/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include #include #include #include #include "webrtc/base/arraysize.h" #include "webrtc/base/scoped_ptr.h" #include "webrtc/common_audio/include/audio_util.h" #include "webrtc/common_audio/resampler/include/push_resampler.h" #include "webrtc/common_audio/resampler/push_sinc_resampler.h" #include "webrtc/common_audio/signal_processing/include/signal_processing_library.h" #include "webrtc/modules/audio_processing/common.h" #include "webrtc/modules/audio_processing/include/audio_processing.h" #include "webrtc/modules/audio_processing/test/protobuf_utils.h" #include "webrtc/modules/audio_processing/test/test_utils.h" #include "webrtc/modules/include/module_common_types.h" #include "webrtc/system_wrappers/include/event_wrapper.h" #include "webrtc/system_wrappers/include/trace.h" #include "webrtc/test/testsupport/fileutils.h" #ifdef WEBRTC_ANDROID_PLATFORM_BUILD #include "gtest/gtest.h" #include "external/webrtc/webrtc/modules/audio_processing/test/unittest.pb.h" #else #include "testing/gtest/include/gtest/gtest.h" #include "webrtc/audio_processing/unittest.pb.h" #endif #if !defined(WEBRTC_ANDROID) && !defined(WEBRTC_IOS) #include "webrtc/modules/audio_processing/beamformer/mock_nonlinear_beamformer.h" #endif namespace webrtc { namespace { // TODO(ekmeyerson): Switch to using StreamConfig and ProcessingConfig where // applicable. // TODO(bjornv): This is not feasible until the functionality has been // re-implemented; see comment at the bottom of this file. For now, the user has // to hard code the |write_ref_data| value. // When false, this will compare the output data with the results stored to // file. This is the typical case. When the file should be updated, it can // be set to true with the command-line switch --write_ref_data. bool write_ref_data = false; const google::protobuf::int32 kChannels[] = {1, 2}; const int kSampleRates[] = {8000, 16000, 32000, 48000}; #if defined(WEBRTC_AUDIOPROC_FIXED_PROFILE) // AECM doesn't support super-wb. const int kProcessSampleRates[] = {8000, 16000}; #elif defined(WEBRTC_AUDIOPROC_FLOAT_PROFILE) const int kProcessSampleRates[] = {8000, 16000, 32000, 48000}; #endif enum StreamDirection { kForward = 0, kReverse }; void ConvertToFloat(const int16_t* int_data, ChannelBuffer* cb) { ChannelBuffer cb_int(cb->num_frames(), cb->num_channels()); Deinterleave(int_data, cb->num_frames(), cb->num_channels(), cb_int.channels()); for (size_t i = 0; i < cb->num_channels(); ++i) { S16ToFloat(cb_int.channels()[i], cb->num_frames(), cb->channels()[i]); } } void ConvertToFloat(const AudioFrame& frame, ChannelBuffer* cb) { ConvertToFloat(frame.data_, cb); } // Number of channels including the keyboard channel. size_t TotalChannelsFromLayout(AudioProcessing::ChannelLayout layout) { switch (layout) { case AudioProcessing::kMono: return 1; case AudioProcessing::kMonoAndKeyboard: case AudioProcessing::kStereo: return 2; case AudioProcessing::kStereoAndKeyboard: return 3; } assert(false); return 0; } int TruncateToMultipleOf10(int value) { return (value / 10) * 10; } void MixStereoToMono(const float* stereo, float* mono, size_t samples_per_channel) { for (size_t i = 0; i < samples_per_channel; ++i) mono[i] = (stereo[i * 2] + stereo[i * 2 + 1]) / 2; } void MixStereoToMono(const int16_t* stereo, int16_t* mono, size_t samples_per_channel) { for (size_t i = 0; i < samples_per_channel; ++i) mono[i] = (stereo[i * 2] + stereo[i * 2 + 1]) >> 1; } void CopyLeftToRightChannel(int16_t* stereo, size_t samples_per_channel) { for (size_t i = 0; i < samples_per_channel; i++) { stereo[i * 2 + 1] = stereo[i * 2]; } } void VerifyChannelsAreEqual(int16_t* stereo, size_t samples_per_channel) { for (size_t i = 0; i < samples_per_channel; i++) { EXPECT_EQ(stereo[i * 2 + 1], stereo[i * 2]); } } void SetFrameTo(AudioFrame* frame, int16_t value) { for (size_t i = 0; i < frame->samples_per_channel_ * frame->num_channels_; ++i) { frame->data_[i] = value; } } void SetFrameTo(AudioFrame* frame, int16_t left, int16_t right) { ASSERT_EQ(2u, frame->num_channels_); for (size_t i = 0; i < frame->samples_per_channel_ * 2; i += 2) { frame->data_[i] = left; frame->data_[i + 1] = right; } } void ScaleFrame(AudioFrame* frame, float scale) { for (size_t i = 0; i < frame->samples_per_channel_ * frame->num_channels_; ++i) { frame->data_[i] = FloatS16ToS16(frame->data_[i] * scale); } } bool FrameDataAreEqual(const AudioFrame& frame1, const AudioFrame& frame2) { if (frame1.samples_per_channel_ != frame2.samples_per_channel_) { return false; } if (frame1.num_channels_ != frame2.num_channels_) { return false; } if (memcmp(frame1.data_, frame2.data_, frame1.samples_per_channel_ * frame1.num_channels_ * sizeof(int16_t))) { return false; } return true; } void EnableAllAPComponents(AudioProcessing* ap) { #if defined(WEBRTC_AUDIOPROC_FIXED_PROFILE) EXPECT_NOERR(ap->echo_control_mobile()->Enable(true)); EXPECT_NOERR(ap->gain_control()->set_mode(GainControl::kAdaptiveDigital)); EXPECT_NOERR(ap->gain_control()->Enable(true)); #elif defined(WEBRTC_AUDIOPROC_FLOAT_PROFILE) EXPECT_NOERR(ap->echo_cancellation()->enable_drift_compensation(true)); EXPECT_NOERR(ap->echo_cancellation()->enable_metrics(true)); EXPECT_NOERR(ap->echo_cancellation()->enable_delay_logging(true)); EXPECT_NOERR(ap->echo_cancellation()->Enable(true)); EXPECT_NOERR(ap->gain_control()->set_mode(GainControl::kAdaptiveAnalog)); EXPECT_NOERR(ap->gain_control()->set_analog_level_limits(0, 255)); EXPECT_NOERR(ap->gain_control()->Enable(true)); #endif EXPECT_NOERR(ap->high_pass_filter()->Enable(true)); EXPECT_NOERR(ap->level_estimator()->Enable(true)); EXPECT_NOERR(ap->noise_suppression()->Enable(true)); EXPECT_NOERR(ap->voice_detection()->Enable(true)); } // These functions are only used by ApmTest.Process. template T AbsValue(T a) { return a > 0 ? a: -a; } int16_t MaxAudioFrame(const AudioFrame& frame) { const size_t length = frame.samples_per_channel_ * frame.num_channels_; int16_t max_data = AbsValue(frame.data_[0]); for (size_t i = 1; i < length; i++) { max_data = std::max(max_data, AbsValue(frame.data_[i])); } return max_data; } #if defined(WEBRTC_AUDIOPROC_FLOAT_PROFILE) void TestStats(const AudioProcessing::Statistic& test, const audioproc::Test::Statistic& reference) { EXPECT_EQ(reference.instant(), test.instant); EXPECT_EQ(reference.average(), test.average); EXPECT_EQ(reference.maximum(), test.maximum); EXPECT_EQ(reference.minimum(), test.minimum); } void WriteStatsMessage(const AudioProcessing::Statistic& output, audioproc::Test::Statistic* msg) { msg->set_instant(output.instant); msg->set_average(output.average); msg->set_maximum(output.maximum); msg->set_minimum(output.minimum); } #endif void OpenFileAndWriteMessage(const std::string filename, const ::google::protobuf::MessageLite& msg) { #if defined(WEBRTC_LINUX) && !defined(WEBRTC_ANDROID) FILE* file = fopen(filename.c_str(), "wb"); ASSERT_TRUE(file != NULL); int32_t size = msg.ByteSize(); ASSERT_GT(size, 0); rtc::scoped_ptr array(new uint8_t[size]); ASSERT_TRUE(msg.SerializeToArray(array.get(), size)); ASSERT_EQ(1u, fwrite(&size, sizeof(size), 1, file)); ASSERT_EQ(static_cast(size), fwrite(array.get(), sizeof(array[0]), size, file)); fclose(file); #else std::cout << "Warning: Writing new reference is only allowed on Linux!" << std::endl; #endif } std::string ResourceFilePath(std::string name, int sample_rate_hz) { std::ostringstream ss; // Resource files are all stereo. ss << name << sample_rate_hz / 1000 << "_stereo"; return test::ResourcePath(ss.str(), "pcm"); } // Temporary filenames unique to this process. Used to be able to run these // tests in parallel as each process needs to be running in isolation they can't // have competing filenames. std::map temp_filenames; std::string OutputFilePath(std::string name, int input_rate, int output_rate, int reverse_input_rate, int reverse_output_rate, size_t num_input_channels, size_t num_output_channels, size_t num_reverse_input_channels, size_t num_reverse_output_channels, StreamDirection file_direction) { std::ostringstream ss; ss << name << "_i" << num_input_channels << "_" << input_rate / 1000 << "_ir" << num_reverse_input_channels << "_" << reverse_input_rate / 1000 << "_"; if (num_output_channels == 1) { ss << "mono"; } else if (num_output_channels == 2) { ss << "stereo"; } else { assert(false); } ss << output_rate / 1000; if (num_reverse_output_channels == 1) { ss << "_rmono"; } else if (num_reverse_output_channels == 2) { ss << "_rstereo"; } else { assert(false); } ss << reverse_output_rate / 1000; ss << "_d" << file_direction << "_pcm"; std::string filename = ss.str(); if (temp_filenames[filename].empty()) temp_filenames[filename] = test::TempFilename(test::OutputPath(), filename); return temp_filenames[filename]; } void ClearTempFiles() { for (auto& kv : temp_filenames) remove(kv.second.c_str()); } void OpenFileAndReadMessage(const std::string filename, ::google::protobuf::MessageLite* msg) { FILE* file = fopen(filename.c_str(), "rb"); ASSERT_TRUE(file != NULL); ReadMessageFromFile(file, msg); fclose(file); } // Reads a 10 ms chunk of int16 interleaved audio from the given (assumed // stereo) file, converts to deinterleaved float (optionally downmixing) and // returns the result in |cb|. Returns false if the file ended (or on error) and // true otherwise. // // |int_data| and |float_data| are just temporary space that must be // sufficiently large to hold the 10 ms chunk. bool ReadChunk(FILE* file, int16_t* int_data, float* float_data, ChannelBuffer* cb) { // The files always contain stereo audio. size_t frame_size = cb->num_frames() * 2; size_t read_count = fread(int_data, sizeof(int16_t), frame_size, file); if (read_count != frame_size) { // Check that the file really ended. assert(feof(file)); return false; // This is expected. } S16ToFloat(int_data, frame_size, float_data); if (cb->num_channels() == 1) { MixStereoToMono(float_data, cb->channels()[0], cb->num_frames()); } else { Deinterleave(float_data, cb->num_frames(), 2, cb->channels()); } return true; } class ApmTest : public ::testing::Test { protected: ApmTest(); virtual void SetUp(); virtual void TearDown(); static void SetUpTestCase() { Trace::CreateTrace(); } static void TearDownTestCase() { Trace::ReturnTrace(); ClearTempFiles(); } // Used to select between int and float interface tests. enum Format { kIntFormat, kFloatFormat }; void Init(int sample_rate_hz, int output_sample_rate_hz, int reverse_sample_rate_hz, size_t num_input_channels, size_t num_output_channels, size_t num_reverse_channels, bool open_output_file); void Init(AudioProcessing* ap); void EnableAllComponents(); bool ReadFrame(FILE* file, AudioFrame* frame); bool ReadFrame(FILE* file, AudioFrame* frame, ChannelBuffer* cb); void ReadFrameWithRewind(FILE* file, AudioFrame* frame); void ReadFrameWithRewind(FILE* file, AudioFrame* frame, ChannelBuffer* cb); void ProcessWithDefaultStreamParameters(AudioFrame* frame); void ProcessDelayVerificationTest(int delay_ms, int system_delay_ms, int delay_min, int delay_max); void TestChangingChannelsInt16Interface( size_t num_channels, AudioProcessing::Error expected_return); void TestChangingForwardChannels(size_t num_in_channels, size_t num_out_channels, AudioProcessing::Error expected_return); void TestChangingReverseChannels(size_t num_rev_channels, AudioProcessing::Error expected_return); void RunQuantizedVolumeDoesNotGetStuckTest(int sample_rate); void RunManualVolumeChangeIsPossibleTest(int sample_rate); void StreamParametersTest(Format format); int ProcessStreamChooser(Format format); int AnalyzeReverseStreamChooser(Format format); void ProcessDebugDump(const std::string& in_filename, const std::string& out_filename, Format format); void VerifyDebugDumpTest(Format format); const std::string output_path_; const std::string ref_path_; const std::string ref_filename_; rtc::scoped_ptr apm_; AudioFrame* frame_; AudioFrame* revframe_; rtc::scoped_ptr > float_cb_; rtc::scoped_ptr > revfloat_cb_; int output_sample_rate_hz_; size_t num_output_channels_; FILE* far_file_; FILE* near_file_; FILE* out_file_; }; ApmTest::ApmTest() : output_path_(test::OutputPath()), ref_path_(test::ProjectRootPath() + "data/audio_processing/"), #if defined(WEBRTC_AUDIOPROC_FIXED_PROFILE) ref_filename_(ref_path_ + "output_data_fixed.pb"), #elif defined(WEBRTC_AUDIOPROC_FLOAT_PROFILE) #if defined(WEBRTC_MAC) // A different file for Mac is needed because on this platform the AEC // constant |kFixedDelayMs| value is 20 and not 50 as it is on the rest. ref_filename_(ref_path_ + "output_data_mac.pb"), #else ref_filename_(ref_path_ + "output_data_float.pb"), #endif #endif frame_(NULL), revframe_(NULL), output_sample_rate_hz_(0), num_output_channels_(0), far_file_(NULL), near_file_(NULL), out_file_(NULL) { Config config; config.Set(new ExperimentalAgc(false)); apm_.reset(AudioProcessing::Create(config)); } void ApmTest::SetUp() { ASSERT_TRUE(apm_.get() != NULL); frame_ = new AudioFrame(); revframe_ = new AudioFrame(); #if defined(WEBRTC_AUDIOPROC_FIXED_PROFILE) Init(16000, 16000, 16000, 2, 2, 2, false); #else Init(32000, 32000, 32000, 2, 2, 2, false); #endif } void ApmTest::TearDown() { if (frame_) { delete frame_; } frame_ = NULL; if (revframe_) { delete revframe_; } revframe_ = NULL; if (far_file_) { ASSERT_EQ(0, fclose(far_file_)); } far_file_ = NULL; if (near_file_) { ASSERT_EQ(0, fclose(near_file_)); } near_file_ = NULL; if (out_file_) { ASSERT_EQ(0, fclose(out_file_)); } out_file_ = NULL; } void ApmTest::Init(AudioProcessing* ap) { ASSERT_EQ(kNoErr, ap->Initialize( {{{frame_->sample_rate_hz_, frame_->num_channels_}, {output_sample_rate_hz_, num_output_channels_}, {revframe_->sample_rate_hz_, revframe_->num_channels_}, {revframe_->sample_rate_hz_, revframe_->num_channels_}}})); } void ApmTest::Init(int sample_rate_hz, int output_sample_rate_hz, int reverse_sample_rate_hz, size_t num_input_channels, size_t num_output_channels, size_t num_reverse_channels, bool open_output_file) { SetContainerFormat(sample_rate_hz, num_input_channels, frame_, &float_cb_); output_sample_rate_hz_ = output_sample_rate_hz; num_output_channels_ = num_output_channels; SetContainerFormat(reverse_sample_rate_hz, num_reverse_channels, revframe_, &revfloat_cb_); Init(apm_.get()); if (far_file_) { ASSERT_EQ(0, fclose(far_file_)); } std::string filename = ResourceFilePath("far", sample_rate_hz); far_file_ = fopen(filename.c_str(), "rb"); ASSERT_TRUE(far_file_ != NULL) << "Could not open file " << filename << "\n"; if (near_file_) { ASSERT_EQ(0, fclose(near_file_)); } filename = ResourceFilePath("near", sample_rate_hz); near_file_ = fopen(filename.c_str(), "rb"); ASSERT_TRUE(near_file_ != NULL) << "Could not open file " << filename << "\n"; if (open_output_file) { if (out_file_) { ASSERT_EQ(0, fclose(out_file_)); } filename = OutputFilePath( "out", sample_rate_hz, output_sample_rate_hz, reverse_sample_rate_hz, reverse_sample_rate_hz, num_input_channels, num_output_channels, num_reverse_channels, num_reverse_channels, kForward); out_file_ = fopen(filename.c_str(), "wb"); ASSERT_TRUE(out_file_ != NULL) << "Could not open file " << filename << "\n"; } } void ApmTest::EnableAllComponents() { EnableAllAPComponents(apm_.get()); } bool ApmTest::ReadFrame(FILE* file, AudioFrame* frame, ChannelBuffer* cb) { // The files always contain stereo audio. size_t frame_size = frame->samples_per_channel_ * 2; size_t read_count = fread(frame->data_, sizeof(int16_t), frame_size, file); if (read_count != frame_size) { // Check that the file really ended. EXPECT_NE(0, feof(file)); return false; // This is expected. } if (frame->num_channels_ == 1) { MixStereoToMono(frame->data_, frame->data_, frame->samples_per_channel_); } if (cb) { ConvertToFloat(*frame, cb); } return true; } bool ApmTest::ReadFrame(FILE* file, AudioFrame* frame) { return ReadFrame(file, frame, NULL); } // If the end of the file has been reached, rewind it and attempt to read the // frame again. void ApmTest::ReadFrameWithRewind(FILE* file, AudioFrame* frame, ChannelBuffer* cb) { if (!ReadFrame(near_file_, frame_, cb)) { rewind(near_file_); ASSERT_TRUE(ReadFrame(near_file_, frame_, cb)); } } void ApmTest::ReadFrameWithRewind(FILE* file, AudioFrame* frame) { ReadFrameWithRewind(file, frame, NULL); } void ApmTest::ProcessWithDefaultStreamParameters(AudioFrame* frame) { EXPECT_EQ(apm_->kNoError, apm_->set_stream_delay_ms(0)); apm_->echo_cancellation()->set_stream_drift_samples(0); EXPECT_EQ(apm_->kNoError, apm_->gain_control()->set_stream_analog_level(127)); EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame)); } int ApmTest::ProcessStreamChooser(Format format) { if (format == kIntFormat) { return apm_->ProcessStream(frame_); } return apm_->ProcessStream(float_cb_->channels(), frame_->samples_per_channel_, frame_->sample_rate_hz_, LayoutFromChannels(frame_->num_channels_), output_sample_rate_hz_, LayoutFromChannels(num_output_channels_), float_cb_->channels()); } int ApmTest::AnalyzeReverseStreamChooser(Format format) { if (format == kIntFormat) { return apm_->AnalyzeReverseStream(revframe_); } return apm_->AnalyzeReverseStream( revfloat_cb_->channels(), revframe_->samples_per_channel_, revframe_->sample_rate_hz_, LayoutFromChannels(revframe_->num_channels_)); } void ApmTest::ProcessDelayVerificationTest(int delay_ms, int system_delay_ms, int delay_min, int delay_max) { // The |revframe_| and |frame_| should include the proper frame information, // hence can be used for extracting information. AudioFrame tmp_frame; std::queue frame_queue; bool causal = true; tmp_frame.CopyFrom(*revframe_); SetFrameTo(&tmp_frame, 0); EXPECT_EQ(apm_->kNoError, apm_->Initialize()); // Initialize the |frame_queue| with empty frames. int frame_delay = delay_ms / 10; while (frame_delay < 0) { AudioFrame* frame = new AudioFrame(); frame->CopyFrom(tmp_frame); frame_queue.push(frame); frame_delay++; causal = false; } while (frame_delay > 0) { AudioFrame* frame = new AudioFrame(); frame->CopyFrom(tmp_frame); frame_queue.push(frame); frame_delay--; } // Run for 4.5 seconds, skipping statistics from the first 2.5 seconds. We // need enough frames with audio to have reliable estimates, but as few as // possible to keep processing time down. 4.5 seconds seemed to be a good // compromise for this recording. for (int frame_count = 0; frame_count < 450; ++frame_count) { AudioFrame* frame = new AudioFrame(); frame->CopyFrom(tmp_frame); // Use the near end recording, since that has more speech in it. ASSERT_TRUE(ReadFrame(near_file_, frame)); frame_queue.push(frame); AudioFrame* reverse_frame = frame; AudioFrame* process_frame = frame_queue.front(); if (!causal) { reverse_frame = frame_queue.front(); // When we call ProcessStream() the frame is modified, so we can't use the // pointer directly when things are non-causal. Use an intermediate frame // and copy the data. process_frame = &tmp_frame; process_frame->CopyFrom(*frame); } EXPECT_EQ(apm_->kNoError, apm_->AnalyzeReverseStream(reverse_frame)); EXPECT_EQ(apm_->kNoError, apm_->set_stream_delay_ms(system_delay_ms)); EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(process_frame)); frame = frame_queue.front(); frame_queue.pop(); delete frame; if (frame_count == 250) { int median; int std; float poor_fraction; // Discard the first delay metrics to avoid convergence effects. EXPECT_EQ(apm_->kNoError, apm_->echo_cancellation()->GetDelayMetrics(&median, &std, &poor_fraction)); } } rewind(near_file_); while (!frame_queue.empty()) { AudioFrame* frame = frame_queue.front(); frame_queue.pop(); delete frame; } // Calculate expected delay estimate and acceptable regions. Further, // limit them w.r.t. AEC delay estimation support. const size_t samples_per_ms = std::min(static_cast(16), frame_->samples_per_channel_ / 10); int expected_median = std::min(std::max(delay_ms - system_delay_ms, delay_min), delay_max); int expected_median_high = std::min( std::max(expected_median + static_cast(96 / samples_per_ms), delay_min), delay_max); int expected_median_low = std::min( std::max(expected_median - static_cast(96 / samples_per_ms), delay_min), delay_max); // Verify delay metrics. int median; int std; float poor_fraction; EXPECT_EQ(apm_->kNoError, apm_->echo_cancellation()->GetDelayMetrics(&median, &std, &poor_fraction)); EXPECT_GE(expected_median_high, median); EXPECT_LE(expected_median_low, median); } void ApmTest::StreamParametersTest(Format format) { // No errors when the components are disabled. EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(format)); // -- Missing AGC level -- EXPECT_EQ(apm_->kNoError, apm_->gain_control()->Enable(true)); EXPECT_EQ(apm_->kStreamParameterNotSetError, ProcessStreamChooser(format)); // Resets after successful ProcessStream(). EXPECT_EQ(apm_->kNoError, apm_->gain_control()->set_stream_analog_level(127)); EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(format)); EXPECT_EQ(apm_->kStreamParameterNotSetError, ProcessStreamChooser(format)); // Other stream parameters set correctly. EXPECT_EQ(apm_->kNoError, apm_->echo_cancellation()->Enable(true)); EXPECT_EQ(apm_->kNoError, apm_->echo_cancellation()->enable_drift_compensation(true)); EXPECT_EQ(apm_->kNoError, apm_->set_stream_delay_ms(100)); apm_->echo_cancellation()->set_stream_drift_samples(0); EXPECT_EQ(apm_->kStreamParameterNotSetError, ProcessStreamChooser(format)); EXPECT_EQ(apm_->kNoError, apm_->gain_control()->Enable(false)); EXPECT_EQ(apm_->kNoError, apm_->echo_cancellation()->enable_drift_compensation(false)); // -- Missing delay -- EXPECT_EQ(apm_->kNoError, apm_->echo_cancellation()->Enable(true)); EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(format)); EXPECT_EQ(apm_->kStreamParameterNotSetError, ProcessStreamChooser(format)); // Resets after successful ProcessStream(). EXPECT_EQ(apm_->kNoError, apm_->set_stream_delay_ms(100)); EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(format)); EXPECT_EQ(apm_->kStreamParameterNotSetError, ProcessStreamChooser(format)); // Other stream parameters set correctly. EXPECT_EQ(apm_->kNoError, apm_->gain_control()->Enable(true)); EXPECT_EQ(apm_->kNoError, apm_->echo_cancellation()->enable_drift_compensation(true)); apm_->echo_cancellation()->set_stream_drift_samples(0); EXPECT_EQ(apm_->kNoError, apm_->gain_control()->set_stream_analog_level(127)); EXPECT_EQ(apm_->kStreamParameterNotSetError, ProcessStreamChooser(format)); EXPECT_EQ(apm_->kNoError, apm_->gain_control()->Enable(false)); // -- Missing drift -- EXPECT_EQ(apm_->kStreamParameterNotSetError, ProcessStreamChooser(format)); // Resets after successful ProcessStream(). EXPECT_EQ(apm_->kNoError, apm_->set_stream_delay_ms(100)); apm_->echo_cancellation()->set_stream_drift_samples(0); EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(format)); EXPECT_EQ(apm_->kStreamParameterNotSetError, ProcessStreamChooser(format)); // Other stream parameters set correctly. EXPECT_EQ(apm_->kNoError, apm_->gain_control()->Enable(true)); EXPECT_EQ(apm_->kNoError, apm_->set_stream_delay_ms(100)); EXPECT_EQ(apm_->kNoError, apm_->gain_control()->set_stream_analog_level(127)); EXPECT_EQ(apm_->kStreamParameterNotSetError, ProcessStreamChooser(format)); // -- No stream parameters -- EXPECT_EQ(apm_->kNoError, AnalyzeReverseStreamChooser(format)); EXPECT_EQ(apm_->kStreamParameterNotSetError, ProcessStreamChooser(format)); // -- All there -- EXPECT_EQ(apm_->kNoError, apm_->set_stream_delay_ms(100)); apm_->echo_cancellation()->set_stream_drift_samples(0); EXPECT_EQ(apm_->kNoError, apm_->gain_control()->set_stream_analog_level(127)); EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(format)); } TEST_F(ApmTest, StreamParametersInt) { StreamParametersTest(kIntFormat); } TEST_F(ApmTest, StreamParametersFloat) { StreamParametersTest(kFloatFormat); } TEST_F(ApmTest, DefaultDelayOffsetIsZero) { EXPECT_EQ(0, apm_->delay_offset_ms()); EXPECT_EQ(apm_->kNoError, apm_->set_stream_delay_ms(50)); EXPECT_EQ(50, apm_->stream_delay_ms()); } TEST_F(ApmTest, DelayOffsetWithLimitsIsSetProperly) { // High limit of 500 ms. apm_->set_delay_offset_ms(100); EXPECT_EQ(100, apm_->delay_offset_ms()); EXPECT_EQ(apm_->kBadStreamParameterWarning, apm_->set_stream_delay_ms(450)); EXPECT_EQ(500, apm_->stream_delay_ms()); EXPECT_EQ(apm_->kNoError, apm_->set_stream_delay_ms(100)); EXPECT_EQ(200, apm_->stream_delay_ms()); // Low limit of 0 ms. apm_->set_delay_offset_ms(-50); EXPECT_EQ(-50, apm_->delay_offset_ms()); EXPECT_EQ(apm_->kBadStreamParameterWarning, apm_->set_stream_delay_ms(20)); EXPECT_EQ(0, apm_->stream_delay_ms()); EXPECT_EQ(apm_->kNoError, apm_->set_stream_delay_ms(100)); EXPECT_EQ(50, apm_->stream_delay_ms()); } void ApmTest::TestChangingChannelsInt16Interface( size_t num_channels, AudioProcessing::Error expected_return) { frame_->num_channels_ = num_channels; EXPECT_EQ(expected_return, apm_->ProcessStream(frame_)); EXPECT_EQ(expected_return, apm_->AnalyzeReverseStream(frame_)); } void ApmTest::TestChangingForwardChannels( size_t num_in_channels, size_t num_out_channels, AudioProcessing::Error expected_return) { const StreamConfig input_stream = {frame_->sample_rate_hz_, num_in_channels}; const StreamConfig output_stream = {output_sample_rate_hz_, num_out_channels}; EXPECT_EQ(expected_return, apm_->ProcessStream(float_cb_->channels(), input_stream, output_stream, float_cb_->channels())); } void ApmTest::TestChangingReverseChannels( size_t num_rev_channels, AudioProcessing::Error expected_return) { const ProcessingConfig processing_config = { {{frame_->sample_rate_hz_, apm_->num_input_channels()}, {output_sample_rate_hz_, apm_->num_output_channels()}, {frame_->sample_rate_hz_, num_rev_channels}, {frame_->sample_rate_hz_, num_rev_channels}}}; EXPECT_EQ( expected_return, apm_->ProcessReverseStream( float_cb_->channels(), processing_config.reverse_input_stream(), processing_config.reverse_output_stream(), float_cb_->channels())); } TEST_F(ApmTest, ChannelsInt16Interface) { // Testing number of invalid and valid channels. Init(16000, 16000, 16000, 4, 4, 4, false); TestChangingChannelsInt16Interface(0, apm_->kBadNumberChannelsError); for (size_t i = 1; i < 4; i++) { TestChangingChannelsInt16Interface(i, kNoErr); EXPECT_EQ(i, apm_->num_input_channels()); // We always force the number of reverse channels used for processing to 1. EXPECT_EQ(1u, apm_->num_reverse_channels()); } } TEST_F(ApmTest, Channels) { // Testing number of invalid and valid channels. Init(16000, 16000, 16000, 4, 4, 4, false); TestChangingForwardChannels(0, 1, apm_->kBadNumberChannelsError); TestChangingReverseChannels(0, apm_->kBadNumberChannelsError); for (size_t i = 1; i < 4; ++i) { for (size_t j = 0; j < 1; ++j) { // Output channels much be one or match input channels. if (j == 1 || i == j) { TestChangingForwardChannels(i, j, kNoErr); TestChangingReverseChannels(i, kNoErr); EXPECT_EQ(i, apm_->num_input_channels()); EXPECT_EQ(j, apm_->num_output_channels()); // The number of reverse channels used for processing to is always 1. EXPECT_EQ(1u, apm_->num_reverse_channels()); } else { TestChangingForwardChannels(i, j, AudioProcessing::kBadNumberChannelsError); } } } } TEST_F(ApmTest, SampleRatesInt) { // Testing invalid sample rates SetContainerFormat(10000, 2, frame_, &float_cb_); EXPECT_EQ(apm_->kBadSampleRateError, ProcessStreamChooser(kIntFormat)); // Testing valid sample rates int fs[] = {8000, 16000, 32000, 48000}; for (size_t i = 0; i < arraysize(fs); i++) { SetContainerFormat(fs[i], 2, frame_, &float_cb_); EXPECT_NOERR(ProcessStreamChooser(kIntFormat)); } } TEST_F(ApmTest, EchoCancellation) { EXPECT_EQ(apm_->kNoError, apm_->echo_cancellation()->enable_drift_compensation(true)); EXPECT_TRUE(apm_->echo_cancellation()->is_drift_compensation_enabled()); EXPECT_EQ(apm_->kNoError, apm_->echo_cancellation()->enable_drift_compensation(false)); EXPECT_FALSE(apm_->echo_cancellation()->is_drift_compensation_enabled()); EchoCancellation::SuppressionLevel level[] = { EchoCancellation::kLowSuppression, EchoCancellation::kModerateSuppression, EchoCancellation::kHighSuppression, }; for (size_t i = 0; i < arraysize(level); i++) { EXPECT_EQ(apm_->kNoError, apm_->echo_cancellation()->set_suppression_level(level[i])); EXPECT_EQ(level[i], apm_->echo_cancellation()->suppression_level()); } EchoCancellation::Metrics metrics; EXPECT_EQ(apm_->kNotEnabledError, apm_->echo_cancellation()->GetMetrics(&metrics)); EXPECT_EQ(apm_->kNoError, apm_->echo_cancellation()->enable_metrics(true)); EXPECT_TRUE(apm_->echo_cancellation()->are_metrics_enabled()); EXPECT_EQ(apm_->kNoError, apm_->echo_cancellation()->enable_metrics(false)); EXPECT_FALSE(apm_->echo_cancellation()->are_metrics_enabled()); int median = 0; int std = 0; float poor_fraction = 0; EXPECT_EQ(apm_->kNotEnabledError, apm_->echo_cancellation()->GetDelayMetrics(&median, &std, &poor_fraction)); EXPECT_EQ(apm_->kNoError, apm_->echo_cancellation()->enable_delay_logging(true)); EXPECT_TRUE(apm_->echo_cancellation()->is_delay_logging_enabled()); EXPECT_EQ(apm_->kNoError, apm_->echo_cancellation()->enable_delay_logging(false)); EXPECT_FALSE(apm_->echo_cancellation()->is_delay_logging_enabled()); EXPECT_EQ(apm_->kNoError, apm_->echo_cancellation()->Enable(true)); EXPECT_TRUE(apm_->echo_cancellation()->is_enabled()); EXPECT_EQ(apm_->kNoError, apm_->echo_cancellation()->Enable(false)); EXPECT_FALSE(apm_->echo_cancellation()->is_enabled()); EXPECT_EQ(apm_->kNoError, apm_->echo_cancellation()->Enable(true)); EXPECT_TRUE(apm_->echo_cancellation()->is_enabled()); EXPECT_TRUE(apm_->echo_cancellation()->aec_core() != NULL); EXPECT_EQ(apm_->kNoError, apm_->echo_cancellation()->Enable(false)); EXPECT_FALSE(apm_->echo_cancellation()->is_enabled()); EXPECT_FALSE(apm_->echo_cancellation()->aec_core() != NULL); } TEST_F(ApmTest, DISABLED_EchoCancellationReportsCorrectDelays) { // TODO(bjornv): Fix this test to work with DA-AEC. // Enable AEC only. EXPECT_EQ(apm_->kNoError, apm_->echo_cancellation()->enable_drift_compensation(false)); EXPECT_EQ(apm_->kNoError, apm_->echo_cancellation()->enable_metrics(false)); EXPECT_EQ(apm_->kNoError, apm_->echo_cancellation()->enable_delay_logging(true)); EXPECT_EQ(apm_->kNoError, apm_->echo_cancellation()->Enable(true)); Config config; config.Set(new DelayAgnostic(false)); apm_->SetExtraOptions(config); // Internally in the AEC the amount of lookahead the delay estimation can // handle is 15 blocks and the maximum delay is set to 60 blocks. const int kLookaheadBlocks = 15; const int kMaxDelayBlocks = 60; // The AEC has a startup time before it actually starts to process. This // procedure can flush the internal far-end buffer, which of course affects // the delay estimation. Therefore, we set a system_delay high enough to // avoid that. The smallest system_delay you can report without flushing the // buffer is 66 ms in 8 kHz. // // It is known that for 16 kHz (and 32 kHz) sampling frequency there is an // additional stuffing of 8 ms on the fly, but it seems to have no impact on // delay estimation. This should be noted though. In case of test failure, // this could be the cause. const int kSystemDelayMs = 66; // Test a couple of corner cases and verify that the estimated delay is // within a valid region (set to +-1.5 blocks). Note that these cases are // sampling frequency dependent. for (size_t i = 0; i < arraysize(kProcessSampleRates); i++) { Init(kProcessSampleRates[i], kProcessSampleRates[i], kProcessSampleRates[i], 2, 2, 2, false); // Sampling frequency dependent variables. const int num_ms_per_block = std::max(4, static_cast(640 / frame_->samples_per_channel_)); const int delay_min_ms = -kLookaheadBlocks * num_ms_per_block; const int delay_max_ms = (kMaxDelayBlocks - 1) * num_ms_per_block; // 1) Verify correct delay estimate at lookahead boundary. int delay_ms = TruncateToMultipleOf10(kSystemDelayMs + delay_min_ms); ProcessDelayVerificationTest(delay_ms, kSystemDelayMs, delay_min_ms, delay_max_ms); // 2) A delay less than maximum lookahead should give an delay estimate at // the boundary (= -kLookaheadBlocks * num_ms_per_block). delay_ms -= 20; ProcessDelayVerificationTest(delay_ms, kSystemDelayMs, delay_min_ms, delay_max_ms); // 3) Three values around zero delay. Note that we need to compensate for // the fake system_delay. delay_ms = TruncateToMultipleOf10(kSystemDelayMs - 10); ProcessDelayVerificationTest(delay_ms, kSystemDelayMs, delay_min_ms, delay_max_ms); delay_ms = TruncateToMultipleOf10(kSystemDelayMs); ProcessDelayVerificationTest(delay_ms, kSystemDelayMs, delay_min_ms, delay_max_ms); delay_ms = TruncateToMultipleOf10(kSystemDelayMs + 10); ProcessDelayVerificationTest(delay_ms, kSystemDelayMs, delay_min_ms, delay_max_ms); // 4) Verify correct delay estimate at maximum delay boundary. delay_ms = TruncateToMultipleOf10(kSystemDelayMs + delay_max_ms); ProcessDelayVerificationTest(delay_ms, kSystemDelayMs, delay_min_ms, delay_max_ms); // 5) A delay above the maximum delay should give an estimate at the // boundary (= (kMaxDelayBlocks - 1) * num_ms_per_block). delay_ms += 20; ProcessDelayVerificationTest(delay_ms, kSystemDelayMs, delay_min_ms, delay_max_ms); } } TEST_F(ApmTest, EchoControlMobile) { // AECM won't use super-wideband. SetFrameSampleRate(frame_, 32000); EXPECT_NOERR(apm_->ProcessStream(frame_)); EXPECT_EQ(apm_->kBadSampleRateError, apm_->echo_control_mobile()->Enable(true)); SetFrameSampleRate(frame_, 16000); EXPECT_NOERR(apm_->ProcessStream(frame_)); EXPECT_EQ(apm_->kNoError, apm_->echo_control_mobile()->Enable(true)); SetFrameSampleRate(frame_, 32000); EXPECT_EQ(apm_->kUnsupportedComponentError, apm_->ProcessStream(frame_)); // Turn AECM on (and AEC off) Init(16000, 16000, 16000, 2, 2, 2, false); EXPECT_EQ(apm_->kNoError, apm_->echo_control_mobile()->Enable(true)); EXPECT_TRUE(apm_->echo_control_mobile()->is_enabled()); // Toggle routing modes EchoControlMobile::RoutingMode mode[] = { EchoControlMobile::kQuietEarpieceOrHeadset, EchoControlMobile::kEarpiece, EchoControlMobile::kLoudEarpiece, EchoControlMobile::kSpeakerphone, EchoControlMobile::kLoudSpeakerphone, }; for (size_t i = 0; i < arraysize(mode); i++) { EXPECT_EQ(apm_->kNoError, apm_->echo_control_mobile()->set_routing_mode(mode[i])); EXPECT_EQ(mode[i], apm_->echo_control_mobile()->routing_mode()); } // Turn comfort noise off/on EXPECT_EQ(apm_->kNoError, apm_->echo_control_mobile()->enable_comfort_noise(false)); EXPECT_FALSE(apm_->echo_control_mobile()->is_comfort_noise_enabled()); EXPECT_EQ(apm_->kNoError, apm_->echo_control_mobile()->enable_comfort_noise(true)); EXPECT_TRUE(apm_->echo_control_mobile()->is_comfort_noise_enabled()); // Set and get echo path const size_t echo_path_size = apm_->echo_control_mobile()->echo_path_size_bytes(); rtc::scoped_ptr echo_path_in(new char[echo_path_size]); rtc::scoped_ptr echo_path_out(new char[echo_path_size]); EXPECT_EQ(apm_->kNullPointerError, apm_->echo_control_mobile()->SetEchoPath(NULL, echo_path_size)); EXPECT_EQ(apm_->kNullPointerError, apm_->echo_control_mobile()->GetEchoPath(NULL, echo_path_size)); EXPECT_EQ(apm_->kBadParameterError, apm_->echo_control_mobile()->GetEchoPath(echo_path_out.get(), 1)); EXPECT_EQ(apm_->kNoError, apm_->echo_control_mobile()->GetEchoPath(echo_path_out.get(), echo_path_size)); for (size_t i = 0; i < echo_path_size; i++) { echo_path_in[i] = echo_path_out[i] + 1; } EXPECT_EQ(apm_->kBadParameterError, apm_->echo_control_mobile()->SetEchoPath(echo_path_in.get(), 1)); EXPECT_EQ(apm_->kNoError, apm_->echo_control_mobile()->SetEchoPath(echo_path_in.get(), echo_path_size)); EXPECT_EQ(apm_->kNoError, apm_->echo_control_mobile()->GetEchoPath(echo_path_out.get(), echo_path_size)); for (size_t i = 0; i < echo_path_size; i++) { EXPECT_EQ(echo_path_in[i], echo_path_out[i]); } // Process a few frames with NS in the default disabled state. This exercises // a different codepath than with it enabled. EXPECT_EQ(apm_->kNoError, apm_->set_stream_delay_ms(0)); EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_)); EXPECT_EQ(apm_->kNoError, apm_->set_stream_delay_ms(0)); EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_)); // Turn AECM off EXPECT_EQ(apm_->kNoError, apm_->echo_control_mobile()->Enable(false)); EXPECT_FALSE(apm_->echo_control_mobile()->is_enabled()); } TEST_F(ApmTest, GainControl) { // Testing gain modes EXPECT_EQ(apm_->kNoError, apm_->gain_control()->set_mode( apm_->gain_control()->mode())); GainControl::Mode mode[] = { GainControl::kAdaptiveAnalog, GainControl::kAdaptiveDigital, GainControl::kFixedDigital }; for (size_t i = 0; i < arraysize(mode); i++) { EXPECT_EQ(apm_->kNoError, apm_->gain_control()->set_mode(mode[i])); EXPECT_EQ(mode[i], apm_->gain_control()->mode()); } // Testing invalid target levels EXPECT_EQ(apm_->kBadParameterError, apm_->gain_control()->set_target_level_dbfs(-3)); EXPECT_EQ(apm_->kBadParameterError, apm_->gain_control()->set_target_level_dbfs(-40)); // Testing valid target levels EXPECT_EQ(apm_->kNoError, apm_->gain_control()->set_target_level_dbfs( apm_->gain_control()->target_level_dbfs())); int level_dbfs[] = {0, 6, 31}; for (size_t i = 0; i < arraysize(level_dbfs); i++) { EXPECT_EQ(apm_->kNoError, apm_->gain_control()->set_target_level_dbfs(level_dbfs[i])); EXPECT_EQ(level_dbfs[i], apm_->gain_control()->target_level_dbfs()); } // Testing invalid compression gains EXPECT_EQ(apm_->kBadParameterError, apm_->gain_control()->set_compression_gain_db(-1)); EXPECT_EQ(apm_->kBadParameterError, apm_->gain_control()->set_compression_gain_db(100)); // Testing valid compression gains EXPECT_EQ(apm_->kNoError, apm_->gain_control()->set_compression_gain_db( apm_->gain_control()->compression_gain_db())); int gain_db[] = {0, 10, 90}; for (size_t i = 0; i < arraysize(gain_db); i++) { EXPECT_EQ(apm_->kNoError, apm_->gain_control()->set_compression_gain_db(gain_db[i])); EXPECT_EQ(gain_db[i], apm_->gain_control()->compression_gain_db()); } // Testing limiter off/on EXPECT_EQ(apm_->kNoError, apm_->gain_control()->enable_limiter(false)); EXPECT_FALSE(apm_->gain_control()->is_limiter_enabled()); EXPECT_EQ(apm_->kNoError, apm_->gain_control()->enable_limiter(true)); EXPECT_TRUE(apm_->gain_control()->is_limiter_enabled()); // Testing invalid level limits EXPECT_EQ(apm_->kBadParameterError, apm_->gain_control()->set_analog_level_limits(-1, 512)); EXPECT_EQ(apm_->kBadParameterError, apm_->gain_control()->set_analog_level_limits(100000, 512)); EXPECT_EQ(apm_->kBadParameterError, apm_->gain_control()->set_analog_level_limits(512, -1)); EXPECT_EQ(apm_->kBadParameterError, apm_->gain_control()->set_analog_level_limits(512, 100000)); EXPECT_EQ(apm_->kBadParameterError, apm_->gain_control()->set_analog_level_limits(512, 255)); // Testing valid level limits EXPECT_EQ(apm_->kNoError, apm_->gain_control()->set_analog_level_limits( apm_->gain_control()->analog_level_minimum(), apm_->gain_control()->analog_level_maximum())); int min_level[] = {0, 255, 1024}; for (size_t i = 0; i < arraysize(min_level); i++) { EXPECT_EQ(apm_->kNoError, apm_->gain_control()->set_analog_level_limits(min_level[i], 1024)); EXPECT_EQ(min_level[i], apm_->gain_control()->analog_level_minimum()); } int max_level[] = {0, 1024, 65535}; for (size_t i = 0; i < arraysize(min_level); i++) { EXPECT_EQ(apm_->kNoError, apm_->gain_control()->set_analog_level_limits(0, max_level[i])); EXPECT_EQ(max_level[i], apm_->gain_control()->analog_level_maximum()); } // TODO(ajm): stream_is_saturated() and stream_analog_level() // Turn AGC off EXPECT_EQ(apm_->kNoError, apm_->gain_control()->Enable(false)); EXPECT_FALSE(apm_->gain_control()->is_enabled()); } void ApmTest::RunQuantizedVolumeDoesNotGetStuckTest(int sample_rate) { Init(sample_rate, sample_rate, sample_rate, 2, 2, 2, false); EXPECT_EQ(apm_->kNoError, apm_->gain_control()->set_mode(GainControl::kAdaptiveAnalog)); EXPECT_EQ(apm_->kNoError, apm_->gain_control()->Enable(true)); int out_analog_level = 0; for (int i = 0; i < 2000; ++i) { ReadFrameWithRewind(near_file_, frame_); // Ensure the audio is at a low level, so the AGC will try to increase it. ScaleFrame(frame_, 0.25); // Always pass in the same volume. EXPECT_EQ(apm_->kNoError, apm_->gain_control()->set_stream_analog_level(100)); EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_)); out_analog_level = apm_->gain_control()->stream_analog_level(); } // Ensure the AGC is still able to reach the maximum. EXPECT_EQ(255, out_analog_level); } // Verifies that despite volume slider quantization, the AGC can continue to // increase its volume. TEST_F(ApmTest, QuantizedVolumeDoesNotGetStuck) { for (size_t i = 0; i < arraysize(kSampleRates); ++i) { RunQuantizedVolumeDoesNotGetStuckTest(kSampleRates[i]); } } void ApmTest::RunManualVolumeChangeIsPossibleTest(int sample_rate) { Init(sample_rate, sample_rate, sample_rate, 2, 2, 2, false); EXPECT_EQ(apm_->kNoError, apm_->gain_control()->set_mode(GainControl::kAdaptiveAnalog)); EXPECT_EQ(apm_->kNoError, apm_->gain_control()->Enable(true)); int out_analog_level = 100; for (int i = 0; i < 1000; ++i) { ReadFrameWithRewind(near_file_, frame_); // Ensure the audio is at a low level, so the AGC will try to increase it. ScaleFrame(frame_, 0.25); EXPECT_EQ(apm_->kNoError, apm_->gain_control()->set_stream_analog_level(out_analog_level)); EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_)); out_analog_level = apm_->gain_control()->stream_analog_level(); } // Ensure the volume was raised. EXPECT_GT(out_analog_level, 100); int highest_level_reached = out_analog_level; // Simulate a user manual volume change. out_analog_level = 100; for (int i = 0; i < 300; ++i) { ReadFrameWithRewind(near_file_, frame_); ScaleFrame(frame_, 0.25); EXPECT_EQ(apm_->kNoError, apm_->gain_control()->set_stream_analog_level(out_analog_level)); EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_)); out_analog_level = apm_->gain_control()->stream_analog_level(); // Check that AGC respected the manually adjusted volume. EXPECT_LT(out_analog_level, highest_level_reached); } // Check that the volume was still raised. EXPECT_GT(out_analog_level, 100); } TEST_F(ApmTest, ManualVolumeChangeIsPossible) { for (size_t i = 0; i < arraysize(kSampleRates); ++i) { RunManualVolumeChangeIsPossibleTest(kSampleRates[i]); } } #if !defined(WEBRTC_ANDROID) && !defined(WEBRTC_IOS) TEST_F(ApmTest, AgcOnlyAdaptsWhenTargetSignalIsPresent) { const int kSampleRateHz = 16000; const size_t kSamplesPerChannel = static_cast(AudioProcessing::kChunkSizeMs * kSampleRateHz / 1000); const size_t kNumInputChannels = 2; const size_t kNumOutputChannels = 1; const size_t kNumChunks = 700; const float kScaleFactor = 0.25f; Config config; std::vector geometry; geometry.push_back(webrtc::Point(0.f, 0.f, 0.f)); geometry.push_back(webrtc::Point(0.05f, 0.f, 0.f)); config.Set(new Beamforming(true, geometry)); testing::NiceMock* beamformer = new testing::NiceMock(geometry); rtc::scoped_ptr apm( AudioProcessing::Create(config, beamformer)); EXPECT_EQ(kNoErr, apm->gain_control()->Enable(true)); ChannelBuffer src_buf(kSamplesPerChannel, kNumInputChannels); ChannelBuffer dest_buf(kSamplesPerChannel, kNumOutputChannels); const size_t max_length = kSamplesPerChannel * std::max(kNumInputChannels, kNumOutputChannels); rtc::scoped_ptr int_data(new int16_t[max_length]); rtc::scoped_ptr float_data(new float[max_length]); std::string filename = ResourceFilePath("far", kSampleRateHz); FILE* far_file = fopen(filename.c_str(), "rb"); ASSERT_TRUE(far_file != NULL) << "Could not open file " << filename << "\n"; const int kDefaultVolume = apm->gain_control()->stream_analog_level(); const int kDefaultCompressionGain = apm->gain_control()->compression_gain_db(); bool is_target = false; EXPECT_CALL(*beamformer, is_target_present()) .WillRepeatedly(testing::ReturnPointee(&is_target)); for (size_t i = 0; i < kNumChunks; ++i) { ASSERT_TRUE(ReadChunk(far_file, int_data.get(), float_data.get(), &src_buf)); for (size_t j = 0; j < kNumInputChannels; ++j) { for (size_t k = 0; k < kSamplesPerChannel; ++k) { src_buf.channels()[j][k] *= kScaleFactor; } } EXPECT_EQ(kNoErr, apm->ProcessStream(src_buf.channels(), src_buf.num_frames(), kSampleRateHz, LayoutFromChannels(src_buf.num_channels()), kSampleRateHz, LayoutFromChannels(dest_buf.num_channels()), dest_buf.channels())); } EXPECT_EQ(kDefaultVolume, apm->gain_control()->stream_analog_level()); EXPECT_EQ(kDefaultCompressionGain, apm->gain_control()->compression_gain_db()); rewind(far_file); is_target = true; for (size_t i = 0; i < kNumChunks; ++i) { ASSERT_TRUE(ReadChunk(far_file, int_data.get(), float_data.get(), &src_buf)); for (size_t j = 0; j < kNumInputChannels; ++j) { for (size_t k = 0; k < kSamplesPerChannel; ++k) { src_buf.channels()[j][k] *= kScaleFactor; } } EXPECT_EQ(kNoErr, apm->ProcessStream(src_buf.channels(), src_buf.num_frames(), kSampleRateHz, LayoutFromChannels(src_buf.num_channels()), kSampleRateHz, LayoutFromChannels(dest_buf.num_channels()), dest_buf.channels())); } EXPECT_LT(kDefaultVolume, apm->gain_control()->stream_analog_level()); EXPECT_LT(kDefaultCompressionGain, apm->gain_control()->compression_gain_db()); ASSERT_EQ(0, fclose(far_file)); } #endif TEST_F(ApmTest, NoiseSuppression) { // Test valid suppression levels. NoiseSuppression::Level level[] = { NoiseSuppression::kLow, NoiseSuppression::kModerate, NoiseSuppression::kHigh, NoiseSuppression::kVeryHigh }; for (size_t i = 0; i < arraysize(level); i++) { EXPECT_EQ(apm_->kNoError, apm_->noise_suppression()->set_level(level[i])); EXPECT_EQ(level[i], apm_->noise_suppression()->level()); } // Turn NS on/off EXPECT_EQ(apm_->kNoError, apm_->noise_suppression()->Enable(true)); EXPECT_TRUE(apm_->noise_suppression()->is_enabled()); EXPECT_EQ(apm_->kNoError, apm_->noise_suppression()->Enable(false)); EXPECT_FALSE(apm_->noise_suppression()->is_enabled()); } TEST_F(ApmTest, HighPassFilter) { // Turn HP filter on/off EXPECT_EQ(apm_->kNoError, apm_->high_pass_filter()->Enable(true)); EXPECT_TRUE(apm_->high_pass_filter()->is_enabled()); EXPECT_EQ(apm_->kNoError, apm_->high_pass_filter()->Enable(false)); EXPECT_FALSE(apm_->high_pass_filter()->is_enabled()); } TEST_F(ApmTest, LevelEstimator) { // Turn level estimator on/off EXPECT_EQ(apm_->kNoError, apm_->level_estimator()->Enable(false)); EXPECT_FALSE(apm_->level_estimator()->is_enabled()); EXPECT_EQ(apm_->kNotEnabledError, apm_->level_estimator()->RMS()); EXPECT_EQ(apm_->kNoError, apm_->level_estimator()->Enable(true)); EXPECT_TRUE(apm_->level_estimator()->is_enabled()); // Run this test in wideband; in super-wb, the splitting filter distorts the // audio enough to cause deviation from the expectation for small values. frame_->samples_per_channel_ = 160; frame_->num_channels_ = 2; frame_->sample_rate_hz_ = 16000; // Min value if no frames have been processed. EXPECT_EQ(127, apm_->level_estimator()->RMS()); // Min value on zero frames. SetFrameTo(frame_, 0); EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_)); EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_)); EXPECT_EQ(127, apm_->level_estimator()->RMS()); // Try a few RMS values. // (These also test that the value resets after retrieving it.) SetFrameTo(frame_, 32767); EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_)); EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_)); EXPECT_EQ(0, apm_->level_estimator()->RMS()); SetFrameTo(frame_, 30000); EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_)); EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_)); EXPECT_EQ(1, apm_->level_estimator()->RMS()); SetFrameTo(frame_, 10000); EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_)); EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_)); EXPECT_EQ(10, apm_->level_estimator()->RMS()); SetFrameTo(frame_, 10); EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_)); EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_)); EXPECT_EQ(70, apm_->level_estimator()->RMS()); // Verify reset after enable/disable. SetFrameTo(frame_, 32767); EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_)); EXPECT_EQ(apm_->kNoError, apm_->level_estimator()->Enable(false)); EXPECT_EQ(apm_->kNoError, apm_->level_estimator()->Enable(true)); SetFrameTo(frame_, 1); EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_)); EXPECT_EQ(90, apm_->level_estimator()->RMS()); // Verify reset after initialize. SetFrameTo(frame_, 32767); EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_)); EXPECT_EQ(apm_->kNoError, apm_->Initialize()); SetFrameTo(frame_, 1); EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_)); EXPECT_EQ(90, apm_->level_estimator()->RMS()); } TEST_F(ApmTest, VoiceDetection) { // Test external VAD EXPECT_EQ(apm_->kNoError, apm_->voice_detection()->set_stream_has_voice(true)); EXPECT_TRUE(apm_->voice_detection()->stream_has_voice()); EXPECT_EQ(apm_->kNoError, apm_->voice_detection()->set_stream_has_voice(false)); EXPECT_FALSE(apm_->voice_detection()->stream_has_voice()); // Test valid likelihoods VoiceDetection::Likelihood likelihood[] = { VoiceDetection::kVeryLowLikelihood, VoiceDetection::kLowLikelihood, VoiceDetection::kModerateLikelihood, VoiceDetection::kHighLikelihood }; for (size_t i = 0; i < arraysize(likelihood); i++) { EXPECT_EQ(apm_->kNoError, apm_->voice_detection()->set_likelihood(likelihood[i])); EXPECT_EQ(likelihood[i], apm_->voice_detection()->likelihood()); } /* TODO(bjornv): Enable once VAD supports other frame lengths than 10 ms // Test invalid frame sizes EXPECT_EQ(apm_->kBadParameterError, apm_->voice_detection()->set_frame_size_ms(12)); // Test valid frame sizes for (int i = 10; i <= 30; i += 10) { EXPECT_EQ(apm_->kNoError, apm_->voice_detection()->set_frame_size_ms(i)); EXPECT_EQ(i, apm_->voice_detection()->frame_size_ms()); } */ // Turn VAD on/off EXPECT_EQ(apm_->kNoError, apm_->voice_detection()->Enable(true)); EXPECT_TRUE(apm_->voice_detection()->is_enabled()); EXPECT_EQ(apm_->kNoError, apm_->voice_detection()->Enable(false)); EXPECT_FALSE(apm_->voice_detection()->is_enabled()); // Test that AudioFrame activity is maintained when VAD is disabled. EXPECT_EQ(apm_->kNoError, apm_->voice_detection()->Enable(false)); AudioFrame::VADActivity activity[] = { AudioFrame::kVadActive, AudioFrame::kVadPassive, AudioFrame::kVadUnknown }; for (size_t i = 0; i < arraysize(activity); i++) { frame_->vad_activity_ = activity[i]; EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_)); EXPECT_EQ(activity[i], frame_->vad_activity_); } // Test that AudioFrame activity is set when VAD is enabled. EXPECT_EQ(apm_->kNoError, apm_->voice_detection()->Enable(true)); frame_->vad_activity_ = AudioFrame::kVadUnknown; EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_)); EXPECT_NE(AudioFrame::kVadUnknown, frame_->vad_activity_); // TODO(bjornv): Add tests for streamed voice; stream_has_voice() } TEST_F(ApmTest, AllProcessingDisabledByDefault) { EXPECT_FALSE(apm_->echo_cancellation()->is_enabled()); EXPECT_FALSE(apm_->echo_control_mobile()->is_enabled()); EXPECT_FALSE(apm_->gain_control()->is_enabled()); EXPECT_FALSE(apm_->high_pass_filter()->is_enabled()); EXPECT_FALSE(apm_->level_estimator()->is_enabled()); EXPECT_FALSE(apm_->noise_suppression()->is_enabled()); EXPECT_FALSE(apm_->voice_detection()->is_enabled()); } TEST_F(ApmTest, NoProcessingWhenAllComponentsDisabled) { for (size_t i = 0; i < arraysize(kSampleRates); i++) { Init(kSampleRates[i], kSampleRates[i], kSampleRates[i], 2, 2, 2, false); SetFrameTo(frame_, 1000, 2000); AudioFrame frame_copy; frame_copy.CopyFrom(*frame_); for (int j = 0; j < 1000; j++) { EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_)); EXPECT_TRUE(FrameDataAreEqual(*frame_, frame_copy)); EXPECT_EQ(apm_->kNoError, apm_->ProcessReverseStream(frame_)); EXPECT_TRUE(FrameDataAreEqual(*frame_, frame_copy)); } } } TEST_F(ApmTest, NoProcessingWhenAllComponentsDisabledFloat) { // Test that ProcessStream copies input to output even with no processing. const size_t kSamples = 80; const int sample_rate = 8000; const float src[kSamples] = { -1.0f, 0.0f, 1.0f }; float dest[kSamples] = {}; auto src_channels = &src[0]; auto dest_channels = &dest[0]; apm_.reset(AudioProcessing::Create()); EXPECT_NOERR(apm_->ProcessStream( &src_channels, kSamples, sample_rate, LayoutFromChannels(1), sample_rate, LayoutFromChannels(1), &dest_channels)); for (size_t i = 0; i < kSamples; ++i) { EXPECT_EQ(src[i], dest[i]); } // Same for ProcessReverseStream. float rev_dest[kSamples] = {}; auto rev_dest_channels = &rev_dest[0]; StreamConfig input_stream = {sample_rate, 1}; StreamConfig output_stream = {sample_rate, 1}; EXPECT_NOERR(apm_->ProcessReverseStream(&src_channels, input_stream, output_stream, &rev_dest_channels)); for (size_t i = 0; i < kSamples; ++i) { EXPECT_EQ(src[i], rev_dest[i]); } } TEST_F(ApmTest, IdenticalInputChannelsResultInIdenticalOutputChannels) { EnableAllComponents(); for (size_t i = 0; i < arraysize(kProcessSampleRates); i++) { Init(kProcessSampleRates[i], kProcessSampleRates[i], kProcessSampleRates[i], 2, 2, 2, false); int analog_level = 127; ASSERT_EQ(0, feof(far_file_)); ASSERT_EQ(0, feof(near_file_)); while (ReadFrame(far_file_, revframe_) && ReadFrame(near_file_, frame_)) { CopyLeftToRightChannel(revframe_->data_, revframe_->samples_per_channel_); ASSERT_EQ(kNoErr, apm_->AnalyzeReverseStream(revframe_)); CopyLeftToRightChannel(frame_->data_, frame_->samples_per_channel_); frame_->vad_activity_ = AudioFrame::kVadUnknown; ASSERT_EQ(kNoErr, apm_->set_stream_delay_ms(0)); apm_->echo_cancellation()->set_stream_drift_samples(0); ASSERT_EQ(kNoErr, apm_->gain_control()->set_stream_analog_level(analog_level)); ASSERT_EQ(kNoErr, apm_->ProcessStream(frame_)); analog_level = apm_->gain_control()->stream_analog_level(); VerifyChannelsAreEqual(frame_->data_, frame_->samples_per_channel_); } rewind(far_file_); rewind(near_file_); } } TEST_F(ApmTest, SplittingFilter) { // Verify the filter is not active through undistorted audio when: // 1. No components are enabled... SetFrameTo(frame_, 1000); AudioFrame frame_copy; frame_copy.CopyFrom(*frame_); EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_)); EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_)); EXPECT_TRUE(FrameDataAreEqual(*frame_, frame_copy)); // 2. Only the level estimator is enabled... SetFrameTo(frame_, 1000); frame_copy.CopyFrom(*frame_); EXPECT_EQ(apm_->kNoError, apm_->level_estimator()->Enable(true)); EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_)); EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_)); EXPECT_TRUE(FrameDataAreEqual(*frame_, frame_copy)); EXPECT_EQ(apm_->kNoError, apm_->level_estimator()->Enable(false)); // 3. Only VAD is enabled... SetFrameTo(frame_, 1000); frame_copy.CopyFrom(*frame_); EXPECT_EQ(apm_->kNoError, apm_->voice_detection()->Enable(true)); EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_)); EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_)); EXPECT_TRUE(FrameDataAreEqual(*frame_, frame_copy)); EXPECT_EQ(apm_->kNoError, apm_->voice_detection()->Enable(false)); // 4. Both VAD and the level estimator are enabled... SetFrameTo(frame_, 1000); frame_copy.CopyFrom(*frame_); EXPECT_EQ(apm_->kNoError, apm_->level_estimator()->Enable(true)); EXPECT_EQ(apm_->kNoError, apm_->voice_detection()->Enable(true)); EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_)); EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_)); EXPECT_TRUE(FrameDataAreEqual(*frame_, frame_copy)); EXPECT_EQ(apm_->kNoError, apm_->level_estimator()->Enable(false)); EXPECT_EQ(apm_->kNoError, apm_->voice_detection()->Enable(false)); // TODO(aluebs): Figure out exactly why the AEC affects the audio on Android. /*// 5. Not using super-wb. frame_->samples_per_channel_ = 160; frame_->num_channels_ = 2; frame_->sample_rate_hz_ = 16000; // Enable AEC, which would require the filter in super-wb. We rely on the // first few frames of data being unaffected by the AEC. // TODO(andrew): This test, and the one below, rely rather tenuously on the // behavior of the AEC. Think of something more robust. EXPECT_EQ(apm_->kNoError, apm_->echo_cancellation()->Enable(true)); // Make sure we have extended filter enabled. This makes sure nothing is // touched until we have a farend frame. Config config; config.Set(new ExtendedFilter(true)); apm_->SetExtraOptions(config); SetFrameTo(frame_, 1000); frame_copy.CopyFrom(*frame_); EXPECT_EQ(apm_->kNoError, apm_->set_stream_delay_ms(0)); apm_->echo_cancellation()->set_stream_drift_samples(0); EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_)); EXPECT_EQ(apm_->kNoError, apm_->set_stream_delay_ms(0)); apm_->echo_cancellation()->set_stream_drift_samples(0); EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_)); EXPECT_TRUE(FrameDataAreEqual(*frame_, frame_copy)); // Check the test is valid. We should have distortion from the filter // when AEC is enabled (which won't affect the audio). frame_->samples_per_channel_ = 320; frame_->num_channels_ = 2; frame_->sample_rate_hz_ = 32000; SetFrameTo(frame_, 1000); frame_copy.CopyFrom(*frame_); EXPECT_EQ(apm_->kNoError, apm_->set_stream_delay_ms(0)); apm_->echo_cancellation()->set_stream_drift_samples(0); EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_)); EXPECT_FALSE(FrameDataAreEqual(*frame_, frame_copy));*/ } #ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP void ApmTest::ProcessDebugDump(const std::string& in_filename, const std::string& out_filename, Format format) { FILE* in_file = fopen(in_filename.c_str(), "rb"); ASSERT_TRUE(in_file != NULL); audioproc::Event event_msg; bool first_init = true; while (ReadMessageFromFile(in_file, &event_msg)) { if (event_msg.type() == audioproc::Event::INIT) { const audioproc::Init msg = event_msg.init(); int reverse_sample_rate = msg.sample_rate(); if (msg.has_reverse_sample_rate()) { reverse_sample_rate = msg.reverse_sample_rate(); } int output_sample_rate = msg.sample_rate(); if (msg.has_output_sample_rate()) { output_sample_rate = msg.output_sample_rate(); } Init(msg.sample_rate(), output_sample_rate, reverse_sample_rate, msg.num_input_channels(), msg.num_output_channels(), msg.num_reverse_channels(), false); if (first_init) { // StartDebugRecording() writes an additional init message. Don't start // recording until after the first init to avoid the extra message. EXPECT_NOERR(apm_->StartDebugRecording(out_filename.c_str())); first_init = false; } } else if (event_msg.type() == audioproc::Event::REVERSE_STREAM) { const audioproc::ReverseStream msg = event_msg.reverse_stream(); if (msg.channel_size() > 0) { ASSERT_EQ(revframe_->num_channels_, static_cast(msg.channel_size())); for (int i = 0; i < msg.channel_size(); ++i) { memcpy(revfloat_cb_->channels()[i], msg.channel(i).data(), msg.channel(i).size()); } } else { memcpy(revframe_->data_, msg.data().data(), msg.data().size()); if (format == kFloatFormat) { // We're using an int16 input file; convert to float. ConvertToFloat(*revframe_, revfloat_cb_.get()); } } AnalyzeReverseStreamChooser(format); } else if (event_msg.type() == audioproc::Event::STREAM) { const audioproc::Stream msg = event_msg.stream(); // ProcessStream could have changed this for the output frame. frame_->num_channels_ = apm_->num_input_channels(); EXPECT_NOERR(apm_->gain_control()->set_stream_analog_level(msg.level())); EXPECT_NOERR(apm_->set_stream_delay_ms(msg.delay())); apm_->echo_cancellation()->set_stream_drift_samples(msg.drift()); if (msg.has_keypress()) { apm_->set_stream_key_pressed(msg.keypress()); } else { apm_->set_stream_key_pressed(true); } if (msg.input_channel_size() > 0) { ASSERT_EQ(frame_->num_channels_, static_cast(msg.input_channel_size())); for (int i = 0; i < msg.input_channel_size(); ++i) { memcpy(float_cb_->channels()[i], msg.input_channel(i).data(), msg.input_channel(i).size()); } } else { memcpy(frame_->data_, msg.input_data().data(), msg.input_data().size()); if (format == kFloatFormat) { // We're using an int16 input file; convert to float. ConvertToFloat(*frame_, float_cb_.get()); } } ProcessStreamChooser(format); } } EXPECT_NOERR(apm_->StopDebugRecording()); fclose(in_file); } void ApmTest::VerifyDebugDumpTest(Format format) { const std::string in_filename = test::ResourcePath("ref03", "aecdump"); std::string format_string; switch (format) { case kIntFormat: format_string = "_int"; break; case kFloatFormat: format_string = "_float"; break; } const std::string ref_filename = test::TempFilename( test::OutputPath(), std::string("ref") + format_string + "_aecdump"); const std::string out_filename = test::TempFilename( test::OutputPath(), std::string("out") + format_string + "_aecdump"); EnableAllComponents(); ProcessDebugDump(in_filename, ref_filename, format); ProcessDebugDump(ref_filename, out_filename, format); FILE* ref_file = fopen(ref_filename.c_str(), "rb"); FILE* out_file = fopen(out_filename.c_str(), "rb"); ASSERT_TRUE(ref_file != NULL); ASSERT_TRUE(out_file != NULL); rtc::scoped_ptr ref_bytes; rtc::scoped_ptr out_bytes; size_t ref_size = ReadMessageBytesFromFile(ref_file, &ref_bytes); size_t out_size = ReadMessageBytesFromFile(out_file, &out_bytes); size_t bytes_read = 0; while (ref_size > 0 && out_size > 0) { bytes_read += ref_size; EXPECT_EQ(ref_size, out_size); EXPECT_EQ(0, memcmp(ref_bytes.get(), out_bytes.get(), ref_size)); ref_size = ReadMessageBytesFromFile(ref_file, &ref_bytes); out_size = ReadMessageBytesFromFile(out_file, &out_bytes); } EXPECT_GT(bytes_read, 0u); EXPECT_NE(0, feof(ref_file)); EXPECT_NE(0, feof(out_file)); ASSERT_EQ(0, fclose(ref_file)); ASSERT_EQ(0, fclose(out_file)); remove(ref_filename.c_str()); remove(out_filename.c_str()); } TEST_F(ApmTest, VerifyDebugDumpInt) { VerifyDebugDumpTest(kIntFormat); } TEST_F(ApmTest, VerifyDebugDumpFloat) { VerifyDebugDumpTest(kFloatFormat); } #endif // TODO(andrew): expand test to verify output. TEST_F(ApmTest, DebugDump) { const std::string filename = test::TempFilename(test::OutputPath(), "debug_aec"); EXPECT_EQ(apm_->kNullPointerError, apm_->StartDebugRecording(static_cast(NULL))); #ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP // Stopping without having started should be OK. EXPECT_EQ(apm_->kNoError, apm_->StopDebugRecording()); EXPECT_EQ(apm_->kNoError, apm_->StartDebugRecording(filename.c_str())); EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_)); EXPECT_EQ(apm_->kNoError, apm_->AnalyzeReverseStream(revframe_)); EXPECT_EQ(apm_->kNoError, apm_->StopDebugRecording()); // Verify the file has been written. FILE* fid = fopen(filename.c_str(), "r"); ASSERT_TRUE(fid != NULL); // Clean it up. ASSERT_EQ(0, fclose(fid)); ASSERT_EQ(0, remove(filename.c_str())); #else EXPECT_EQ(apm_->kUnsupportedFunctionError, apm_->StartDebugRecording(filename.c_str())); EXPECT_EQ(apm_->kUnsupportedFunctionError, apm_->StopDebugRecording()); // Verify the file has NOT been written. ASSERT_TRUE(fopen(filename.c_str(), "r") == NULL); #endif // WEBRTC_AUDIOPROC_DEBUG_DUMP } // TODO(andrew): expand test to verify output. TEST_F(ApmTest, DebugDumpFromFileHandle) { FILE* fid = NULL; EXPECT_EQ(apm_->kNullPointerError, apm_->StartDebugRecording(fid)); const std::string filename = test::TempFilename(test::OutputPath(), "debug_aec"); fid = fopen(filename.c_str(), "w"); ASSERT_TRUE(fid); #ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP // Stopping without having started should be OK. EXPECT_EQ(apm_->kNoError, apm_->StopDebugRecording()); EXPECT_EQ(apm_->kNoError, apm_->StartDebugRecording(fid)); EXPECT_EQ(apm_->kNoError, apm_->AnalyzeReverseStream(revframe_)); EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_)); EXPECT_EQ(apm_->kNoError, apm_->StopDebugRecording()); // Verify the file has been written. fid = fopen(filename.c_str(), "r"); ASSERT_TRUE(fid != NULL); // Clean it up. ASSERT_EQ(0, fclose(fid)); ASSERT_EQ(0, remove(filename.c_str())); #else EXPECT_EQ(apm_->kUnsupportedFunctionError, apm_->StartDebugRecording(fid)); EXPECT_EQ(apm_->kUnsupportedFunctionError, apm_->StopDebugRecording()); ASSERT_EQ(0, fclose(fid)); #endif // WEBRTC_AUDIOPROC_DEBUG_DUMP } TEST_F(ApmTest, FloatAndIntInterfacesGiveSimilarResults) { audioproc::OutputData ref_data; OpenFileAndReadMessage(ref_filename_, &ref_data); Config config; config.Set(new ExperimentalAgc(false)); rtc::scoped_ptr fapm(AudioProcessing::Create(config)); EnableAllComponents(); EnableAllAPComponents(fapm.get()); for (int i = 0; i < ref_data.test_size(); i++) { printf("Running test %d of %d...\n", i + 1, ref_data.test_size()); audioproc::Test* test = ref_data.mutable_test(i); // TODO(ajm): Restore downmixing test cases. if (test->num_input_channels() != test->num_output_channels()) continue; const size_t num_render_channels = static_cast(test->num_reverse_channels()); const size_t num_input_channels = static_cast(test->num_input_channels()); const size_t num_output_channels = static_cast(test->num_output_channels()); const size_t samples_per_channel = static_cast( test->sample_rate() * AudioProcessing::kChunkSizeMs / 1000); Init(test->sample_rate(), test->sample_rate(), test->sample_rate(), num_input_channels, num_output_channels, num_render_channels, true); Init(fapm.get()); ChannelBuffer output_cb(samples_per_channel, num_input_channels); ChannelBuffer output_int16(samples_per_channel, num_input_channels); int analog_level = 127; while (ReadFrame(far_file_, revframe_, revfloat_cb_.get()) && ReadFrame(near_file_, frame_, float_cb_.get())) { frame_->vad_activity_ = AudioFrame::kVadUnknown; EXPECT_NOERR(apm_->AnalyzeReverseStream(revframe_)); EXPECT_NOERR(fapm->AnalyzeReverseStream( revfloat_cb_->channels(), samples_per_channel, test->sample_rate(), LayoutFromChannels(num_render_channels))); EXPECT_NOERR(apm_->set_stream_delay_ms(0)); EXPECT_NOERR(fapm->set_stream_delay_ms(0)); apm_->echo_cancellation()->set_stream_drift_samples(0); fapm->echo_cancellation()->set_stream_drift_samples(0); EXPECT_NOERR(apm_->gain_control()->set_stream_analog_level(analog_level)); EXPECT_NOERR(fapm->gain_control()->set_stream_analog_level(analog_level)); EXPECT_NOERR(apm_->ProcessStream(frame_)); Deinterleave(frame_->data_, samples_per_channel, num_output_channels, output_int16.channels()); EXPECT_NOERR(fapm->ProcessStream( float_cb_->channels(), samples_per_channel, test->sample_rate(), LayoutFromChannels(num_input_channels), test->sample_rate(), LayoutFromChannels(num_output_channels), float_cb_->channels())); for (size_t j = 0; j < num_output_channels; ++j) { FloatToS16(float_cb_->channels()[j], samples_per_channel, output_cb.channels()[j]); float variance = 0; float snr = ComputeSNR(output_int16.channels()[j], output_cb.channels()[j], samples_per_channel, &variance); #if defined(WEBRTC_AUDIOPROC_FIXED_PROFILE) // There are a few chunks in the fixed-point profile that give low SNR. // Listening confirmed the difference is acceptable. const float kVarianceThreshold = 150; const float kSNRThreshold = 10; #else const float kVarianceThreshold = 20; const float kSNRThreshold = 20; #endif // Skip frames with low energy. if (sqrt(variance) > kVarianceThreshold) { EXPECT_LT(kSNRThreshold, snr); } } analog_level = fapm->gain_control()->stream_analog_level(); EXPECT_EQ(apm_->gain_control()->stream_analog_level(), fapm->gain_control()->stream_analog_level()); EXPECT_EQ(apm_->echo_cancellation()->stream_has_echo(), fapm->echo_cancellation()->stream_has_echo()); EXPECT_NEAR(apm_->noise_suppression()->speech_probability(), fapm->noise_suppression()->speech_probability(), 0.01); // Reset in case of downmixing. frame_->num_channels_ = static_cast(test->num_input_channels()); } rewind(far_file_); rewind(near_file_); } } // TODO(andrew): Add a test to process a few frames with different combinations // of enabled components. TEST_F(ApmTest, Process) { GOOGLE_PROTOBUF_VERIFY_VERSION; audioproc::OutputData ref_data; if (!write_ref_data) { OpenFileAndReadMessage(ref_filename_, &ref_data); } else { // Write the desired tests to the protobuf reference file. for (size_t i = 0; i < arraysize(kChannels); i++) { for (size_t j = 0; j < arraysize(kChannels); j++) { for (size_t l = 0; l < arraysize(kProcessSampleRates); l++) { audioproc::Test* test = ref_data.add_test(); test->set_num_reverse_channels(kChannels[i]); test->set_num_input_channels(kChannels[j]); test->set_num_output_channels(kChannels[j]); test->set_sample_rate(kProcessSampleRates[l]); test->set_use_aec_extended_filter(false); } } } #if defined(WEBRTC_AUDIOPROC_FLOAT_PROFILE) // To test the extended filter mode. audioproc::Test* test = ref_data.add_test(); test->set_num_reverse_channels(2); test->set_num_input_channels(2); test->set_num_output_channels(2); test->set_sample_rate(AudioProcessing::kSampleRate32kHz); test->set_use_aec_extended_filter(true); #endif } for (int i = 0; i < ref_data.test_size(); i++) { printf("Running test %d of %d...\n", i + 1, ref_data.test_size()); audioproc::Test* test = ref_data.mutable_test(i); // TODO(ajm): We no longer allow different input and output channels. Skip // these tests for now, but they should be removed from the set. if (test->num_input_channels() != test->num_output_channels()) continue; Config config; config.Set(new ExperimentalAgc(false)); config.Set( new ExtendedFilter(test->use_aec_extended_filter())); apm_.reset(AudioProcessing::Create(config)); EnableAllComponents(); Init(test->sample_rate(), test->sample_rate(), test->sample_rate(), static_cast(test->num_input_channels()), static_cast(test->num_output_channels()), static_cast(test->num_reverse_channels()), true); int frame_count = 0; int has_echo_count = 0; int has_voice_count = 0; int is_saturated_count = 0; int analog_level = 127; int analog_level_average = 0; int max_output_average = 0; float ns_speech_prob_average = 0.0f; while (ReadFrame(far_file_, revframe_) && ReadFrame(near_file_, frame_)) { EXPECT_EQ(apm_->kNoError, apm_->AnalyzeReverseStream(revframe_)); frame_->vad_activity_ = AudioFrame::kVadUnknown; EXPECT_EQ(apm_->kNoError, apm_->set_stream_delay_ms(0)); apm_->echo_cancellation()->set_stream_drift_samples(0); EXPECT_EQ(apm_->kNoError, apm_->gain_control()->set_stream_analog_level(analog_level)); EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_)); // Ensure the frame was downmixed properly. EXPECT_EQ(static_cast(test->num_output_channels()), frame_->num_channels_); max_output_average += MaxAudioFrame(*frame_); if (apm_->echo_cancellation()->stream_has_echo()) { has_echo_count++; } analog_level = apm_->gain_control()->stream_analog_level(); analog_level_average += analog_level; if (apm_->gain_control()->stream_is_saturated()) { is_saturated_count++; } if (apm_->voice_detection()->stream_has_voice()) { has_voice_count++; EXPECT_EQ(AudioFrame::kVadActive, frame_->vad_activity_); } else { EXPECT_EQ(AudioFrame::kVadPassive, frame_->vad_activity_); } ns_speech_prob_average += apm_->noise_suppression()->speech_probability(); size_t frame_size = frame_->samples_per_channel_ * frame_->num_channels_; size_t write_count = fwrite(frame_->data_, sizeof(int16_t), frame_size, out_file_); ASSERT_EQ(frame_size, write_count); // Reset in case of downmixing. frame_->num_channels_ = static_cast(test->num_input_channels()); frame_count++; } max_output_average /= frame_count; analog_level_average /= frame_count; ns_speech_prob_average /= frame_count; #if defined(WEBRTC_AUDIOPROC_FLOAT_PROFILE) EchoCancellation::Metrics echo_metrics; EXPECT_EQ(apm_->kNoError, apm_->echo_cancellation()->GetMetrics(&echo_metrics)); int median = 0; int std = 0; float fraction_poor_delays = 0; EXPECT_EQ(apm_->kNoError, apm_->echo_cancellation()->GetDelayMetrics( &median, &std, &fraction_poor_delays)); int rms_level = apm_->level_estimator()->RMS(); EXPECT_LE(0, rms_level); EXPECT_GE(127, rms_level); #endif if (!write_ref_data) { const int kIntNear = 1; // When running the test on a N7 we get a {2, 6} difference of // |has_voice_count| and |max_output_average| is up to 18 higher. // All numbers being consistently higher on N7 compare to ref_data. // TODO(bjornv): If we start getting more of these offsets on Android we // should consider a different approach. Either using one slack for all, // or generate a separate android reference. #if defined(WEBRTC_ANDROID) const int kHasVoiceCountOffset = 3; const int kHasVoiceCountNear = 3; const int kMaxOutputAverageOffset = 9; const int kMaxOutputAverageNear = 9; #else const int kHasVoiceCountOffset = 0; const int kHasVoiceCountNear = kIntNear; const int kMaxOutputAverageOffset = 0; const int kMaxOutputAverageNear = kIntNear; #endif EXPECT_NEAR(test->has_echo_count(), has_echo_count, kIntNear); EXPECT_NEAR(test->has_voice_count(), has_voice_count - kHasVoiceCountOffset, kHasVoiceCountNear); EXPECT_NEAR(test->is_saturated_count(), is_saturated_count, kIntNear); EXPECT_NEAR(test->analog_level_average(), analog_level_average, kIntNear); EXPECT_NEAR(test->max_output_average(), max_output_average - kMaxOutputAverageOffset, kMaxOutputAverageNear); #if defined(WEBRTC_AUDIOPROC_FLOAT_PROFILE) audioproc::Test::EchoMetrics reference = test->echo_metrics(); TestStats(echo_metrics.residual_echo_return_loss, reference.residual_echo_return_loss()); TestStats(echo_metrics.echo_return_loss, reference.echo_return_loss()); TestStats(echo_metrics.echo_return_loss_enhancement, reference.echo_return_loss_enhancement()); TestStats(echo_metrics.a_nlp, reference.a_nlp()); const double kFloatNear = 0.0005; audioproc::Test::DelayMetrics reference_delay = test->delay_metrics(); EXPECT_NEAR(reference_delay.median(), median, kIntNear); EXPECT_NEAR(reference_delay.std(), std, kIntNear); EXPECT_NEAR(reference_delay.fraction_poor_delays(), fraction_poor_delays, kFloatNear); EXPECT_NEAR(test->rms_level(), rms_level, kIntNear); EXPECT_NEAR(test->ns_speech_probability_average(), ns_speech_prob_average, kFloatNear); #endif } else { test->set_has_echo_count(has_echo_count); test->set_has_voice_count(has_voice_count); test->set_is_saturated_count(is_saturated_count); test->set_analog_level_average(analog_level_average); test->set_max_output_average(max_output_average); #if defined(WEBRTC_AUDIOPROC_FLOAT_PROFILE) audioproc::Test::EchoMetrics* message = test->mutable_echo_metrics(); WriteStatsMessage(echo_metrics.residual_echo_return_loss, message->mutable_residual_echo_return_loss()); WriteStatsMessage(echo_metrics.echo_return_loss, message->mutable_echo_return_loss()); WriteStatsMessage(echo_metrics.echo_return_loss_enhancement, message->mutable_echo_return_loss_enhancement()); WriteStatsMessage(echo_metrics.a_nlp, message->mutable_a_nlp()); audioproc::Test::DelayMetrics* message_delay = test->mutable_delay_metrics(); message_delay->set_median(median); message_delay->set_std(std); message_delay->set_fraction_poor_delays(fraction_poor_delays); test->set_rms_level(rms_level); EXPECT_LE(0.0f, ns_speech_prob_average); EXPECT_GE(1.0f, ns_speech_prob_average); test->set_ns_speech_probability_average(ns_speech_prob_average); #endif } rewind(far_file_); rewind(near_file_); } if (write_ref_data) { OpenFileAndWriteMessage(ref_filename_, ref_data); } } TEST_F(ApmTest, NoErrorsWithKeyboardChannel) { struct ChannelFormat { AudioProcessing::ChannelLayout in_layout; AudioProcessing::ChannelLayout out_layout; }; ChannelFormat cf[] = { {AudioProcessing::kMonoAndKeyboard, AudioProcessing::kMono}, {AudioProcessing::kStereoAndKeyboard, AudioProcessing::kMono}, {AudioProcessing::kStereoAndKeyboard, AudioProcessing::kStereo}, }; rtc::scoped_ptr ap(AudioProcessing::Create()); // Enable one component just to ensure some processing takes place. ap->noise_suppression()->Enable(true); for (size_t i = 0; i < arraysize(cf); ++i) { const int in_rate = 44100; const int out_rate = 48000; ChannelBuffer in_cb(SamplesFromRate(in_rate), TotalChannelsFromLayout(cf[i].in_layout)); ChannelBuffer out_cb(SamplesFromRate(out_rate), ChannelsFromLayout(cf[i].out_layout)); // Run over a few chunks. for (int j = 0; j < 10; ++j) { EXPECT_NOERR(ap->ProcessStream( in_cb.channels(), in_cb.num_frames(), in_rate, cf[i].in_layout, out_rate, cf[i].out_layout, out_cb.channels())); } } } // Compares the reference and test arrays over a region around the expected // delay. Finds the highest SNR in that region and adds the variance and squared // error results to the supplied accumulators. void UpdateBestSNR(const float* ref, const float* test, size_t length, int expected_delay, double* variance_acc, double* sq_error_acc) { double best_snr = std::numeric_limits::min(); double best_variance = 0; double best_sq_error = 0; // Search over a region of eight samples around the expected delay. for (int delay = std::max(expected_delay - 4, 0); delay <= expected_delay + 4; ++delay) { double sq_error = 0; double variance = 0; for (size_t i = 0; i < length - delay; ++i) { double error = test[i + delay] - ref[i]; sq_error += error * error; variance += ref[i] * ref[i]; } if (sq_error == 0) { *variance_acc += variance; return; } double snr = variance / sq_error; if (snr > best_snr) { best_snr = snr; best_variance = variance; best_sq_error = sq_error; } } *variance_acc += best_variance; *sq_error_acc += best_sq_error; } // Used to test a multitude of sample rate and channel combinations. It works // by first producing a set of reference files (in SetUpTestCase) that are // assumed to be correct, as the used parameters are verified by other tests // in this collection. Primarily the reference files are all produced at // "native" rates which do not involve any resampling. // Each test pass produces an output file with a particular format. The output // is matched against the reference file closest to its internal processing // format. If necessary the output is resampled back to its process format. // Due to the resampling distortion, we don't expect identical results, but // enforce SNR thresholds which vary depending on the format. 0 is a special // case SNR which corresponds to inf, or zero error. typedef std::tr1::tuple AudioProcessingTestData; class AudioProcessingTest : public testing::TestWithParam { public: AudioProcessingTest() : input_rate_(std::tr1::get<0>(GetParam())), output_rate_(std::tr1::get<1>(GetParam())), reverse_input_rate_(std::tr1::get<2>(GetParam())), reverse_output_rate_(std::tr1::get<3>(GetParam())), expected_snr_(std::tr1::get<4>(GetParam())), expected_reverse_snr_(std::tr1::get<5>(GetParam())) {} virtual ~AudioProcessingTest() {} static void SetUpTestCase() { // Create all needed output reference files. const int kNativeRates[] = {8000, 16000, 32000, 48000}; const size_t kNumChannels[] = {1, 2}; for (size_t i = 0; i < arraysize(kNativeRates); ++i) { for (size_t j = 0; j < arraysize(kNumChannels); ++j) { for (size_t k = 0; k < arraysize(kNumChannels); ++k) { // The reference files always have matching input and output channels. ProcessFormat(kNativeRates[i], kNativeRates[i], kNativeRates[i], kNativeRates[i], kNumChannels[j], kNumChannels[j], kNumChannels[k], kNumChannels[k], "ref"); } } } } static void TearDownTestCase() { ClearTempFiles(); } // Runs a process pass on files with the given parameters and dumps the output // to a file specified with |output_file_prefix|. Both forward and reverse // output streams are dumped. static void ProcessFormat(int input_rate, int output_rate, int reverse_input_rate, int reverse_output_rate, size_t num_input_channels, size_t num_output_channels, size_t num_reverse_input_channels, size_t num_reverse_output_channels, std::string output_file_prefix) { Config config; config.Set(new ExperimentalAgc(false)); rtc::scoped_ptr ap(AudioProcessing::Create(config)); EnableAllAPComponents(ap.get()); ProcessingConfig processing_config = { {{input_rate, num_input_channels}, {output_rate, num_output_channels}, {reverse_input_rate, num_reverse_input_channels}, {reverse_output_rate, num_reverse_output_channels}}}; ap->Initialize(processing_config); FILE* far_file = fopen(ResourceFilePath("far", reverse_input_rate).c_str(), "rb"); FILE* near_file = fopen(ResourceFilePath("near", input_rate).c_str(), "rb"); FILE* out_file = fopen(OutputFilePath(output_file_prefix, input_rate, output_rate, reverse_input_rate, reverse_output_rate, num_input_channels, num_output_channels, num_reverse_input_channels, num_reverse_output_channels, kForward).c_str(), "wb"); FILE* rev_out_file = fopen(OutputFilePath(output_file_prefix, input_rate, output_rate, reverse_input_rate, reverse_output_rate, num_input_channels, num_output_channels, num_reverse_input_channels, num_reverse_output_channels, kReverse).c_str(), "wb"); ASSERT_TRUE(far_file != NULL); ASSERT_TRUE(near_file != NULL); ASSERT_TRUE(out_file != NULL); ASSERT_TRUE(rev_out_file != NULL); ChannelBuffer fwd_cb(SamplesFromRate(input_rate), num_input_channels); ChannelBuffer rev_cb(SamplesFromRate(reverse_input_rate), num_reverse_input_channels); ChannelBuffer out_cb(SamplesFromRate(output_rate), num_output_channels); ChannelBuffer rev_out_cb(SamplesFromRate(reverse_output_rate), num_reverse_output_channels); // Temporary buffers. const int max_length = 2 * std::max(std::max(out_cb.num_frames(), rev_out_cb.num_frames()), std::max(fwd_cb.num_frames(), rev_cb.num_frames())); rtc::scoped_ptr float_data(new float[max_length]); rtc::scoped_ptr int_data(new int16_t[max_length]); int analog_level = 127; while (ReadChunk(far_file, int_data.get(), float_data.get(), &rev_cb) && ReadChunk(near_file, int_data.get(), float_data.get(), &fwd_cb)) { EXPECT_NOERR(ap->ProcessReverseStream( rev_cb.channels(), processing_config.reverse_input_stream(), processing_config.reverse_output_stream(), rev_out_cb.channels())); EXPECT_NOERR(ap->set_stream_delay_ms(0)); ap->echo_cancellation()->set_stream_drift_samples(0); EXPECT_NOERR(ap->gain_control()->set_stream_analog_level(analog_level)); EXPECT_NOERR(ap->ProcessStream( fwd_cb.channels(), fwd_cb.num_frames(), input_rate, LayoutFromChannels(num_input_channels), output_rate, LayoutFromChannels(num_output_channels), out_cb.channels())); // Dump forward output to file. Interleave(out_cb.channels(), out_cb.num_frames(), out_cb.num_channels(), float_data.get()); size_t out_length = out_cb.num_channels() * out_cb.num_frames(); ASSERT_EQ(out_length, fwrite(float_data.get(), sizeof(float_data[0]), out_length, out_file)); // Dump reverse output to file. Interleave(rev_out_cb.channels(), rev_out_cb.num_frames(), rev_out_cb.num_channels(), float_data.get()); size_t rev_out_length = rev_out_cb.num_channels() * rev_out_cb.num_frames(); ASSERT_EQ(rev_out_length, fwrite(float_data.get(), sizeof(float_data[0]), rev_out_length, rev_out_file)); analog_level = ap->gain_control()->stream_analog_level(); } fclose(far_file); fclose(near_file); fclose(out_file); fclose(rev_out_file); } protected: int input_rate_; int output_rate_; int reverse_input_rate_; int reverse_output_rate_; double expected_snr_; double expected_reverse_snr_; }; TEST_P(AudioProcessingTest, Formats) { struct ChannelFormat { int num_input; int num_output; int num_reverse_input; int num_reverse_output; }; ChannelFormat cf[] = { {1, 1, 1, 1}, {1, 1, 2, 1}, {2, 1, 1, 1}, {2, 1, 2, 1}, {2, 2, 1, 1}, {2, 2, 2, 2}, }; for (size_t i = 0; i < arraysize(cf); ++i) { ProcessFormat(input_rate_, output_rate_, reverse_input_rate_, reverse_output_rate_, cf[i].num_input, cf[i].num_output, cf[i].num_reverse_input, cf[i].num_reverse_output, "out"); // Verify output for both directions. std::vector stream_directions; stream_directions.push_back(kForward); stream_directions.push_back(kReverse); for (StreamDirection file_direction : stream_directions) { const int in_rate = file_direction ? reverse_input_rate_ : input_rate_; const int out_rate = file_direction ? reverse_output_rate_ : output_rate_; const int out_num = file_direction ? cf[i].num_reverse_output : cf[i].num_output; const double expected_snr = file_direction ? expected_reverse_snr_ : expected_snr_; const int min_ref_rate = std::min(in_rate, out_rate); int ref_rate; if (min_ref_rate > 32000) { ref_rate = 48000; } else if (min_ref_rate > 16000) { ref_rate = 32000; } else if (min_ref_rate > 8000) { ref_rate = 16000; } else { ref_rate = 8000; } #ifdef WEBRTC_AUDIOPROC_FIXED_PROFILE if (file_direction == kForward) { ref_rate = std::min(ref_rate, 16000); } #endif FILE* out_file = fopen( OutputFilePath("out", input_rate_, output_rate_, reverse_input_rate_, reverse_output_rate_, cf[i].num_input, cf[i].num_output, cf[i].num_reverse_input, cf[i].num_reverse_output, file_direction).c_str(), "rb"); // The reference files always have matching input and output channels. FILE* ref_file = fopen( OutputFilePath("ref", ref_rate, ref_rate, ref_rate, ref_rate, cf[i].num_output, cf[i].num_output, cf[i].num_reverse_output, cf[i].num_reverse_output, file_direction).c_str(), "rb"); ASSERT_TRUE(out_file != NULL); ASSERT_TRUE(ref_file != NULL); const size_t ref_length = SamplesFromRate(ref_rate) * out_num; const size_t out_length = SamplesFromRate(out_rate) * out_num; // Data from the reference file. rtc::scoped_ptr ref_data(new float[ref_length]); // Data from the output file. rtc::scoped_ptr out_data(new float[out_length]); // Data from the resampled output, in case the reference and output rates // don't match. rtc::scoped_ptr cmp_data(new float[ref_length]); PushResampler resampler; resampler.InitializeIfNeeded(out_rate, ref_rate, out_num); // Compute the resampling delay of the output relative to the reference, // to find the region over which we should search for the best SNR. float expected_delay_sec = 0; if (in_rate != ref_rate) { // Input resampling delay. expected_delay_sec += PushSincResampler::AlgorithmicDelaySeconds(in_rate); } if (out_rate != ref_rate) { // Output resampling delay. expected_delay_sec += PushSincResampler::AlgorithmicDelaySeconds(ref_rate); // Delay of converting the output back to its processing rate for // testing. expected_delay_sec += PushSincResampler::AlgorithmicDelaySeconds(out_rate); } int expected_delay = floor(expected_delay_sec * ref_rate + 0.5f) * out_num; double variance = 0; double sq_error = 0; while (fread(out_data.get(), sizeof(out_data[0]), out_length, out_file) && fread(ref_data.get(), sizeof(ref_data[0]), ref_length, ref_file)) { float* out_ptr = out_data.get(); if (out_rate != ref_rate) { // Resample the output back to its internal processing rate if // necssary. ASSERT_EQ(ref_length, static_cast(resampler.Resample( out_ptr, out_length, cmp_data.get(), ref_length))); out_ptr = cmp_data.get(); } // Update the |sq_error| and |variance| accumulators with the highest // SNR of reference vs output. UpdateBestSNR(ref_data.get(), out_ptr, ref_length, expected_delay, &variance, &sq_error); } std::cout << "(" << input_rate_ << ", " << output_rate_ << ", " << reverse_input_rate_ << ", " << reverse_output_rate_ << ", " << cf[i].num_input << ", " << cf[i].num_output << ", " << cf[i].num_reverse_input << ", " << cf[i].num_reverse_output << ", " << file_direction << "): "; if (sq_error > 0) { double snr = 10 * log10(variance / sq_error); EXPECT_GE(snr, expected_snr); EXPECT_NE(0, expected_snr); std::cout << "SNR=" << snr << " dB" << std::endl; } else { EXPECT_EQ(expected_snr, 0); std::cout << "SNR=" << "inf dB" << std::endl; } fclose(out_file); fclose(ref_file); } } } #if defined(WEBRTC_AUDIOPROC_FLOAT_PROFILE) INSTANTIATE_TEST_CASE_P( CommonFormats, AudioProcessingTest, testing::Values(std::tr1::make_tuple(48000, 48000, 48000, 48000, 0, 0), std::tr1::make_tuple(48000, 48000, 32000, 48000, 40, 30), std::tr1::make_tuple(48000, 48000, 16000, 48000, 40, 20), std::tr1::make_tuple(48000, 44100, 48000, 44100, 20, 20), std::tr1::make_tuple(48000, 44100, 32000, 44100, 20, 15), std::tr1::make_tuple(48000, 44100, 16000, 44100, 20, 15), std::tr1::make_tuple(48000, 32000, 48000, 32000, 30, 35), std::tr1::make_tuple(48000, 32000, 32000, 32000, 30, 0), std::tr1::make_tuple(48000, 32000, 16000, 32000, 30, 20), std::tr1::make_tuple(48000, 16000, 48000, 16000, 25, 20), std::tr1::make_tuple(48000, 16000, 32000, 16000, 25, 20), std::tr1::make_tuple(48000, 16000, 16000, 16000, 25, 0), std::tr1::make_tuple(44100, 48000, 48000, 48000, 30, 0), std::tr1::make_tuple(44100, 48000, 32000, 48000, 30, 30), std::tr1::make_tuple(44100, 48000, 16000, 48000, 30, 20), std::tr1::make_tuple(44100, 44100, 48000, 44100, 20, 20), std::tr1::make_tuple(44100, 44100, 32000, 44100, 20, 15), std::tr1::make_tuple(44100, 44100, 16000, 44100, 20, 15), std::tr1::make_tuple(44100, 32000, 48000, 32000, 30, 35), std::tr1::make_tuple(44100, 32000, 32000, 32000, 30, 0), std::tr1::make_tuple(44100, 32000, 16000, 32000, 30, 20), std::tr1::make_tuple(44100, 16000, 48000, 16000, 25, 20), std::tr1::make_tuple(44100, 16000, 32000, 16000, 25, 20), std::tr1::make_tuple(44100, 16000, 16000, 16000, 25, 0), std::tr1::make_tuple(32000, 48000, 48000, 48000, 30, 0), std::tr1::make_tuple(32000, 48000, 32000, 48000, 35, 30), std::tr1::make_tuple(32000, 48000, 16000, 48000, 30, 20), std::tr1::make_tuple(32000, 44100, 48000, 44100, 20, 20), std::tr1::make_tuple(32000, 44100, 32000, 44100, 20, 15), std::tr1::make_tuple(32000, 44100, 16000, 44100, 20, 15), std::tr1::make_tuple(32000, 32000, 48000, 32000, 40, 35), std::tr1::make_tuple(32000, 32000, 32000, 32000, 0, 0), std::tr1::make_tuple(32000, 32000, 16000, 32000, 40, 20), std::tr1::make_tuple(32000, 16000, 48000, 16000, 25, 20), std::tr1::make_tuple(32000, 16000, 32000, 16000, 25, 20), std::tr1::make_tuple(32000, 16000, 16000, 16000, 25, 0), std::tr1::make_tuple(16000, 48000, 48000, 48000, 25, 0), std::tr1::make_tuple(16000, 48000, 32000, 48000, 25, 30), std::tr1::make_tuple(16000, 48000, 16000, 48000, 25, 20), std::tr1::make_tuple(16000, 44100, 48000, 44100, 15, 20), std::tr1::make_tuple(16000, 44100, 32000, 44100, 15, 15), std::tr1::make_tuple(16000, 44100, 16000, 44100, 15, 15), std::tr1::make_tuple(16000, 32000, 48000, 32000, 25, 35), std::tr1::make_tuple(16000, 32000, 32000, 32000, 25, 0), std::tr1::make_tuple(16000, 32000, 16000, 32000, 25, 20), std::tr1::make_tuple(16000, 16000, 48000, 16000, 40, 20), std::tr1::make_tuple(16000, 16000, 32000, 16000, 50, 20), std::tr1::make_tuple(16000, 16000, 16000, 16000, 0, 0))); #elif defined(WEBRTC_AUDIOPROC_FIXED_PROFILE) INSTANTIATE_TEST_CASE_P( CommonFormats, AudioProcessingTest, testing::Values(std::tr1::make_tuple(48000, 48000, 48000, 48000, 20, 0), std::tr1::make_tuple(48000, 48000, 32000, 48000, 20, 30), std::tr1::make_tuple(48000, 48000, 16000, 48000, 20, 20), std::tr1::make_tuple(48000, 44100, 48000, 44100, 15, 20), std::tr1::make_tuple(48000, 44100, 32000, 44100, 15, 15), std::tr1::make_tuple(48000, 44100, 16000, 44100, 15, 15), std::tr1::make_tuple(48000, 32000, 48000, 32000, 20, 35), std::tr1::make_tuple(48000, 32000, 32000, 32000, 20, 0), std::tr1::make_tuple(48000, 32000, 16000, 32000, 20, 20), std::tr1::make_tuple(48000, 16000, 48000, 16000, 20, 20), std::tr1::make_tuple(48000, 16000, 32000, 16000, 20, 20), std::tr1::make_tuple(48000, 16000, 16000, 16000, 20, 0), std::tr1::make_tuple(44100, 48000, 48000, 48000, 20, 0), std::tr1::make_tuple(44100, 48000, 32000, 48000, 20, 30), std::tr1::make_tuple(44100, 48000, 16000, 48000, 20, 20), std::tr1::make_tuple(44100, 44100, 48000, 44100, 15, 20), std::tr1::make_tuple(44100, 44100, 32000, 44100, 15, 15), std::tr1::make_tuple(44100, 44100, 16000, 44100, 15, 15), std::tr1::make_tuple(44100, 32000, 48000, 32000, 20, 35), std::tr1::make_tuple(44100, 32000, 32000, 32000, 20, 0), std::tr1::make_tuple(44100, 32000, 16000, 32000, 20, 20), std::tr1::make_tuple(44100, 16000, 48000, 16000, 20, 20), std::tr1::make_tuple(44100, 16000, 32000, 16000, 20, 20), std::tr1::make_tuple(44100, 16000, 16000, 16000, 20, 0), std::tr1::make_tuple(32000, 48000, 48000, 48000, 20, 0), std::tr1::make_tuple(32000, 48000, 32000, 48000, 20, 30), std::tr1::make_tuple(32000, 48000, 16000, 48000, 20, 20), std::tr1::make_tuple(32000, 44100, 48000, 44100, 15, 20), std::tr1::make_tuple(32000, 44100, 32000, 44100, 15, 15), std::tr1::make_tuple(32000, 44100, 16000, 44100, 15, 15), std::tr1::make_tuple(32000, 32000, 48000, 32000, 20, 35), std::tr1::make_tuple(32000, 32000, 32000, 32000, 20, 0), std::tr1::make_tuple(32000, 32000, 16000, 32000, 20, 20), std::tr1::make_tuple(32000, 16000, 48000, 16000, 20, 20), std::tr1::make_tuple(32000, 16000, 32000, 16000, 20, 20), std::tr1::make_tuple(32000, 16000, 16000, 16000, 20, 0), std::tr1::make_tuple(16000, 48000, 48000, 48000, 25, 0), std::tr1::make_tuple(16000, 48000, 32000, 48000, 25, 30), std::tr1::make_tuple(16000, 48000, 16000, 48000, 25, 20), std::tr1::make_tuple(16000, 44100, 48000, 44100, 15, 20), std::tr1::make_tuple(16000, 44100, 32000, 44100, 15, 15), std::tr1::make_tuple(16000, 44100, 16000, 44100, 15, 15), std::tr1::make_tuple(16000, 32000, 48000, 32000, 25, 35), std::tr1::make_tuple(16000, 32000, 32000, 32000, 25, 0), std::tr1::make_tuple(16000, 32000, 16000, 32000, 25, 20), std::tr1::make_tuple(16000, 16000, 48000, 16000, 35, 20), std::tr1::make_tuple(16000, 16000, 32000, 16000, 40, 20), std::tr1::make_tuple(16000, 16000, 16000, 16000, 0, 0))); #endif } // namespace } // namespace webrtc