/* * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ // // Specifies helper classes for intelligibility enhancement. // #ifndef WEBRTC_MODULES_AUDIO_PROCESSING_INTELLIGIBILITY_INTELLIGIBILITY_UTILS_H_ #define WEBRTC_MODULES_AUDIO_PROCESSING_INTELLIGIBILITY_INTELLIGIBILITY_UTILS_H_ #include #include "webrtc/base/scoped_ptr.h" namespace webrtc { namespace intelligibility { // Return |current| changed towards |target|, with the change being at most // |limit|. float UpdateFactor(float target, float current, float limit); // Apply a small fudge to degenerate complex values. The numbers in the array // were chosen randomly, so that even a series of all zeroes has some small // variability. std::complex zerofudge(std::complex c); // Incremental mean computation. Return the mean of the series with the // mean |mean| with added |data|. std::complex NewMean(std::complex mean, std::complex data, size_t count); // Updates |mean| with added |data|; void AddToMean(std::complex data, size_t count, std::complex* mean); // Internal helper for computing the variances of a stream of arrays. // The result is an array of variances per position: the i-th variance // is the variance of the stream of data on the i-th positions in the // input arrays. // There are four methods of computation: // * kStepInfinite computes variances from the beginning onwards // * kStepDecaying uses a recursive exponential decay formula with a // settable forgetting factor // * kStepWindowed computes variances within a moving window // * kStepBlocked is similar to kStepWindowed, but history is kept // as a rolling window of blocks: multiple input elements are used for // one block and the history then consists of the variances of these blocks // with the same effect as kStepWindowed, but less storage, so the window // can be longer class VarianceArray { public: enum StepType { kStepInfinite = 0, kStepDecaying, kStepWindowed, kStepBlocked, kStepBlockBasedMovingAverage }; // Construct an instance for the given input array length (|freqs|) and // computation algorithm (|type|), with the appropriate parameters. // |window_size| is the number of samples for kStepWindowed and // the number of blocks for kStepBlocked. |decay| is the forgetting factor // for kStepDecaying. VarianceArray(size_t freqs, StepType type, size_t window_size, float decay); // Add a new data point to the series and compute the new variances. // TODO(bercic) |skip_fudge| is a flag for kStepWindowed and kStepDecaying, // whether they should skip adding some small dummy values to the input // to prevent problems with all-zero inputs. Can probably be removed. void Step(const std::complex* data, bool skip_fudge = false) { (this->*step_func_)(data, skip_fudge); } // Reset variances to zero and forget all history. void Clear(); // Scale the input data by |scale|. Effectively multiply variances // by |scale^2|. void ApplyScale(float scale); // The current set of variances. const float* variance() const { return variance_.get(); } // The mean value of the current set of variances. float array_mean() const { return array_mean_; } private: void InfiniteStep(const std::complex* data, bool dummy); void DecayStep(const std::complex* data, bool dummy); void WindowedStep(const std::complex* data, bool dummy); void BlockedStep(const std::complex* data, bool dummy); void BlockBasedMovingAverage(const std::complex* data, bool dummy); // TODO(ekmeyerson): Switch the following running means // and histories from rtc::scoped_ptr to std::vector. // The current average X and X^2. rtc::scoped_ptr[]> running_mean_; rtc::scoped_ptr[]> running_mean_sq_; // Average X and X^2 for the current block in kStepBlocked. rtc::scoped_ptr[]> sub_running_mean_; rtc::scoped_ptr[]> sub_running_mean_sq_; // Sample history for the rolling window in kStepWindowed and block-wise // histories for kStepBlocked. rtc::scoped_ptr[]>[]> history_; rtc::scoped_ptr[]>[]> subhistory_; rtc::scoped_ptr[]>[]> subhistory_sq_; // The current set of variances and sums for Welford's algorithm. rtc::scoped_ptr variance_; rtc::scoped_ptr conj_sum_; const size_t num_freqs_; const size_t window_size_; const float decay_; size_t history_cursor_; size_t count_; float array_mean_; bool buffer_full_; void (VarianceArray::*step_func_)(const std::complex*, bool); }; // Helper class for smoothing gain changes. On each applicatiion step, the // currently used gains are changed towards a set of settable target gains, // constrained by a limit on the magnitude of the changes. class GainApplier { public: GainApplier(size_t freqs, float change_limit); // Copy |in_block| to |out_block|, multiplied by the current set of gains, // and step the current set of gains towards the target set. void Apply(const std::complex* in_block, std::complex* out_block); // Return the current target gain set. Modify this array to set the targets. float* target() const { return target_.get(); } private: const size_t num_freqs_; const float change_limit_; rtc::scoped_ptr target_; rtc::scoped_ptr current_; }; } // namespace intelligibility } // namespace webrtc #endif // WEBRTC_MODULES_AUDIO_PROCESSING_INTELLIGIBILITY_INTELLIGIBILITY_UTILS_H_