/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "webrtc/modules/audio_processing/ns/nsx_core.h" #include #include // Constants to compensate for shifting signal log(2^shifts). const int16_t WebRtcNsx_kLogTable[9] = { 0, 177, 355, 532, 710, 887, 1065, 1242, 1420 }; const int16_t WebRtcNsx_kCounterDiv[201] = { 32767, 16384, 10923, 8192, 6554, 5461, 4681, 4096, 3641, 3277, 2979, 2731, 2521, 2341, 2185, 2048, 1928, 1820, 1725, 1638, 1560, 1489, 1425, 1365, 1311, 1260, 1214, 1170, 1130, 1092, 1057, 1024, 993, 964, 936, 910, 886, 862, 840, 819, 799, 780, 762, 745, 728, 712, 697, 683, 669, 655, 643, 630, 618, 607, 596, 585, 575, 565, 555, 546, 537, 529, 520, 512, 504, 496, 489, 482, 475, 468, 462, 455, 449, 443, 437, 431, 426, 420, 415, 410, 405, 400, 395, 390, 386, 381, 377, 372, 368, 364, 360, 356, 352, 349, 345, 341, 338, 334, 331, 328, 324, 321, 318, 315, 312, 309, 306, 303, 301, 298, 295, 293, 290, 287, 285, 282, 280, 278, 275, 273, 271, 269, 266, 264, 262, 260, 258, 256, 254, 252, 250, 248, 246, 245, 243, 241, 239, 237, 236, 234, 232, 231, 229, 228, 226, 224, 223, 221, 220, 218, 217, 216, 214, 213, 211, 210, 209, 207, 206, 205, 204, 202, 201, 200, 199, 197, 196, 195, 194, 193, 192, 191, 189, 188, 187, 186, 185, 184, 183, 182, 181, 180, 179, 178, 177, 176, 175, 174, 173, 172, 172, 171, 170, 169, 168, 167, 166, 165, 165, 164, 163 }; const int16_t WebRtcNsx_kLogTableFrac[256] = { 0, 1, 3, 4, 6, 7, 9, 10, 11, 13, 14, 16, 17, 18, 20, 21, 22, 24, 25, 26, 28, 29, 30, 32, 33, 34, 36, 37, 38, 40, 41, 42, 44, 45, 46, 47, 49, 50, 51, 52, 54, 55, 56, 57, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 178, 179, 180, 181, 182, 183, 184, 185, 185, 186, 187, 188, 189, 190, 191, 192, 192, 193, 194, 195, 196, 197, 198, 198, 199, 200, 201, 202, 203, 203, 204, 205, 206, 207, 208, 208, 209, 210, 211, 212, 212, 213, 214, 215, 216, 216, 217, 218, 219, 220, 220, 221, 222, 223, 224, 224, 225, 226, 227, 228, 228, 229, 230, 231, 231, 232, 233, 234, 234, 235, 236, 237, 238, 238, 239, 240, 241, 241, 242, 243, 244, 244, 245, 246, 247, 247, 248, 249, 249, 250, 251, 252, 252, 253, 254, 255, 255 }; // Update the noise estimation information. static void UpdateNoiseEstimateNeon(NoiseSuppressionFixedC* inst, int offset) { const int16_t kExp2Const = 11819; // Q13 int16_t* ptr_noiseEstLogQuantile = NULL; int16_t* ptr_noiseEstQuantile = NULL; int16x4_t kExp2Const16x4 = vdup_n_s16(kExp2Const); int32x4_t twentyOne32x4 = vdupq_n_s32(21); int32x4_t constA32x4 = vdupq_n_s32(0x1fffff); int32x4_t constB32x4 = vdupq_n_s32(0x200000); int16_t tmp16 = WebRtcSpl_MaxValueW16(inst->noiseEstLogQuantile + offset, inst->magnLen); // Guarantee a Q-domain as high as possible and still fit in int16 inst->qNoise = 14 - (int) WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(kExp2Const, tmp16, 21); int32x4_t qNoise32x4 = vdupq_n_s32(inst->qNoise); for (ptr_noiseEstLogQuantile = &inst->noiseEstLogQuantile[offset], ptr_noiseEstQuantile = &inst->noiseEstQuantile[0]; ptr_noiseEstQuantile < &inst->noiseEstQuantile[inst->magnLen - 3]; ptr_noiseEstQuantile += 4, ptr_noiseEstLogQuantile += 4) { // tmp32no2 = kExp2Const * inst->noiseEstLogQuantile[offset + i]; int16x4_t v16x4 = vld1_s16(ptr_noiseEstLogQuantile); int32x4_t v32x4B = vmull_s16(v16x4, kExp2Const16x4); // tmp32no1 = (0x00200000 | (tmp32no2 & 0x001FFFFF)); // 2^21 + frac int32x4_t v32x4A = vandq_s32(v32x4B, constA32x4); v32x4A = vorrq_s32(v32x4A, constB32x4); // tmp16 = (int16_t)(tmp32no2 >> 21); v32x4B = vshrq_n_s32(v32x4B, 21); // tmp16 -= 21;// shift 21 to get result in Q0 v32x4B = vsubq_s32(v32x4B, twentyOne32x4); // tmp16 += (int16_t) inst->qNoise; // shift to get result in Q(qNoise) v32x4B = vaddq_s32(v32x4B, qNoise32x4); // if (tmp16 < 0) { // tmp32no1 >>= -tmp16; // } else { // tmp32no1 <<= tmp16; // } v32x4B = vshlq_s32(v32x4A, v32x4B); // tmp16 = WebRtcSpl_SatW32ToW16(tmp32no1); v16x4 = vqmovn_s32(v32x4B); //inst->noiseEstQuantile[i] = tmp16; vst1_s16(ptr_noiseEstQuantile, v16x4); } // Last iteration: // inst->quantile[i]=exp(inst->lquantile[offset+i]); // in Q21 int32_t tmp32no2 = kExp2Const * *ptr_noiseEstLogQuantile; int32_t tmp32no1 = (0x00200000 | (tmp32no2 & 0x001FFFFF)); // 2^21 + frac tmp16 = (int16_t)(tmp32no2 >> 21); tmp16 -= 21;// shift 21 to get result in Q0 tmp16 += (int16_t) inst->qNoise; //shift to get result in Q(qNoise) if (tmp16 < 0) { tmp32no1 >>= -tmp16; } else { tmp32no1 <<= tmp16; } *ptr_noiseEstQuantile = WebRtcSpl_SatW32ToW16(tmp32no1); } // Noise Estimation void WebRtcNsx_NoiseEstimationNeon(NoiseSuppressionFixedC* inst, uint16_t* magn, uint32_t* noise, int16_t* q_noise) { int16_t lmagn[HALF_ANAL_BLOCKL], counter, countDiv; int16_t countProd, delta, zeros, frac; int16_t log2, tabind, logval, tmp16, tmp16no1, tmp16no2; const int16_t log2_const = 22713; const int16_t width_factor = 21845; size_t i, s, offset; tabind = inst->stages - inst->normData; assert(tabind < 9); assert(tabind > -9); if (tabind < 0) { logval = -WebRtcNsx_kLogTable[-tabind]; } else { logval = WebRtcNsx_kLogTable[tabind]; } int16x8_t logval_16x8 = vdupq_n_s16(logval); // lmagn(i)=log(magn(i))=log(2)*log2(magn(i)) // magn is in Q(-stages), and the real lmagn values are: // real_lmagn(i)=log(magn(i)*2^stages)=log(magn(i))+log(2^stages) // lmagn in Q8 for (i = 0; i < inst->magnLen; i++) { if (magn[i]) { zeros = WebRtcSpl_NormU32((uint32_t)magn[i]); frac = (int16_t)((((uint32_t)magn[i] << zeros) & 0x7FFFFFFF) >> 23); assert(frac < 256); // log2(magn(i)) log2 = (int16_t)(((31 - zeros) << 8) + WebRtcNsx_kLogTableFrac[frac]); // log2(magn(i))*log(2) lmagn[i] = (int16_t)((log2 * log2_const) >> 15); // + log(2^stages) lmagn[i] += logval; } else { lmagn[i] = logval; } } int16x4_t Q3_16x4 = vdup_n_s16(3); int16x8_t WIDTHQ8_16x8 = vdupq_n_s16(WIDTH_Q8); int16x8_t WIDTHFACTOR_16x8 = vdupq_n_s16(width_factor); int16_t factor = FACTOR_Q7; if (inst->blockIndex < END_STARTUP_LONG) factor = FACTOR_Q7_STARTUP; // Loop over simultaneous estimates for (s = 0; s < SIMULT; s++) { offset = s * inst->magnLen; // Get counter values from state counter = inst->noiseEstCounter[s]; assert(counter < 201); countDiv = WebRtcNsx_kCounterDiv[counter]; countProd = (int16_t)(counter * countDiv); // quant_est(...) int16_t deltaBuff[8]; int16x4_t tmp16x4_0; int16x4_t tmp16x4_1; int16x4_t countDiv_16x4 = vdup_n_s16(countDiv); int16x8_t countProd_16x8 = vdupq_n_s16(countProd); int16x8_t tmp16x8_0 = vdupq_n_s16(countDiv); int16x8_t prod16x8 = vqrdmulhq_s16(WIDTHFACTOR_16x8, tmp16x8_0); int16x8_t tmp16x8_1; int16x8_t tmp16x8_2; int16x8_t tmp16x8_3; uint16x8_t tmp16x8_4; int32x4_t tmp32x4; for (i = 0; i + 7 < inst->magnLen; i += 8) { // Compute delta. // Smaller step size during startup. This prevents from using // unrealistic values causing overflow. tmp16x8_0 = vdupq_n_s16(factor); vst1q_s16(deltaBuff, tmp16x8_0); int j; for (j = 0; j < 8; j++) { if (inst->noiseEstDensity[offset + i + j] > 512) { // Get values for deltaBuff by shifting intead of dividing. int factor = WebRtcSpl_NormW16(inst->noiseEstDensity[offset + i + j]); deltaBuff[j] = (int16_t)(FACTOR_Q16 >> (14 - factor)); } } // Update log quantile estimate // tmp16 = (int16_t)((delta * countDiv) >> 14); tmp32x4 = vmull_s16(vld1_s16(&deltaBuff[0]), countDiv_16x4); tmp16x4_1 = vshrn_n_s32(tmp32x4, 14); tmp32x4 = vmull_s16(vld1_s16(&deltaBuff[4]), countDiv_16x4); tmp16x4_0 = vshrn_n_s32(tmp32x4, 14); tmp16x8_0 = vcombine_s16(tmp16x4_1, tmp16x4_0); // Keep for several lines. // prepare for the "if" branch // tmp16 += 2; // tmp16_1 = (Word16)(tmp16>>2); tmp16x8_1 = vrshrq_n_s16(tmp16x8_0, 2); // inst->noiseEstLogQuantile[offset+i] + tmp16_1; tmp16x8_2 = vld1q_s16(&inst->noiseEstLogQuantile[offset + i]); // Keep tmp16x8_1 = vaddq_s16(tmp16x8_2, tmp16x8_1); // Keep for several lines // Prepare for the "else" branch // tmp16 += 1; // tmp16_1 = (Word16)(tmp16>>1); tmp16x8_0 = vrshrq_n_s16(tmp16x8_0, 1); // tmp16_2 = (int16_t)((tmp16_1 * 3) >> 1); tmp32x4 = vmull_s16(vget_low_s16(tmp16x8_0), Q3_16x4); tmp16x4_1 = vshrn_n_s32(tmp32x4, 1); // tmp16_2 = (int16_t)((tmp16_1 * 3) >> 1); tmp32x4 = vmull_s16(vget_high_s16(tmp16x8_0), Q3_16x4); tmp16x4_0 = vshrn_n_s32(tmp32x4, 1); // inst->noiseEstLogQuantile[offset + i] - tmp16_2; tmp16x8_0 = vcombine_s16(tmp16x4_1, tmp16x4_0); // keep tmp16x8_0 = vsubq_s16(tmp16x8_2, tmp16x8_0); // logval is the smallest fixed point representation we can have. Values // below that will correspond to values in the interval [0, 1], which // can't possibly occur. tmp16x8_0 = vmaxq_s16(tmp16x8_0, logval_16x8); // Do the if-else branches: tmp16x8_3 = vld1q_s16(&lmagn[i]); // keep for several lines tmp16x8_4 = vcgtq_s16(tmp16x8_3, tmp16x8_2); tmp16x8_2 = vbslq_s16(tmp16x8_4, tmp16x8_1, tmp16x8_0); vst1q_s16(&inst->noiseEstLogQuantile[offset + i], tmp16x8_2); // Update density estimate // tmp16_1 + tmp16_2 tmp16x8_1 = vld1q_s16(&inst->noiseEstDensity[offset + i]); tmp16x8_0 = vqrdmulhq_s16(tmp16x8_1, countProd_16x8); tmp16x8_0 = vaddq_s16(tmp16x8_0, prod16x8); // lmagn[i] - inst->noiseEstLogQuantile[offset + i] tmp16x8_3 = vsubq_s16(tmp16x8_3, tmp16x8_2); tmp16x8_3 = vabsq_s16(tmp16x8_3); tmp16x8_4 = vcgtq_s16(WIDTHQ8_16x8, tmp16x8_3); tmp16x8_1 = vbslq_s16(tmp16x8_4, tmp16x8_0, tmp16x8_1); vst1q_s16(&inst->noiseEstDensity[offset + i], tmp16x8_1); } // End loop over magnitude spectrum // Last iteration over magnitude spectrum: // compute delta if (inst->noiseEstDensity[offset + i] > 512) { // Get values for deltaBuff by shifting intead of dividing. int factor = WebRtcSpl_NormW16(inst->noiseEstDensity[offset + i]); delta = (int16_t)(FACTOR_Q16 >> (14 - factor)); } else { delta = FACTOR_Q7; if (inst->blockIndex < END_STARTUP_LONG) { // Smaller step size during startup. This prevents from using // unrealistic values causing overflow. delta = FACTOR_Q7_STARTUP; } } // update log quantile estimate tmp16 = (int16_t)((delta * countDiv) >> 14); if (lmagn[i] > inst->noiseEstLogQuantile[offset + i]) { // +=QUANTILE*delta/(inst->counter[s]+1) QUANTILE=0.25, =1 in Q2 // CounterDiv=1/(inst->counter[s]+1) in Q15 tmp16 += 2; inst->noiseEstLogQuantile[offset + i] += tmp16 / 4; } else { tmp16 += 1; // *(1-QUANTILE), in Q2 QUANTILE=0.25, 1-0.25=0.75=3 in Q2 // TODO(bjornv): investigate why we need to truncate twice. tmp16no2 = (int16_t)((tmp16 / 2) * 3 / 2); inst->noiseEstLogQuantile[offset + i] -= tmp16no2; if (inst->noiseEstLogQuantile[offset + i] < logval) { // logval is the smallest fixed point representation we can have. // Values below that will correspond to values in the interval // [0, 1], which can't possibly occur. inst->noiseEstLogQuantile[offset + i] = logval; } } // update density estimate if (WEBRTC_SPL_ABS_W16(lmagn[i] - inst->noiseEstLogQuantile[offset + i]) < WIDTH_Q8) { tmp16no1 = (int16_t)WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND( inst->noiseEstDensity[offset + i], countProd, 15); tmp16no2 = (int16_t)WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND( width_factor, countDiv, 15); inst->noiseEstDensity[offset + i] = tmp16no1 + tmp16no2; } if (counter >= END_STARTUP_LONG) { inst->noiseEstCounter[s] = 0; if (inst->blockIndex >= END_STARTUP_LONG) { UpdateNoiseEstimateNeon(inst, offset); } } inst->noiseEstCounter[s]++; } // end loop over simultaneous estimates // Sequentially update the noise during startup if (inst->blockIndex < END_STARTUP_LONG) { UpdateNoiseEstimateNeon(inst, offset); } for (i = 0; i < inst->magnLen; i++) { noise[i] = (uint32_t)(inst->noiseEstQuantile[i]); // Q(qNoise) } (*q_noise) = (int16_t)inst->qNoise; } // Filter the data in the frequency domain, and create spectrum. void WebRtcNsx_PrepareSpectrumNeon(NoiseSuppressionFixedC* inst, int16_t* freq_buf) { assert(inst->magnLen % 8 == 1); assert(inst->anaLen2 % 16 == 0); // (1) Filtering. // Fixed point C code for the next block is as follows: // for (i = 0; i < inst->magnLen; i++) { // inst->real[i] = (int16_t)((inst->real[i] * // (int16_t)(inst->noiseSupFilter[i])) >> 14); // Q(normData-stages) // inst->imag[i] = (int16_t)((inst->imag[i] * // (int16_t)(inst->noiseSupFilter[i])) >> 14); // Q(normData-stages) // } int16_t* preal = &inst->real[0]; int16_t* pimag = &inst->imag[0]; int16_t* pns_filter = (int16_t*)&inst->noiseSupFilter[0]; int16_t* pimag_end = pimag + inst->magnLen - 4; while (pimag < pimag_end) { int16x8_t real = vld1q_s16(preal); int16x8_t imag = vld1q_s16(pimag); int16x8_t ns_filter = vld1q_s16(pns_filter); int32x4_t tmp_r_0 = vmull_s16(vget_low_s16(real), vget_low_s16(ns_filter)); int32x4_t tmp_i_0 = vmull_s16(vget_low_s16(imag), vget_low_s16(ns_filter)); int32x4_t tmp_r_1 = vmull_s16(vget_high_s16(real), vget_high_s16(ns_filter)); int32x4_t tmp_i_1 = vmull_s16(vget_high_s16(imag), vget_high_s16(ns_filter)); int16x4_t result_r_0 = vshrn_n_s32(tmp_r_0, 14); int16x4_t result_i_0 = vshrn_n_s32(tmp_i_0, 14); int16x4_t result_r_1 = vshrn_n_s32(tmp_r_1, 14); int16x4_t result_i_1 = vshrn_n_s32(tmp_i_1, 14); vst1q_s16(preal, vcombine_s16(result_r_0, result_r_1)); vst1q_s16(pimag, vcombine_s16(result_i_0, result_i_1)); preal += 8; pimag += 8; pns_filter += 8; } // Filter the last element *preal = (int16_t)((*preal * *pns_filter) >> 14); *pimag = (int16_t)((*pimag * *pns_filter) >> 14); // (2) Create spectrum. // Fixed point C code for the rest of the function is as follows: // freq_buf[0] = inst->real[0]; // freq_buf[1] = -inst->imag[0]; // for (i = 1, j = 2; i < inst->anaLen2; i += 1, j += 2) { // freq_buf[j] = inst->real[i]; // freq_buf[j + 1] = -inst->imag[i]; // } // freq_buf[inst->anaLen] = inst->real[inst->anaLen2]; // freq_buf[inst->anaLen + 1] = -inst->imag[inst->anaLen2]; preal = &inst->real[0]; pimag = &inst->imag[0]; pimag_end = pimag + inst->anaLen2; int16_t * freq_buf_start = freq_buf; while (pimag < pimag_end) { // loop unroll int16x8x2_t real_imag_0; int16x8x2_t real_imag_1; real_imag_0.val[1] = vld1q_s16(pimag); real_imag_0.val[0] = vld1q_s16(preal); preal += 8; pimag += 8; real_imag_1.val[1] = vld1q_s16(pimag); real_imag_1.val[0] = vld1q_s16(preal); preal += 8; pimag += 8; real_imag_0.val[1] = vnegq_s16(real_imag_0.val[1]); real_imag_1.val[1] = vnegq_s16(real_imag_1.val[1]); vst2q_s16(freq_buf_start, real_imag_0); freq_buf_start += 16; vst2q_s16(freq_buf_start, real_imag_1); freq_buf_start += 16; } freq_buf[inst->anaLen] = inst->real[inst->anaLen2]; freq_buf[inst->anaLen + 1] = -inst->imag[inst->anaLen2]; } // For the noise supress process, synthesis, read out fully processed segment, // and update synthesis buffer. void WebRtcNsx_SynthesisUpdateNeon(NoiseSuppressionFixedC* inst, int16_t* out_frame, int16_t gain_factor) { assert(inst->anaLen % 16 == 0); assert(inst->blockLen10ms % 16 == 0); int16_t* preal_start = inst->real; const int16_t* pwindow = inst->window; int16_t* preal_end = preal_start + inst->anaLen; int16_t* psynthesis_buffer = inst->synthesisBuffer; while (preal_start < preal_end) { // Loop unroll. int16x8_t window_0 = vld1q_s16(pwindow); int16x8_t real_0 = vld1q_s16(preal_start); int16x8_t synthesis_buffer_0 = vld1q_s16(psynthesis_buffer); int16x8_t window_1 = vld1q_s16(pwindow + 8); int16x8_t real_1 = vld1q_s16(preal_start + 8); int16x8_t synthesis_buffer_1 = vld1q_s16(psynthesis_buffer + 8); int32x4_t tmp32a_0_low = vmull_s16(vget_low_s16(real_0), vget_low_s16(window_0)); int32x4_t tmp32a_0_high = vmull_s16(vget_high_s16(real_0), vget_high_s16(window_0)); int32x4_t tmp32a_1_low = vmull_s16(vget_low_s16(real_1), vget_low_s16(window_1)); int32x4_t tmp32a_1_high = vmull_s16(vget_high_s16(real_1), vget_high_s16(window_1)); int16x4_t tmp16a_0_low = vqrshrn_n_s32(tmp32a_0_low, 14); int16x4_t tmp16a_0_high = vqrshrn_n_s32(tmp32a_0_high, 14); int16x4_t tmp16a_1_low = vqrshrn_n_s32(tmp32a_1_low, 14); int16x4_t tmp16a_1_high = vqrshrn_n_s32(tmp32a_1_high, 14); int32x4_t tmp32b_0_low = vmull_n_s16(tmp16a_0_low, gain_factor); int32x4_t tmp32b_0_high = vmull_n_s16(tmp16a_0_high, gain_factor); int32x4_t tmp32b_1_low = vmull_n_s16(tmp16a_1_low, gain_factor); int32x4_t tmp32b_1_high = vmull_n_s16(tmp16a_1_high, gain_factor); int16x4_t tmp16b_0_low = vqrshrn_n_s32(tmp32b_0_low, 13); int16x4_t tmp16b_0_high = vqrshrn_n_s32(tmp32b_0_high, 13); int16x4_t tmp16b_1_low = vqrshrn_n_s32(tmp32b_1_low, 13); int16x4_t tmp16b_1_high = vqrshrn_n_s32(tmp32b_1_high, 13); synthesis_buffer_0 = vqaddq_s16(vcombine_s16(tmp16b_0_low, tmp16b_0_high), synthesis_buffer_0); synthesis_buffer_1 = vqaddq_s16(vcombine_s16(tmp16b_1_low, tmp16b_1_high), synthesis_buffer_1); vst1q_s16(psynthesis_buffer, synthesis_buffer_0); vst1q_s16(psynthesis_buffer + 8, synthesis_buffer_1); pwindow += 16; preal_start += 16; psynthesis_buffer += 16; } // Read out fully processed segment. int16_t * p_start = inst->synthesisBuffer; int16_t * p_end = inst->synthesisBuffer + inst->blockLen10ms; int16_t * p_frame = out_frame; while (p_start < p_end) { int16x8_t frame_0 = vld1q_s16(p_start); vst1q_s16(p_frame, frame_0); p_start += 8; p_frame += 8; } // Update synthesis buffer. int16_t* p_start_src = inst->synthesisBuffer + inst->blockLen10ms; int16_t* p_end_src = inst->synthesisBuffer + inst->anaLen; int16_t* p_start_dst = inst->synthesisBuffer; while (p_start_src < p_end_src) { int16x8_t frame = vld1q_s16(p_start_src); vst1q_s16(p_start_dst, frame); p_start_src += 8; p_start_dst += 8; } p_start = inst->synthesisBuffer + inst->anaLen - inst->blockLen10ms; p_end = p_start + inst->blockLen10ms; int16x8_t zero = vdupq_n_s16(0); for (;p_start < p_end; p_start += 8) { vst1q_s16(p_start, zero); } } // Update analysis buffer for lower band, and window data before FFT. void WebRtcNsx_AnalysisUpdateNeon(NoiseSuppressionFixedC* inst, int16_t* out, int16_t* new_speech) { assert(inst->blockLen10ms % 16 == 0); assert(inst->anaLen % 16 == 0); // For lower band update analysis buffer. // memcpy(inst->analysisBuffer, inst->analysisBuffer + inst->blockLen10ms, // (inst->anaLen - inst->blockLen10ms) * sizeof(*inst->analysisBuffer)); int16_t* p_start_src = inst->analysisBuffer + inst->blockLen10ms; int16_t* p_end_src = inst->analysisBuffer + inst->anaLen; int16_t* p_start_dst = inst->analysisBuffer; while (p_start_src < p_end_src) { int16x8_t frame = vld1q_s16(p_start_src); vst1q_s16(p_start_dst, frame); p_start_src += 8; p_start_dst += 8; } // memcpy(inst->analysisBuffer + inst->anaLen - inst->blockLen10ms, // new_speech, inst->blockLen10ms * sizeof(*inst->analysisBuffer)); p_start_src = new_speech; p_end_src = new_speech + inst->blockLen10ms; p_start_dst = inst->analysisBuffer + inst->anaLen - inst->blockLen10ms; while (p_start_src < p_end_src) { int16x8_t frame = vld1q_s16(p_start_src); vst1q_s16(p_start_dst, frame); p_start_src += 8; p_start_dst += 8; } // Window data before FFT. int16_t* p_start_window = (int16_t*) inst->window; int16_t* p_start_buffer = inst->analysisBuffer; int16_t* p_start_out = out; const int16_t* p_end_out = out + inst->anaLen; // Load the first element to reduce pipeline bubble. int16x8_t window = vld1q_s16(p_start_window); int16x8_t buffer = vld1q_s16(p_start_buffer); p_start_window += 8; p_start_buffer += 8; while (p_start_out < p_end_out) { // Unroll loop. int32x4_t tmp32_low = vmull_s16(vget_low_s16(window), vget_low_s16(buffer)); int32x4_t tmp32_high = vmull_s16(vget_high_s16(window), vget_high_s16(buffer)); window = vld1q_s16(p_start_window); buffer = vld1q_s16(p_start_buffer); int16x4_t result_low = vrshrn_n_s32(tmp32_low, 14); int16x4_t result_high = vrshrn_n_s32(tmp32_high, 14); vst1q_s16(p_start_out, vcombine_s16(result_low, result_high)); p_start_buffer += 8; p_start_window += 8; p_start_out += 8; } }