] "r" (tmp32), [tmp321] "r" (tmp321) : "memory", "hi", "lo" ); __asm __volatile ( "lh %[tmp32], 0(%[randW16p]) \n\t" "lh %[tmp321], 2(%[randW16p]) \n\t" "addiu %[randW16p], %[randW16p], 4 \n\t" "mul %[tmp32], %[tmp32], %[c359] \n\t" "mul %[tmp321], %[tmp321], %[c359] \n\t" "sra %[tmp16], %[tmp32], 15 \n\t" "sra %[tmp161], %[tmp321], 15 \n\t" : [randW16p] "+r" (randW16p), [tmp32] "=&r" (tmp32), [tmp16] "=r" (tmp16), [tmp161] "=r" (tmp161), [tmp321] "=&r" (tmp321) : [c359] "r" (c359) : "memory", "hi", "lo" ); #if !defined(MIPS_DSP_R1_LE) tmp32 = WebRtcAecm_kCosTable[tmp16]; tmp321 = WebRtcAecm_kSinTable[tmp16]; tmp322 = WebRtcAecm_kCosTable[tmp161]; tmp323 = WebRtcAecm_kSinTable[tmp161]; #else __asm __volatile ( "sll %[tmp16], %[tmp16], 1 \n\t" "sll %[tmp161], %[tmp161], 1 \n\t" "lhx %[tmp32], %[tmp16](%[kCosTablep]) \n\t" "lhx %[tmp321], %[tmp16](%[kSinTablep]) \n\t" "lhx %[tmp322], %[tmp161](%[kCosTablep]) \n\t" "lhx %[tmp323], %[tmp161](%[kSinTablep]) \n\t" : [tmp32] "=&r" (tmp32), [tmp321] "=&r" (tmp321), [tmp322] "=&r" (tmp322), [tmp323] "=&r" (tmp323) : [kCosTablep] "r" (kCosTablep), [tmp16] "r" (tmp16), [tmp161] "r" (tmp161), [kSinTablep] "r" (kSinTablep) : "memory" ); #endif __asm __volatile ( "mul %[tmp32], %[tmp32], %[nrsh1] \n\t" "negu %[tmp162], %[nrsh1] \n\t" "mul %[tmp322], %[tmp322], %[nrsh2] \n\t" "negu %[tmp163], %[nrsh2] \n\t" "sra %[tmp32], %[tmp32], 13 \n\t" "mul %[tmp321], %[tmp321], %[tmp162] \n\t" "sra %[tmp322], %[tmp322], 13 \n\t" "mul %[tmp323], %[tmp323], %[tmp163] \n\t" "sra %[tmp321], %[tmp321], 13 \n\t" "sra %[tmp323], %[tmp323], 13 \n\t" : [tmp32] "+r" (tmp32), [tmp321] "+r" (tmp321), [tmp162] "=&r" (tmp162), [tmp322] "+r" (tmp322), [tmp323] "+r" (tmp323), [tmp163] "=&r" (tmp163) : [nrsh1] "r" (nrsh1), [nrsh2] "r" (nrsh2) : "hi", "lo" ); // Tables are in Q13. uReal[i] = (int16_t)tmp32; uImag[i] = (int16_t)tmp321; uReal[i + 1] = (int16_t)tmp322; uImag[i + 1] = (int16_t)tmp323; } int32_t tt, sgn; tt = out[0].real; sgn = ((int)tt) >> 31; out[0].real = sgn == (int16_t)(tt >> 15) ? (int16_t)tt : (16384 ^ sgn); tt = out[0].imag; sgn = ((int)tt) >> 31; out[0].imag = sgn == (int16_t)(tt >> 15) ? (int16_t)tt : (16384 ^ sgn); for (i = 1; i < PART_LEN; i++) { tt = out[i].real + uReal[i]; sgn = ((int)tt) >> 31; out[i].real = sgn == (int16_t)(tt >> 15) ? (int16_t)tt : (16384 ^ sgn); tt = out[i].imag + uImag[i]; sgn = ((int)tt) >> 31; out[i].imag = sgn == (int16_t)(tt >> 15) ? (int16_t)tt : (16384 ^ sgn); } tt = out[PART_LEN].real + uReal[PART_LEN]; sgn = ((int)tt) >> 31; out[PART_LEN].real = sgn == (int16_t)(tt >> 15) ? (int16_t)tt : (16384 ^ sgn); tt = out[PART_LEN].imag; sgn = ((int)tt) >> 31; out[PART_LEN].imag = sgn == (int16_t)(tt >> 15) ? (int16_t)tt : (16384 ^ sgn); }