/* * Copyright (c) 2015 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #ifndef WEBRTC_MODULES_AUDIO_PROCESSING_BEAMFORMER_ARRAY_UTIL_H_ #define WEBRTC_MODULES_AUDIO_PROCESSING_BEAMFORMER_ARRAY_UTIL_H_ #include #include #include "webrtc/base/maybe.h" namespace webrtc { // Coordinates in meters. The convention used is: // x: the horizontal dimension, with positive to the right from the camera's // perspective. // y: the depth dimension, with positive forward from the camera's // perspective. // z: the vertical dimension, with positive upwards. template struct CartesianPoint { CartesianPoint() { c[0] = 0; c[1] = 0; c[2] = 0; } CartesianPoint(T x, T y, T z) { c[0] = x; c[1] = y; c[2] = z; } T x() const { return c[0]; } T y() const { return c[1]; } T z() const { return c[2]; } T c[3]; }; using Point = CartesianPoint; // Calculates the direction from a to b. Point PairDirection(const Point& a, const Point& b); float DotProduct(const Point& a, const Point& b); Point CrossProduct(const Point& a, const Point& b); bool AreParallel(const Point& a, const Point& b); bool ArePerpendicular(const Point& a, const Point& b); // Returns the minimum distance between any two Points in the given // |array_geometry|. float GetMinimumSpacing(const std::vector& array_geometry); // If the given array geometry is linear it returns the direction without // normalizing. rtc::Maybe GetDirectionIfLinear( const std::vector& array_geometry); // If the given array geometry is planar it returns the normal without // normalizing. rtc::Maybe GetNormalIfPlanar(const std::vector& array_geometry); // Returns the normal of an array if it has one and it is in the xy-plane. rtc::Maybe GetArrayNormalIfExists( const std::vector& array_geometry); // The resulting Point will be in the xy-plane. Point AzimuthToPoint(float azimuth); template float Distance(CartesianPoint a, CartesianPoint b) { return std::sqrt((a.x() - b.x()) * (a.x() - b.x()) + (a.y() - b.y()) * (a.y() - b.y()) + (a.z() - b.z()) * (a.z() - b.z())); } // The convention used: // azimuth: zero is to the right from the camera's perspective, with positive // angles in radians counter-clockwise. // elevation: zero is horizontal, with positive angles in radians upwards. // radius: distance from the camera in meters. template struct SphericalPoint { SphericalPoint(T azimuth, T elevation, T radius) { s[0] = azimuth; s[1] = elevation; s[2] = radius; } T azimuth() const { return s[0]; } T elevation() const { return s[1]; } T distance() const { return s[2]; } T s[3]; }; using SphericalPointf = SphericalPoint; // Helper functions to transform degrees to radians and the inverse. template T DegreesToRadians(T angle_degrees) { return M_PI * angle_degrees / 180; } template T RadiansToDegrees(T angle_radians) { return 180 * angle_radians / M_PI; } } // namespace webrtc #endif // WEBRTC_MODULES_AUDIO_PROCESSING_BEAMFORMER_ARRAY_UTIL_H_